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Let K denote an algebraically closed field. Let V denote a vector

space over K with finite positive dimension. By a Leonard triple on

V we mean an ordered triple of linear transformations in End(V)
such that for each of these transformations there exists a basis of

V with respect to which the matrix representing that transforma-

tion is diagonal and the matrices representing the other two trans-

formations are irreducible tridiagonal. There is a family of Leonard

triples said to have QRacah type. This is the most general type of

Leonard triple. We classify the Leonard triples of QRacah type up to

isomorphism. We show that any Leonard triple of QRacah type sat-

isfies the Z3-symmetric Askey–Wilson relations.

© 2011 Published by Elsevier Inc.

1. Leonard pairs and Leonard systems

We begin by recalling the notion of a Leonard pair. We will use the following terms. Let X denote

a square matrix. Then X is called tridiagonalwhenever each nonzero entry lies on either the diagonal,

the subdiagonal, or the superdiagonal. Assume X is tridiagonal. Then X is called irreducible whenever

each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

We now define a Leonard pair. For the rest of this paper K will denote an algebraically closed field.

Definition 1.1 [4, Definition 1.1]. Let V denote a vector space overKwith finite positive dimension. By

a Leonard pair on V, we mean an ordered pair of linear transformations A : V → V and A∗ : V → V

that satisfy both (i), (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiag-

onal and the matrix representing A∗ is diagonal.

(ii) There exists a basis for V with respect to which the matrix representing A∗ is irreducible tridi-

agonal and the matrix representing A is diagonal.
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Note 1.2. According to a common notational convention A∗ denotes the conjugate-transpose of A.
We are not using this convention. In a Leonard pair (A, A∗) the linear transformations A and A∗ are

arbitrary subject to (i), (ii) above.

For the rest of this paper we fix an integer d � 0. Let Matd+1(K) denote the K-algebra consisting

of all d + 1 by d + 1 matrices that have entries in K.We index the rows and columns by 0, 1, . . . , d.
We let Kd+1 denote the K-vector space consisting of all d + 1 by 1 matrices that have entries in K.
We index the rows by 0, 1, . . . , d.We view Kd+1 as a left module for Matd+1(K). For the rest of the

paper let V denote a vector space over K that has dimension d + 1. Let End(V) denote the K-algebra

consisting of all linear transformations from V to V . Let {vi}di=0 denote a basis for V . For X ∈ End(V)

and Y ∈ Matd+1(K), we say Y represents X with respect to {vi}di=0 whenever Xvj = ∑d
i=0 Yijvi for

0 � j � d. For A ∈ End(V), by an eigenvalue of Awemean a root of the characteristic polynomial of A.
We say that A ismultiplicity-freewhenever it has d + 1 distinct eigenvalues. Assume A is multiplicity-

free. Let {θi}di=0 denote an ordering of the eigenvalues of A. For 0 � i � d let Vi denote the eigenspace

of A associatedwith θi.Define Ei ∈ End(V) such that (Ei − I)Vi = 0 and EiVj = 0 for j �= i (0 � j � d).

Here I denotes the identity of End(V).We call Ei the primitive idempotent of A associated with θi.

Lemma 1.3 [4, Lemma 1.3]. Let (A, A∗) denote a Leonard pair on V . Then each of A, A∗ is multiplicity-free.

We now define a Leonard system.

Definition 1.4 [4, Definition 1.4]. By a Leonard system on V we mean a sequence � = (A; {Ei}di=0;
A∗; {E∗

i }di=0) that satisfies (i)–(v) below.

(i) Each of A, A∗ is a multiplicity-free element in End(V).
(ii) {Ei}di=0 is an ordering of the primitive idempotents of A.

(iii) {E∗
i }di=0 is an ordering of the primitive idempotents of A∗.

(iv) EiA
∗Ej =

⎧⎨
⎩

0 if |i − j| > 1,

�= 0 if |i − j| = 1
(0 � i, j � d).

(v) E∗
i AE

∗
j =

⎧⎨
⎩

0 if |i − j| > 1,

�= 0 if |i − j| = 1
(0 � i, j � d).

We refer to d as the diameter of� and say� is over K.

Definition 1.5 [4, Definition 1.8]. Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard system on V .

For 0 � i � d let θi (resp. θ
∗
i ) denote the eigenvalue of A (resp. A∗) associated with Ei (resp. E

∗
i ). We

call {θi}di=0 (resp. {θ∗
i }di=0) the eigenvalue sequence (resp. dual eigenvalue sequence) of�.

Definition 1.6 [4, Definition 2.5]. Let (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard system. Define

ai = tr(AE∗
i ), a∗

i = tr(A∗Ei) (0 � i � d),

where tr denotes trace.

The scalars {ai}di=0, {a∗
i }di=0 have the following interpretation.

Lemma 1.7 [5, Lemma 10.2]. With reference to Definition 1.6,

E∗
i AE

∗
i = aiE

∗
i (0 � i � d),

EiA
∗Ei = a∗

i Ei (0 � i � d).
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Let� = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard systemon V .Observe that each of the following

three sequences is a Leonard system on V .

�∗ := (A∗, {E∗
i }di=0; A; {Ei}di=0),

�↓ := (A, {Ei}di=0; A∗; {E∗
d−i}di=0),

�⇓ := (A, {Ed−i}di=0; A∗; {E∗
i }di=0).

Viewing ∗,↓,⇓ as permutations on the set of all Leonard systems,

∗2 = ↓2 = ⇓2 = 1, (1)

⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓⇓ = ⇓↓ . (2)

The group generated by the symbols ∗,↓,⇓ subject to the relations (1), (2) is the dihedral group D4.
We recallD4 is the group of symmetries of a square, and has 8 elements. Thus ∗,↓,⇓ induce an action

of D4 on the set of all Leonard systems.

Definition 1.8 [7, Section 4]. Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard system on V . Then

the pair (A, A∗) forms a Leonard pair on V .We say this pair is associatedwith�.Observe each Leonard

system is associated with a unique Leonard pair.

Definition 1.9 [7, Section 4]. Let (A, A∗) denote a Leonard pair on V . By the associate class for (A, A∗)
we mean the set of Leonard systems on V which are associated with (A, A∗). Observe this associate

class contains at least one Leonard system �. By [7, Section 4] this associate class contains �, �↓,
�⇓, �↓⇓ and no other Leonard systems.

For the rest of this section let V ′ denote a vector space overKwith dimension d+1. By aK-algebra

isomorphism from End(V) to End(V ′) we mean an isomorphism of K-vector spaces σ : End(V) →
End(V ′) such that (XY)σ = Xσ Yσ for all X, Y ∈ End(V).

It is useful to interpret the concept of isomorphism as follows. Let γ : V → V ′ denote an isomor-

phism of K-vector spaces. Define a map σ : End(V) → End(V ′) by Xσ = γ Xγ−1 for all X ∈ End(V).
Then σ is a K-algebra isomorphism. Conversely let σ : End(V) → End(V ′) denote a K-algebra

isomorphism. By the Skolem–Noether theorem [3, Corollary 9.122] there exists an isomorphism of

K-vector spaces γ : V → V ′ such that Xσ = γ Xγ−1 for all X ∈ End(V).

We now recall the notion of isomorphism for Leonard pairs and Leonard systems.

Definition 1.10. Let (A, A∗) denote a Leonard pair on V . Let (B, B∗) denote a Leonard pair on V ′. By an

isomorphism of Leonard pairs from (A, A∗) to (B, B∗)wemean aK-algebra isomorphismσ : End(V) →
End(V ′) that sends A to B and A∗ to B∗.Wesay (A, A∗) and (B, B∗) are isomorphicwhenever there exists

an isomorphism of Leonard pairs from (A, A∗) to (B, B∗).

Let � denote the Leonard system from Definition 1.5 and let σ : End(V) → End(V ′) denote a

K-algebra isomorphism. We write�σ := (Aσ ; {Eσi }di=0; A∗σ ; {E∗σ
i }di=0) and observe�σ is a Leonard

system on V ′.

Definition 1.11. Let � denote a Leonard system on V . Let �′ denote a Leonard system on V ′. By an

isomorphism of Leonard systems from � to �′ we mean a K-algebra isomorphism σ : End(V) →
End(V ′) such that �σ = �′.We say �, �′ are isomorphic whenever there exists an isomorphism of

Leonard systems from� to�′.

Definition 1.12. Let LS = LS(d,K) denote the set consisting of the isomorphism classes of Leonard

systems over K that have diameter d.
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Observe that the D4 action on Leonard systems from above Definition 1.8 induces a D4 action on

the set LS from Definition 1.12.

We recall the notion of an antiautomorphism of End(V). By an antiautomorphism of End(V) we

mean an isomorphism of K-vector spaces γ : End(V) → End(V) such that (XY)γ = Yγ Xγ for all

X, Y ∈ End(V).

Lemma 1.13 [8, Theorem 6.1]. Let (A, A∗) denote a Leonard pair on V . Then there exists a unique antiau-

tomorphism † of End(V) such that A† = A and A∗† = A∗.Moreover X†† = X for all X ∈ End(V).

Definition 1.14 [8, Definition 6.2]. Let (A, A∗) denote a Leonard pair on V . By the antiautomorphism

which corresponds to (A, A∗)we mean the map † from Lemma 1.13.

2. The parameter array of a Leonard system

Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard system on V . In Definition 1.5 we defined the

eigenvalue sequence and the dual eigenvalue sequence of�. There are twomore parameter sequences

of interest to us. In order to define these, we review some results from [4]. For 0 � i � d define

Ui = (E∗
0V + E∗

1V + · · · + E∗
i V) ∩ (EiV + Ei+1V + · · · + EdV). (3)

By [4, Lemma 3.8] each of U0,U1, . . . ,Ud has dimension one and

V = U0 + U1 + · · · + Ud (direct sum). (4)

The elements A and A∗ act on {Ui}di=0 as follows. By [4, Lemma 3.9], both

(A − θiI)Ui = Ui+1 (0 � i � d − 1), (A − θdI)Ud = 0, (5)

(A∗ − θ∗
i I)Ui = Ui−1 (1 � i � d), (A∗ − θ∗

0 I)U0 = 0. (6)

Setting i = 0 in (3) we find U0 = E∗
0V . Combining this with (5) we find

Ui = (A − θi−1I) · · · (A − θ1I)(A − θ0I)E
∗
0V (0 � i � d). (7)

Let v denote a nonzero vector in E∗
0V . By (7), for 0 � i � d the vector (A − θi−1I) · · · (A − θ0I)v is a

basis for Ui. By this and (4) the sequence

(A − θi−1I) · · · (A − θ1I)(A − θ0I)v (0 � i � d) (8)

is a basis for V .With respect to this basis the matrices representing A and A∗ are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ0 0

1 θ1

1 θ2

· ·
· ·

0 1 θd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ∗
0 ϕ1 0

θ∗
1 ϕ2

θ∗
2 ·

· ·
· ϕd

0 θ∗
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

respectively, where ϕ1, ϕ2, . . . , ϕd are appropriate scalars in K. By a �-split basis for V we mean a

sequence of the form (8), where v is a nonzero vector in E∗
0V .We call {ϕi}di=1 the first split sequence of

�.We let {φi}di=1 denote the first split sequence of�⇓ and call this the second split sequence of�. For
notational convenience define ϕ0 = 0, ϕd+1 = 0, φ0 = 0, φd+1 = 0.
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Definition 2.1 [7, Definition 13.3]. Let� denote a Leonard system on V . Define a map � : End(V) →
Matd+1(K)as follows. For allX ∈ End(V) letX� denote thematrix inMatd+1(K) that representsXwith

respect to a �-split basis for V .We observe � : End(V) → Matd+1(K) is a K-algebra isomorphism.

We call � the natural map for�.

Definition 2.2 [8, Definition 22.3]. Let�denote a Leonard systemonV .By the parameter array of�we

mean the sequence ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1),where {θi}di=0 (resp. {θ∗

i }di=0) is the eigenvalue

sequence (resp. dual eigenvalue sequence) of � and {ϕi}di=1 (resp. {φi}di=1) is the first split sequence

(resp. second split sequence) of�.

Lemma 2.3 [4, Lemma 5.1]. Let � denote a Leonard system over K and let ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1,

{φi}di=1) denote the corresponding parameter array. Then the scalars {ai}di=0, {a∗
i }di=0 from Definition 1.6

are given as follows. If d = 0 then a0 = θ0 and a∗
0 = θ∗

0 . If d � 1 then

a0 = θ0 + ϕ1

θ∗
0 − θ∗

1

,

ai = θi + ϕi

θ∗
i − θ∗

i−1

+ ϕi+1

θ∗
i − θ∗

i+1

(1 � i � d − 1),

ad = θd + ϕd

θ∗
d − θ∗

d−1

,

a∗
0 = θ∗

0 + ϕ1

θ0 − θ1
,

a∗
i = θ∗

i + ϕi

θi − θi−1

+ ϕi+1

θi − θi+1

(1 � i � d − 1),

a∗
d = θ∗

d + ϕd

θd − θd−1

.

Lemma 2.4 [4, Theorem 1.9]. Let

(
{θi}di=0, {θ∗

i }di=0, {ϕi}di=1, {φi}di=1

)
(10)

denote a sequence of scalars taken from K. Then there exists a Leonard system� over K with parameter

array (10) if and only if the following conditions (PA1)–(PA5) hold.

(PA1) θi �= θj, θ∗
i �= θ∗

j if i �= j (0 � i, j � d).

(PA2) ϕi �= 0, φi �= 0 (1 � i � d).

(PA3) ϕi = φ1

i−1∑
h=0

θh − θd−h

θ0 − θd
+ (θ∗

i − θ∗
0 )(θi−1 − θd) (1 � i � d).

(PA4) φi = ϕ1

i−1∑
h=0

θh − θd−h

θ0 − θd
+ (θ∗

i − θ∗
0 )(θd−i+1 − θ0) (1 � i � d).

(PA5) The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are equal and independent of i for 2 � i � d − 1.

Moreover, if (PA1)–(PA5) hold then� is unique up to isomorphism of Leonard systems.
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Definition 2.5 [8, Definition 22.1]. By a parameter array over K of diameter d we mean a sequence of

scalars ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) taken from K that satisfies (PA1)–(PA5).

Definition 2.6. Let PA = PA(d,K) denote the set consisting of all parameter arrays over K that have

diameter d.

ByLemma2.4 themapwhich sendsagivenLeonard systemto itsparameter array induces abijection

from LS to PA. Below Definition 1.12 we gave a D4 action on the set LS. This action induces a D4 action

on PA.We now describe this action.

Lemma 2.7 [4, Theorem 1.11]. Let � denote a Leonard system with parameter array ({θi}di=0, {θ∗
i }di=0,

{ϕi}di=1,{φi}di=1). Then (i)–(iii) hold below.

(i) The parameter array of�∗ is ({θ∗
i }di=0, {θi}di=0, {ϕi}di=1, {φd−i+1}di=1).

(ii) The parameter array of�↓ is ({θi}di=0, {θ∗
d−i}di=0, {φd−i+1}di=1, {ϕd−i+1}di=1).

(iii) The parameter array of�⇓ is ({θd−i}di=0, {θ∗
i }di=0, {φi}di=1, {ϕi}di=1).

Wemention a result for later use.

Lemma2.8 [7, Theorem17.1]. Let A, A∗ denotematrices inMatd+1(K).Assume that A is lower bidiagonal

and A∗ is upper bidiagonal. Then the following (i), (ii) are equivalent.

(i) The pair (A, A∗) is a Leonard pair on Kd+1.
(ii) There exists a parameter array ({θi}di=0,{θ∗

i }di=0,{ϕi}di=1,{φi}di=1) over K such that

Aii = θi, A∗
ii = θ∗

i (0 � i � d),

Ai,i−1A
∗
i−1,i = ϕi (1 � i � d).

Suppose (i), (ii) hold. For 0 � i � d let Ei (resp. E
∗
i ) denote the primitive idempotent of A (resp. A∗)

associated with θi (resp. θ
∗
i ). Then (A; {Ei}di=0; A∗; {E∗

i }di=0) is a Leonard system on Kd+1 with parameter

array ({θi}di=0,{θ∗
i }di=0,{ϕi}di=1,{φi}di=1).

3. The Askey–Wilson relations for a Leonard pair

In this section we recall a few facts about Leonard pairs that will be used later in the paper.

Lemma 3.1 [6, Theorem 1.5]. Let (A, A∗) denote a Leonard pair on V . Then there exists a sequence of

scalars β, γ, γ ∗, 
, 
∗, ω, η, η∗ taken from K such that both

A2A∗ − βAA∗A + A∗A2 − γ (AA∗ + A∗A)− 
A∗ = γ ∗A2 + ωA + η I, (11)

A∗2A − βA∗AA∗ + AA∗2 − γ ∗(A∗A + AA∗)− 
∗A = γ A∗2 + ωA∗ + η∗I. (12)

The sequence is uniquely determined by the pair (A, A∗) provided the dimension of V is at least 4.

We refer to (11), (12) as the Askey–Wilson relations. Later in the paper wewill encounter the Askey–

Wilson relations in another form, said to be Z3-symmetric.

Lemma 3.2 [6, Theorems 4.5 and 5.3]. Let (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard system over K

with eigenvalue sequence {θi}di=0 and dual eigenvalue sequence {θ∗
i }di=0. Let the scalars ai, a

∗
i be as in

Definition 1.6. Let β, γ, γ ∗, 
, 
∗, ω, η, η∗ denote a sequence of scalars taken from K. This sequence

satisfies (11), (12) if and only if the following (i)–(ix) hold.
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(i) The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are both equal to β + 1 for 2 � i � d − 1.
(ii) γ = θi−1 − βθi + θi+1 (1 � i � d − 1).
(iii) γ ∗ = θ∗

i−1 − βθ∗
i + θ∗

i+1 (1 � i � d − 1).

(iv) 
 = θ2i−1 − βθi−1θi + θ2i − γ (θi−1 + θi) (1 � i � d).

(v) 
∗ = θ∗2
i−1 − βθ∗

i−1θ
∗
i + θ∗2

i − γ ∗(θ∗
i−1 + θ∗

i ) (1 � i � d).

(vi) ω = a∗
i (θi − θi+1)+ a∗

i−1(θi−1 − θi−2)− γ ∗(θi + θi−1) (1 � i � d).

(vii) ω = ai(θ
∗
i − θ∗

i+1)+ ai−1(θ
∗
i−1 − θ∗

i−2)− γ (θ∗
i + θ∗

i−1) (1 � i � d).

(viii) η = a∗
i (θi − θi−1)(θi − θi+1)− γ ∗θ2i − ωθi (0 � i � d).

(ix) η∗ = ai(θ
∗
i − θ∗

i−1)(θ
∗
i − θ∗

i+1)− γ θ∗2
i − ωθ∗

i (0 � i � d).

In the above lines (vi)–(ix), θ−1 and θd+1 (resp. θ∗−1 and θ∗
d+1) denote scalars in K that satisfy (ii) (resp.

(iii)) for i = 0 and i = d.

4. Leonard systems of QRacah type; preliminaries

A bit later in the paper we will consider a family of Leonard systems said to have QRacah type. For

these Leonard systems the eigenvalue sequence and dual eigenvalue sequence have a certain form. In

this section we consider the form. For the rest of this section let a, q denote nonzero scalars in K with

q2 �= ±1, and let

θi = aq2i−d + a−1qd−2i (0 � i � d). (13)

We first discuss some necessary and sufficient conditions for {θi}di=0 to be mutually distinct.

Lemma 4.1. We have

θi − θj = (qi−j − qj−i)(aqi+j−d − a−1qd−i−j) (0 � i, j � d).

Proof. Verify this using (13). �

Lemma 4.2. The scalars {θi}di=0 are mutually distinct if and only if the following (i), (ii) hold.

(i) q2i �= 1 for 1 � i � d.

(ii) a2 �= q2d−2i for 1 � i � 2d − 1.

Proof. Verify this by using Lemma 4.1. �

Motivated by Lemma 3.2 we now consider some recursions satisfied by the sequence (13).

Lemma 4.3. Assume {θi}di=0 are mutually distinct. Then

θi−2 − θi+1

θi−1 − θi
= q2 + 1 + q−2 (2 � i � d − 1).

Proof. In the above fraction, evaluate the numerator and denominator using Lemma 4.1. �
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Lemma 4.4. We have

θi−1 − (q2 + q−2)θi + θi+1 = 0 (1 � i � d − 1).

Proof. Verify this using (13). �

Lemma 4.5. We have

θ2i−1 − (q2 + q−2)θi−1θi + θ2i = −(q2 − q−2)2 (1 � i � d). (14)

Proof. The left-hand side of (14) can be factorized into

(θi−1 − q2θi)(θi−1 − q−2θi). (15)

By (13) we find θi−1 − q2θi equals −aq2i−d(q2 − q−2) and θi−1 − q−2θi equals a
−1qd−2i(q2 − q−2).

By these comments (15) equals the right-hand side of (14). �

In Lemma 2.4 the conditions (PA3), (PA4) involve a certain sum. We now evaluate this sum for the

case (13).

Lemma 4.6. We have

i−1∑
h=0

θh − θd−h

θ0 − θd
= (qi − q−i)(qd−i+1 − qi−d−1)

(q − q−1)(qd − q−d)
(1 � i � d), (16)

provided θ0 �= θd.

Proof. By Lemma 4.1 the summand in the left-hand side of (16) equals

qd−2h − q2h−d

qd − q−d
.

Therefore the left-hand side of (16) involves two geometric series {qd−2h}i−1
h=0 and {q2h−d}i−1

h=0.We sum

the two series to obtain (16). �

We finish this section with two miscellaneous results that we will need later.

Lemma 4.7. We have

θd−i = aqd−2i + a−1q2i−d (0 � i � d).

Proof. Immediate from (13). �

Lemma 4.8. Assume d � 1. Then

a = qdθ1 − qd−2θ0

q2 − q−2
. (17)

Proof. From (13) we obtain θ0 = aq−d + a−1qd and θ1 = aq2−d + a−1qd−2. Solving these equations

for awe routinely obtain (17). �
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5. Leonard systems of QRacah type

In this section we define a family of Leonard systems said to have QRacah type. We discuss some

related concepts.

Definition 5.1. Let � denote a Leonard system on V, as in Definition 1.5. We say that � has QRacah

typewhenever both (i) d � 3; (ii) there exist nonzero a, b, q ∈ K such that q2 �= ±1 and

θi = aq2i−d + a−1qd−2i (0 � i � d), (18)

θ∗
i = bq2i−d + b−1qd−2i (0 � i � d). (19)

In view of Definition 5.1, until further notice we assume d � 3.

Definition 5.2. LetQRAC = QRAC(d,K) denote the subset of LS consisting of the isomorphism classes

of Leonard systems that have QRacah type.

Recall the D4 action on the set LS, from below Definition 1.12.

Lemma 5.3. The set QRAC is closed under the action of D4 on LS.

Proof. Immediate from Lemmas 2.7 and 4.7. �

Let (A, A∗) denote a Leonard pair on V . ByDefinition 1.9 and Lemma 5.3, if some associated Leonard

system has QRacah type then every associated Leonard system has QRacah type; in this case (A, A∗)
is said to have QRacah type.

6. The parameter arrays of QRacah type

Let� denote a Leonard system overK that has QRacah type. In this sectionwe give an explicit form

for the parameter array of�.

Definition 6.1. Let ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) denote a parameter array over K. This para-

meter array is said to have QRacah type whenever the corresponding Leonard system has QRacah

type.

Definition 6.2. Let PA-QRAC = PA-QRAC(d,K) denote the set consisting of the parameter arrays in

PA that have QRacah type.

Below Definition 2.6 we gave a bijection from LS to PA. The restriction of that bijection to QRAC

forms a bijection from QRAC to PA-QRAC.

Lemma 6.3. Let ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) denote a parameter array over K that has QRacah

type. Let a, b, q denote nonzero scalars in K such that q2 �= ±1 and (18), (19) hold. Then for all c ∈ K the

following (i), (ii) are equivalent.

(i) c is nonzero and satisfies

ϕi = a−1b−1qd+1(qi − q−i)(qi−d−1 − qd−i+1)(q−i − abcqi−d−1)(q−i − abc−1qi−d−1),
(20)

φi =ab−1qd+1(qi − q−i)(qi−d−1 − qd−i+1)(q−i − a−1bcqi−d−1)(q−i − a−1bc−1qi−d−1)
(21)

for 1 � i � d.
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(ii) c is a root of x2 − κx + 1 where

κ = ab−1qd−1 + a−1bq1−d + φ1

(q − q−1)(qd − q−d)
. (22)

Proof. (i) ⇒ (ii): Set i = 1 in (21) and rearrange terms to obtain c + c−1 = κ. Therefore c is a root of

x2 − κx + 1.
(ii) ⇒ (i): Note that c is nonzero, and c−1 is a root of x2 − κx + 1. Therefore c + c−1 = κ.We

substitute this into the left-hand side of (22) and then solve for φ1 to get

φ1 = ab−1qd+1(q − q−1)(q−d − qd)(q−1 − a−1bcq−d)(q−1 − a−1bc−1q−d). (23)

This gives (21)with i = 1.Toget (20), evaluate the right-handsideof (PA3)usingLemma4.1, Lemma4.6

and (23). To get (21) for 2 � i � d, evaluate the right-hand side of (PA4) using Lemma 4.1, Lemma 4.6

and (20) with i = 1. The result follows. �

Corollary 6.4. Let ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) denote a parameter array overK that has QRacah

type. Let a, b, q denote nonzero scalars in K such that q2 �= ±1 and (18), (19) hold. Then there exists

c ∈ K that satisfies the equivalent conditions of Lemma 6.3. Moreover if c satisfies these conditions then

so does c−1, and no other scalar in K satisfies these conditions.

Proof. Immediate from Lemma 6.3. �

Recall the D4 action on the set PA, from below Definition 2.6.

Lemma 6.5. The set PA-QRAC is closed under the action of D4 on PA.

Proof. Immediate from Lemma 5.3 and Definition 6.1. �

7. A set QRACred

In (18)–(21) we obtained formulae for a parameter array of QRacah type. Those formulae involve a

sequence of scalars (a, b, c; q). In this section we examine the properties of this sequence.

Definition 7.1. Let QRACred = QRACred(d,K) denote the set of all 4-tuples (a, b, c; q) of scalars in K
that satisfy the following conditions (RQRAC1)–(RQRAC4).

(RQRAC1) a �= 0, b �= 0, c �= 0, q �= 0.

(RQRAC2) q2i �= 1 for 1 � i � d.

(RQRAC3) Neither of a2, b2 is among q2d−2, q2d−4, . . . , q2−2d.
(RQRAC4) None of abc, a−1bc, ab−1c, abc−1 is among qd−1, qd−3, . . . , q1−d.

Lemma 7.2. Let ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) denote a parameter array over K that has QRacah

type. Let a, b, c, q denote nonzero scalars in K that satisfy (18)–(21). Then (a, b, c; q) ∈ QRACred.

Proof. It is clear that a, b, c, q satisfy (RQRAC1). Conditions (RQRAC2), (RQRAC3) follow from (PA1)

and Lemma 4.2. Condition (RQRAC4) follows from (PA2). Therefore (a, b, c; q) ∈ QRACred. �

Lemma 7.3. Let (a, b, c; q) ∈ QRACred. Define {θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1 by (18)–(21). Then

({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) is a parameter array over K that has QRacah type.
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Proof. We show that ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) is a parameter array overK. Condition (PA1)

follows from Lemma 4.2, (RQRAC2), (RQRAC3). Condition (PA2) follows from (RQRAC1), (RQRAC2),

(RQRAC4). Using Lemma 4.1 and Lemma 4.6 it is routine to verify (PA3), (PA4). Condition (PA5) follows

from Lemma 4.3.We have shown that ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) is a parameter array overK.

By construction this parameter array has QRacah type. �

Definition 7.4. Let (a, b, c; q) ∈ QRACred. Let ({θi}di=0, {θ∗
i }di=0, {ϕi}di=1, {φi}di=1) denote a parameter

array over K that has QRacah type. We say these correspondwhenever they satisfy (18)–(21).

Note that each (a, b, c; q) ∈ QRACred corresponds to a unique element of PA-QRAC.

Lemma 7.5. Let (a, b, c; q) ∈ QRACred. Then all of the following are in QRACred.

(a, b, c; q), ((−1)da, (−1)db, (−1)d+1c; −q),

(a, b, c−1; q), ((−1)da, (−1)db, (−1)d+1c−1; −q),

(a−1, b−1, c−1; q−1), ((−1)da−1, (−1)db−1, (−1)d+1c−1; −q−1),

(a−1, b−1, c; q−1), ((−1)da−1, (−1)db−1, (−1)d+1c; −q−1).

Moreover all the above elements correspond to the same element of PA-QRAC.

Proof. This is routinely checked. �

Lemma 7.6. Let (a, b, c; q) ∈ QRACred. Assume p ∈ PA-QRAC corresponds to (a, b, c; q). Then each

element of QRACred that corresponds to p is listed in Lemma 7.5.

Proof. Suppose we are given (x, y, z; t) ∈ QRACred that corresponds to p. By Lemma 4.3 we find

t2+ t−2 = q2+q−2, so t ∈ {q, q−1,−q,−q−1}. Replacing q by one of q, q−1,−q,−q−1 if necessary,

we may assume without loss of generality that t = q. Now x = a by Lemma 4.8 and similarly y = b.
By Corollary 6.4, z = c or z = c−1. The result follows. �

Definition 7.7. Let (a, b, c; q) ∈ QRACred. Let � denote a Leonard system over K that has QRacah

type. We say (a, b, c; q) and� correspondwhenever (a, b, c; q) corresponds to the parameter array of

�.

Corollary 7.8. Let� denote a Leonard system overK that has QRacah type. Assume (a, b, c; q) ∈ QRACred
corresponds to�. Then a given element of QRACred corresponds to� if and only if it is listed in Lemma 7.5.

Proof. Immediate from Lemmas 7.5 and 7.6. �

8. A D4 action on QRACred

Recall the set QRACred from Definition 7.1. In this section we display an action of D4 on QRACred.We

show how this action is related to the D4 action on PA-QRAC given in Lemma 6.5.

Lemma 8.1. There exists a unique D4 action on QRACred such that

(a, b, c; q)∗ = (b−1, a−1, c−1; q−1), (24)

(a, b, c; q)↓ = (a, b−1, c; q), (25)

(a, b, c; q)⇓ = (a−1, b, c; q) (26)

for all (a, b, c; q) ∈ QRACred.
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Proof. For all (a, b, c; q) ∈ QRACred the sequence on the right in (24)–(26) is contained in QRACred.
Define maps ∗,↓,⇓ from QRACred to QRACred such that (24)–(26) hold for all (a, b, c; q) ∈ QRACred.
One checks that these maps satisfy the relations (1), (2). Therefore the desired D4 action exists. This

D4 action is unique since ∗,↓,⇓ generate D4. �

Lemma 8.2. For all g ∈ D4 the following diagram commutes.

Here “cor” denotes the correspondence relation from Definition 7.4.

Proof. Without loss we may assume that g is one of ∗,↓,⇓ . Fix (a, b, c; q) ∈ QRACred, and let p

denote the correspondingelement inPA-QRAC. It is routine to check thatpg and (a, b, c; q)g correspond
according to Definition 7.4. The result follows. �

9. The Askey–Wilson relations for Leonard pairs of QRacah type

Let (A, A∗) denote a Leonard pair. In Section 3we saw that A, A∗ satisfy the Askey–Wilson relations.

In this section we consider what those relations look like for the case in which (A, A∗) has QRacah

type.

Definition 9.1. Let (a, b, c; q) ∈ QRACred. Let (A, A
∗) denote a Leonard pair over K that has diameter

d and QRacah type. We say (a, b, c; q) and (A, A∗) correspond whenever (a, b, c; q) corresponds to

some Leonard system associated with (A, A∗).

Lemma 9.2. Let (A, A∗) denote a Leonard pair on V that has QRacah type. Assume (a, b, c; q) ∈ QRACred
corresponds to (A, A∗). Then the scalars β, γ, γ ∗, 
, 
∗, ω, η, η∗ from Lemma 3.1 are as follows:

β = q2 + q−2, γ = γ ∗ = 0, 
 = 
∗ = −(q2 − q−2)2,

ω = −(q − q−1)2
(
(a + a−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1)

)
,

η = (q − q−1)(q2 − q−2)
(
(c + c−1)(a + a−1)+ (b + b−1)(qd+1 + q−d−1)

)
,

η∗ = (q − q−1)(q2 − q−2)
(
(b + b−1)(c + c−1)+ (a + a−1)(qd+1 + q−d−1)

)
.

Proof. The scalar β is obtained from Lemma 3.2(i) and Lemma 4.3. The scalars γ, γ ∗ are obtained

from Lemma 3.2(ii),(iii) and Lemma 4.4. The scalars 
, 
∗ are obtained using Lemma 3.2(iv),(v) and

Lemma 4.5. To get the scalarsω, η, η∗ evaluate Lemma 3.2(vi)–(ix) using Lemma 2.3 and (18)–(21). �

10. The Z3-symmetric Askey–Wilson relations

Let (A, A∗) denote a Leonard pair of QRacah type. In the previous section we saw what the corre-

sponding Askey–Wilson relations look like. In this section we show that those Askey–Wilson relations

can be put in a form said to be Z3-symmetric.



1454 H.-w. Huang / Linear Algebra and its Applications 436 (2012) 1442–1472

Theorem10.1. Let (A, A∗)denotea Leonardpair onV thathasQRacah type. Assume (a, b, c; q) ∈ QRACred
corresponds to (A, A∗). Then there exists a unique Aε ∈ End(V) such that

qA∗Aε − q−1AεA∗

q2 − q−2
+ A = (b + b−1)(c + c−1)+ (a + a−1)(qd+1 + q−d−1)

q + q−1
I, (27)

qAεA − q−1AAε

q2 − q−2
+ A∗ = (c + c−1)(a + a−1)+ (b + b−1)(qd+1 + q−d−1)

q + q−1
I, (28)

qAA∗ − q−1A∗A
q2 − q−2

+ Aε = (a + a−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1)

q + q−1
I. (29)

Proof. Define Aε such that (29) holds. We show that Aε satisfies (27), (28). In these lines eliminate

Aε using (29), and consider the resulting equations in A, A∗. These equations are the Askey–Wilson

relations (11), (12) using the parameters from Lemma 9.2. These equations hold by Lemma 9.2. We

have shown that there exists Aε that satisfies (27)–(29). It is clear from (29) that Aε is unique. �

We refer to (27)–(29) as the Z3-symmetric Askey–Wilson relations.

11. Leonard triples and Leonard triple systems

Motivated by Theorem 10.1 we now consider the notion of a Leonard triple introduced by Curtin

[1]. Until further notice assume d � 0.

Definition 11.1 [1, Definition 1.2]. By a Leonard triple on V we mean an ordered triple of linear trans-

formations (A, A∗, Aε) in End(V) such that for each B ∈ {A, A∗, Aε} there exists a basis for V with

respect to which the matrix representing B is diagonal and the matrices representing the other two

linear transformations are irreducible tridiagonal.

We now define a Leonard triple system.

Definition 11.2. By a Leonard triple system on V we mean a sequence � = (A; {Ei}di=0; A∗; {E∗
i }di=0;

Aε; {Eεi }di=0) that satisfies (i)–(vii) below.

(i) Each of A, A∗, Aε is a multiplicity-free element in End(V).
(ii) {Ei}di=0 is an ordering of the primitive idempotents of A.

(iii) {E∗
i }di=0 is an ordering of the primitive idempotents of A∗.

(iv) {Eεi }di=0 is an ordering of the primitive idempotents of Aε.
(v) For B ∈ {A∗, Aε},

EiBEj =
⎧⎨
⎩

0 if |i − j| > 1,

�= 0 if |i − j| = 1
(0 � i, j � d).

(vi) For B ∈ {A, Aε},

E∗
i BE

∗
j =

⎧⎨
⎩

0 if |i − j| > 1,

�= 0 if |i − j| = 1
(0 � i, j � d).



H.-w. Huang / Linear Algebra and its Applications 436 (2012) 1442–1472 1455

(vii) For B ∈ {A, A∗},

Eεi BE
ε
j =

⎧⎨
⎩

0 if |i − j| > 1,

�= 0 if |i − j| = 1
(0 � i, j � d).

We refer to d as the diameter of� and say� is over K.

Lemma11.3. Let� = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a sequence of linear transformations

in End(V). Then� is a Leonard triple system on V if and only if the following (i)–(iii) hold.

(i) (A; {Ei}di=0; A∗; {E∗
i }di=0) is a Leonard system on V .

(ii) (A∗; {E∗
i }di=0; Aε; {Eεi }di=0) is a Leonard system on V .

(iii) (Aε; {Eεi }di=0; A; {Ei}di=0) is a Leonard system on V .

Proof. Immediate from Definitions 1.4 and 11.2. �

Definition 11.4. Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a Leonard triple system on V .

For 0 � i � d let θi, θ
∗
i , θ

ε
i denote the eigenvalues of A, A∗, Aε associated with Ei, E

∗
i , E

ε
i respectively.

We call {θi}di=0, {θ∗
i }di=0, {θεi }di=0 the first, second, third eigenvalue sequences of�.

Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a Leonard triple system on V . Observe that

each of the following five sequences is a Leonard triple system on V .

�∗ := (A∗; {E∗
i }di=0; A; {Ei}di=0; Aε; {Eεi }di=0),

�ε := (Aε; {Eεi }di=0; A∗; {E∗
i }di=0; A; {Ei}di=0),

�� := (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεd−i}di=0),

�↓ := (A; {Ei}di=0; A∗; {E∗
d−i}di=0; Aε; {Eεi }di=0),

�⇓ := (A; {Ed−i}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0).

Viewing ∗, ε, �, ↓,⇓ as permutations on the set of all Leonard triple systems,

∗2 = ε2 = �2 = ↓2 = ⇓2 = 1, (30)

∗ ε ∗ = ε ∗ ε, ↓� = �↓, ⇓� = �⇓, ⇓↓ = ↓⇓, (31)

� ∗ = ∗ �, ⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, (32)

↓ ε = ε ↓, ⇓ ε = ε �, � ε = ε ⇓ . (33)

The group generated by symbols ∗, ε, �, ↓, ⇓ subject to the relations (30)–(33) is a semidirect

product (Z2)
3 � S3, where Z2 is the cyclic group of order 2 and S3 is the symmetric group on three

letters. The normal subgroup (Z2)
3 is generated by �, ↓,⇓ and the subgroup S3 is generated by ∗, ε.

By the above comments ∗, ε, �, ↓, ⇓ induce an action of (Z2)
3 � S3 on the set of all Leonard triple

systems. We identify D4 with the subgroup of (Z2)
3 � S3 generated by ∗, ↓,⇓ .

Let� denote a Leonard triple systemonV,as inDefinition11.4.Wenowdisplay the threeeigenvalue

sequences of�g for g = ∗, ε, �, ↓,⇓ .
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g The eigenvalue sequences of�g

1st 2nd 3rd

∗ {θ∗
i }di=0 {θi}di=0 {θεi }di=0

ε {θεi }di=0 {θ∗
i }di=0 {θi}di=0

� {θi}di=0 {θ∗
i }di=0 {θεd−i}di=0

↓ {θi}di=0 {θ∗
d−i}di=0 {θεi }di=0

⇓ {θd−i}di=0 {θ∗
i }di=0 {θεi }di=0

Definition 11.5. Let� = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a Leonard triple system on V .

Then the triple (A, A∗, Aε) forms a Leonard triple on V .We say this triple is associatedwith�.Observe
that each Leonard triple system is associated with a unique Leonard triple.

Definition 11.6. Let (A, A∗, Aε) denote a Leonard triple on V . By the associate class for (A, A∗, Aε)we

mean the set of Leonard triple systems on V which are associated with (A, A∗, Aε). Observe that this

associate class contains at least one Leonard triple system �.Moreover the associate class is exactly

the (Z2)
3-orbit containing�.

We now define the notion of isomorphism for Leonard triples and Leonard triple systems. For the

rest of this section let V ′ denote a vector space over K with dimension d + 1.

Definition 11.7. Let (A, A∗, Aε) denote a Leonard triple on V . Let (B, B∗, Bε) denote a Leonard triple

on V ′. By an isomorphism of Leonard triples from (A, A∗, Aε) to (B, B∗, Bε)wemean aK-algebra isomor-

phism σ : End(V) → End(V ′) that sends A, A∗, Aε to B, B∗, Bε respectively. We say (A, A∗, Aε) and
(B, B∗, Bε) are isomorphic whenever there exists an isomorphism of Leonard triples from (A, A∗, Aε)
to (B, B∗, Bε).

Let� denote the Leonard triple system fromDefinition 11.2 and let σ : End(V) → End(V ′) denote
aK-algebra isomorphism.Wewrite�σ := (Aσ ; {Eσi }di=0; A∗σ ; {E∗σ

i }di=0; Aεσ ; {Eεσi }di=0) and observe

�σ is a Leonard triple system on V ′.

Definition 11.8. Let � denote a Leonard triple system on V . Let � ′ denote a Leonard triple system

on V ′. By an isomorphism of Leonard triple systems from � to � ′ we mean a K-algebra isomorphism

σ : End(V) → End(V ′) such that �σ = � ′.We say �, � ′ are isomorphic whenever there exists an

isomorphism of Leonard triple systems from� to� ′.

Definition 11.9. Let LTS = LTS(d,K) denote the set consisting of all isomorphism classes of Leonard

triple systems over K that have diameter d.

Observe that the (Z2)
3 � S3 action on Leonard triple systems from above Definition 11.5 induces a

(Z2)
3 � S3 action on LTS.

12. Leonard triple systems of QRacah type

In this section we define a family of Leonard triple systems said to have QRacah type. We discuss

some related concepts.

Definition 12.1. Let � denote a Leonard triple system on V, as in Definition 11.4. We say that � has

QRacah typewhenever both (i) d � 3; (ii) there exist nonzero a, b, c, q ∈ K such that q2 �= ±1 and



H.-w. Huang / Linear Algebra and its Applications 436 (2012) 1442–1472 1457

θi = aq2i−d + a−1qd−2i (0 � i � d), (34)

θ∗
i = bq2i−d + b−1qd−2i (0 � i � d), (35)

θεi = cq2i−d + c−1qd−2i (0 � i � d). (36)

Until further notice assume d � 3.

Definition 12.2. Let T-QRAC = T-QRAC(d,K) denote the subset of LTS consisting of the isomorphism

classes of Leonard triple systems that have QRacah type.

Lemma 12.3. The set T-QRAC is closed under the action of (Z2)
3 � S3 on LTS.

Proof. Immediate from Lemma 4.7 and the table above Definition 11.5. �

Let (A, A∗, Aε) denote a Leonard triple on V . By Definition 11.6 and Lemma 12.3, if some associated

Leonard triple system has QRacah type then every associated Leonard triple system has QRacah type;

in this case (A, A∗, Aε) is said to have QRacah type.

Given Theorem 10.1, it is natural to ask whether every Leonard pair of QRacah type extends to a

Leonard triple of QRacah type. The next two sections are devoted to this issue.

13. The condition for Aε to be multiplicity-free

Let (A, A∗) denote a Leonard pair on V that has QRacah type. Fix (a, b, c; q) ∈ QRACred which

corresponds to (A, A∗), and let Aε ∈ End(V) be the corresponding element from Theorem 10.1. Let

� = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote the Leonard system that corresponds to (a, b, c; q). Our next

goal is to find necessary and sufficient conditions for the triple (A, A∗, Aε) to be a Leonard triple. To

this end we first determine when Aε is multiplicity-free. We recall some notation. For any x, t ∈ K
define

(x; t)n := (1 − x)(1 − xt) · · · (1 − xtn−1) n = 0, 1, 2, . . .

and interpret (x; t)0 := 1.

Definition 13.1. Define M to be the upper triangular matrix in Matd+1(K)with entries

Mij := (−1)ib−icj−iqi
2+(d−2i)j (q

2i+2; q2)j−i(q
2i−2d; q2)j−i(a

−1b−1c−1qd−2j+1; q2)j−i

(q2; q2)j−i

(37)

for 0 � i � j � d. Note that the diagonal entries of M are

Mii = (−1)ib−iqi(d−i) (0 � i � d). (38)

These entries are nonzero soM is invertible. For notational convenience defineMij = 0 if i or j is among

−1, d + 1.

Definition 13.2. Define a map ρ : End(V) → Matd+1(K) by

Xρ := M−1X�M for all X ∈ End(V),

where � is the natural map for� from Definition 2.1. Observe that ρ is a K-algebra isomorphism.

To evaluate Aερ we need some lemmas.
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Lemma 13.3. For 0 � i � j � d with (i, j) �= (0, d) we have

Mi−1,j = a−1qi+j−d−1 (q
i − q−i)(qd−i+1 − qi−d−1)(abc − qd−2i+1)

qi−j−1 − qj−i+1
Mij, (39)

Mi,j+1 = a−1b−1qj−i (q
j+1 − q−j−1)(qd−j − qj−d)(abc − qd−2j−1)

qj−i+1 − qi−j−1
Mij. (40)

Proof. Use Definition 13.1. �

Lemma 13.4. For 0 � i < j � d we have

Mi+1,j = aqd−i−j qi−j − qj−i

(qi+1 − q−i−1)(qd−i − qi−d)(abc − qd−2i−1)
Mij, (41)

Mi,j−1 = abqi−j+1 qj−i − qi−j

(qj − q−j)(qd−j+1 − qj−d−1)(abc − qd−2j+1)
Mij. (42)

Proof. To verify (41), replace i by i + 1 in (39) and solve the resulting equation for Mi+1,j. To verify

(42), replace j by j − 1 in (40) and solve the resulting equation for Mi,j−1. �

Lemma 13.5. The matrix Aε� ∈ Matd+1(K) is irreducible tridiagonal with entries

(Aε�)i,i−1 = −b−1qd−2i+1, (43)

(Aε�)i−1,i = a−2b−1(qi − q−i)(qd−i+1 − qi−d−1)(abc − qd−2i+1)(abc−1 − qd−2i+1) (44)

for 1 � i � d and

(Aε�)ii = a−1b−1qd−2i(qd+1 + q−d−1 − qd−2i(q + q−1)
) + (c + c−1)qd−2i (45)

for 0 � i � d.

Proof. Thematrix A� (resp. A∗�) is given on the left (resp. right) in (9). After a short computation using

(29) we find that the matrix Aε� is tridiagonal with entries

(Aε�)i,i−1 = q−1θ∗
i − qθ∗

i−1

q2 − q−2
, (46)

(Aε�)i−1,i = ϕi
q−1θi − qθi−1

q2 − q−2
(47)

for 1 � i � d, and

(Aε�)ii = (a + a−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1)

q + q−1
− θiθ

∗
i

q + q−1
− qϕi − q−1ϕi+1

q2 − q−2

(48)

for 0 � i � d. To obtain (43)–(45), evaluate (46)–(48) using (18)–(20). By (RQRAC1), the right-hand

side of (43) is nonzero for 1 � i � d. By (RQRAC2) and (RQRAC4) the right-hand side of (44) is nonzero

for 1 � i � d. Therefore the tridiagonal matrix Aε� is irreducible. �
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In Lemma 13.5 we gave the entries of Aε�. For notational convenience define (Aε�)ij = 0 if i or j is

among −1, d + 1.

Lemma 13.6. For 0 � i � j � d with (i, j) �= (0, d) we have

(Aε�)i,i−1Mi−1,j = a−1b−1qj−i (q
i − q−i)(qd−i+1 − qi−d−1)(abc − qd−2i+1)

qj−i+1 − qi−j−1
Mij, (49)

(Aε�)i,i+1Mi+1,j = a−1b−1qd−i−j(qi−j − qj−i)(abc−1 − qd−2i−1)Mij. (50)

Proof. To obtain (49) evaluate the left-hand side of (49) using (39) and (43). Concerning (50), first

assume i = j. Then (50) holds since each side is zero. Next assume i < j. In this case, (50) is verified

by evaluating the left-hand side using (41) and (44). �

Proposition 13.7. We have

Aερ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θε0 0

1 θε1

1 θε2

· ·
· ·

0 1 θεd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

where {θεi }di=0 are from (36).

Proof. Let B denote the matrix on the right in (51). To show that Aερ = B, it suffices to show that

Aε�M = MB. To do this, for 0 � i, j � d we show that the (i, j)-entry of Aε�M equals the (i, j)-entry
of MB. In other words, it suffices to show

(Aε�)i,i−1Mi−1,j + (Aε�)iiMij + (Aε�)i,i+1Mi+1,j = θεj Mij + Mi,j+1. (52)

To verify (52) we consider the following four cases:

(I) j − i < −1; (II) j − i = −1;
(III) j − i � 0 and (i, j) �= (0, d); (IV) (i, j) = (0, d).

Case (I): Each summand in (52) is zero so (52) holds.

Case (II): In this case (52) reduces to

(Aε�)i,i−1Mi−1,i−1 = Mii. (53)

Using (38) we find Mi−1,i−1 = −bq2i−d−1Mii. By this and (43) the left-hand side of (53) equals Mii.
This shows (53) and hence (52).

Case (III): Using (36), (40) we find the right-hand side of (52) equals Mij times

a−1b−1 q2d−2j−1 + q2j+1 − q2d+1 − q−1

q2j+2 − q2i
+ c

qd+2j+2 + q2j−d − qd − q2j+2i−d

q2j+2 − q2i
+ c−1qd−2j.

(54)

Using (45) and Lemma 13.6 we find the left-hand side of (52) equals Mij times (54). This shows (52).
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Case (IV): In this case (52) reduces to

(Aε�)00M0d + (Aε�)01M1d = θεd M0d. (55)

Put (i, j) = (0, d) in (41) and get

M1d = a

(q − q−1)(qd−1 − abc)
M0d.

Using this along with (44) at i = 1 and (45) at i = 0, we find the left-hand side of (55) equals the

right-hand side of (55). This shows (55) and hence (52). We have verified (52) in each of the cases

(I)–(IV). The result follows. �

Corollary 13.8. Let {θεi }di=0 denote the scalars from (36). Then the roots of the characteristic polynomial

of Aε are {θεi }di=0.

Proof. Immediate from Proposition 13.7. �

Corollary 13.9. Let {θεi }di=0 denote the scalars from (36). Then the following (i)–(iii) are equivalent.

(i) Aε is multiplicity-free.

(ii) {θεi }di=0 are mutually distinct.

(iii) c2 is not among q2d−2, q2d−4, . . . , q2−2d.

Proof. (i) ⇔ (ii): By Corollary 13.8.

(ii) ⇔ (iii): By Lemma 4.2 and (RQRAC2). �

14. The condition for (A,A∗,Aε) to be a Leonard triple

Let (A, A∗) denote a Leonard pair on V that has QRacah type. Fix (a, b, c; q) ∈ QRACred which

corresponds to (A, A∗), and let Aε ∈ End(V) be the corresponding element from Theorem 10.1. In

Corollary 13.9 we found necessary and sufficient conditions for Aε to be multiplicity-free. In this

section we show that Aε is multiplicity-free if and only if (A, A∗, Aε) is a Leonard triple.

Proposition 14.1. We have

A∗ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ∗
0 ϕ

ε
1 0

θ∗
1 ϕε2

θ∗
2 ·

· ·
· ϕεd

0 θ∗
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (56)

where ρ is from Definition 13.2, the scalars {θ∗
i }di=0 are from (35) and

ϕεi = b−1c−1qd+1(qi − q−i)(qi−d−1 − qd−i+1)(q−i − abcqi−d−1)(q−i − a−1bcqi−d−1) (57)

for 1 � i � d.
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Proof. Let B denote the matrix on the right in (56). To show that A∗ρ = B, it suffices to show that

A∗�M = MB. Recall that A∗� is the matrix on the right in (9). In order to show A∗�M = MB, for
0 � i, j � d we show that the (i, j)-entry of A∗�M equals the (i, j)-entry of MB. In other words, it

suffices to show

(θ∗
i − θ∗

j )Mi,j + ϕi+1Mi+1,j = ϕεj Mi,j−1. (58)

To verify (58) we consider the following two cases: (I) j − i � 0; (II) j − i > 0.
Case (I): Each summand in (58) is zero so (58) holds.

Case (II): Evaluating the left-hand side of (58) using Lemma 4.1 and (20), (41) we find that it equals

Mij times

(qi−j − qj−i)(bqi+j−d − ac−1qi−j+1). (59)

Evaluating the right-handsideof (58)using (42), (57)wefind that it alsoequalsMij times (59). Therefore

(58) holds. We have verified (58) in the cases (I), (II). The result follows. �

Lemma 14.2. Assume that Aε is multiplicity-free. For 0 � i � d let θεi denote the scalar from (36) and let

Eεi denote the primitive idempotent of Aε associated with θεi . Then (A
∗; {E∗

i }di=0; Aε; {Eεi }di=0) is a Leonard
system of QRacah type and corresponds to (b, c, a; q).
Proof. By Corollary 13.9, c2 is not among q2d−2, q2d−4, . . . , q2−2d. By this and since (a, b, c; q) ∈
QRACred,wehave (x, y, z; q) ∈ QRACred for any permutation x, y, z of a, b, c. In particular (c, b, a; q) ∈
QRACred. Define

φεi = b−1c qd+1(qi − q−i)(qi−d−1 − qd−i+1)(q−i − abc−1qi−d−1)(q−i − a−1bc−1qi−d−1)

for 1 � i � d. Observe

(
{θεi }di=0, {θ∗

i }di=0, {ϕεi }di=1, {φεi }di=1

)
(60)

is an element of PA-QRAC that corresponds to (c, b, a; q). Note that Aερ is lower bidiagonal by Propo-

sition 13.7 and A∗ρ is upper bidiagonal by Proposition 14.1. Moreover

(Aερ)ii = θεi , (A∗ρ)ii = θ∗
i (0 � i � d),

(Aερ)i,i−1(A
∗ρ)i−1,i = ϕεi (1 � i � d).

By this and Lemma 2.8, (Aερ; {Eερi }di=0; A∗ρ; {E∗ρ
i }di=0) is a Leonard system of QRacah type that has

parameter array (60). Therefore (Aερ; {Eερi }di=0; A∗ρ; {E∗ρ
i }di=0) corresponds to (c, b, a; q). Since ρ is

a K-algebra isomorphism � = (Aε; {Eεi }di=0; A∗; {E∗
i }di=0) is a Leonard system of QRacah type that

corresponds to (c, b, a; q). Therefore�∗ = (A∗; {E∗
i }di=0; Aε; {Eεi }di=0) is a Leonard system of QRacah

type. By Lemma8.2 the Leonard system�∗ corresponds to (b−1, c−1, a−1; q−1), and also corresponds

to (b, c, a; q) by Corollary 7.8. �

Lemma 14.3. Assume that Aε is multiplicity-free. For 0 � i � d let θεi denote the scalar from (36) and let

Eεi denote the primitive idempotent of Aε associated with θεi . Then (A
ε; {Eεi }di=0; A; {Ei}di=0) is a Leonard

system of QRacah type and corresponds to (c, a, b; q).
Proof. By Lemma 14.2 the Leonard pair (A∗, Aε) has QRacah type and corresponds to (b, c, a; q) ∈
QRACred. Now by Theorem 10.1 there exists an element A∨ in End(V) such that A∗, Aε, A∨ satisfy the

Z3-symmetric Askey–Wilson relations, one of which is
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qA∗Aε − q−1AεA∗

q2 − q−2
+ A∨ = (b + b−1)(c + c−1)+ (a + a−1)(qd+1 + q−d−1)

q + q−1
I.

Comparing this with (27) we find A∨ = A.We now apply Lemma 14.2 to A′ = A∗, A∗′ = Aε, Aε ′ = A,
a′ = b, b′ = c, c′ = a, and obtain the desired result. �

Corollary 14.4. Assume that Aε ismultiplicity-free. For0 � i � d let θεi denote the scalar from (36) and let

Eεi denote the primitive idempotent of Aε associated with θεi . Then (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0)

is a Leonard triple system of QRacah type.

Proof. Immediate from Lemma 11.3, Definition 12.1, Lemmas 14.2 and 14.3. �

Theorem 14.5. With reference to Theorem 10.1, the following (i)–(iii) are equivalent.

(i) (A, A∗, Aε) is a Leonard triple on V .
(ii) Aε is multiplicity-free.

(iii) c2 is not among q2d−2, q2d−4, . . . , q2−2d.

Suppose (i)–(iii) hold. For 0 � i � d let θεi denote the scalar from (36). Then the third eigenvalue sequence

of each Leonard triple system associated with (A, A∗, Aε) is either {θεi }di=0 or {θεd−i}di=0.

Proof. (i) ⇒ (ii): By Lemma 1.3.

(ii) ⇒ (i): By Corollary 14.4.

(ii) ⇔ (iii): By Corollary 13.9.

Suppose (i)–(iii)hold.ByCorollary14.4 there isaLeonard triple system� associatedwith (A, A∗, Aε)
that has the third eigenvalue sequence {θεi }di=0. By Definition 11.6 the associate class for (A, A∗, Aε) is
the (Z2)

3-orbit containing�. Now the last assertion follows from the table above Definition 11.5. �

15. A set T-QRACred

The following definition is motivated by Theorem 14.5.

Definition 15.1. Let T-QRACred = T-QRACred(d,K) denote the set of all 4-tuples (a, b, c; q) of scalars
in K that satisfy the following conditions (T-RQRAC1)–(T-RQRAC4).

(T-RQRAC1) a �= 0, b �= 0, c �= 0, q �= 0.

(T-RQRAC2) q2i �= 1 for 1 � i � d.

(T-RQRAC3) None of a2, b2, c2 is among q2d−2, q2d−4, . . . , q2−2d.
(T-RQRAC4) None of abc, a−1bc, ab−1c, abc−1 is among qd−1, qd−3, . . . , q1−d.

We observe that T-QRACred is a subset of the set QRACred from Definition 7.1. Recall the D4 action

on QRACred, from Lemma 8.1.

Lemma 15.2. The set T-QRACred is closed under the action of D4 on QRACred.

Proof. Let (a, b, c; q) ∈ T-QRACred. It is routine tocheckeachof (a, b, c; q)∗, (a, b, c; q)↓, (a, b, c; q)⇓
is contained in T-QRACred. The result follows since ∗,↓,⇓ generate D4. �

16. Classification of the Leonard triple systems of QRacah type

In this sectionwe classify up to isomorphism the Leonard triple systems of QRacah type.We do this

as follows. Recall from Definition 12.2 that T-QRAC is the set of isomorphism classes of Leonard triple
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systems that have QRacah type. Recall the set T-QRACred from Definition 15.1. We display a bijection

π : T-QRACred → T-QRAC.

Definition 16.1. Define a map π : T-QRACred → T-QRAC as follows. Let (a, b, c; q) ∈ T-QRACred. By
Theorem 14.5 along with Lemmas 14.2 and 14.3 there exists a Leonard triple system of QRacah type

� =
(
A; {Ei}di=0; A∗; {E∗

i }di=0; Aε; {Eεi }di=0

)

that satisfies (i)–(iv) below.

(i) The Leonard system (A; {Ei}di=0; A∗; {E∗
i }di=0) corresponds to (a, b, c; q).

(ii) The Leonard system (A∗; {E∗
i }di=0; Aε; {Eεi }di=0) corresponds to (b, c, a; q).

(iii) The Leonard system (Aε; {Eεi }di=0; A; {Ei}di=0) corresponds to (c, a, b; q).
(iv) The elements A, A∗, Aε satisfy the Z3-symmetric Askey–Wilson relations (27)–(29).

Observe that � is unique up to isomorphism of Leonard triple systems. The map π sends (a, b, c; q)
to the isomorphism class of� in the set of all Leonard triple systems.

Definition 16.2. Referring to Definition 16.1 we say that� and (a, b, c; q) correspond via π. Similarly,

we say that the Leonard triple (A, A∗, Aε) and (a, b, c; q) correspond via π.

We are going to show that π is a bijection. Before we do this, we give a concrete description of π
using matrices. Pick (a, b, c; q) in T-QRACred. Define {θi}di=0, {θ∗

i }di=0 by (18), (19) and {ϕi}di=1, {φi}di=1
by (20), (21). By Lemma 7.3,

(
{θi}di=0, {θ∗

i }di=0, {ϕi}di=1, {φi}di=1

)
(61)

is a parameter array of QRacah type and corresponds to (a, b, c; q). Let A (resp. A∗) denote the lower

bidiagonal (resp. upper bidiagonal) matrix in Matd+1(K)with entries

Aii = θi, A∗
ii = θ∗

i (0 � i � d),

Ai,i−1 = 1, A∗
i−1,i = ϕi (1 � i � d).

For 0 � i � d let Ei, E
∗
i denote the primitive idempotents of A, A∗ associated with θi, θ

∗
i respectively.

By Lemma 2.8, (A; {Ei}di=0; A∗; {E∗
i }di=0) is a Leonard system that has parameter array (61). Therefore

the Leonard system (A; {Ei}di=0; A∗; {E∗
i }di=0) corresponds to (a, b, c; q). Define

Aε = q−1A∗A − qAA∗

q2 − q−2
+ (a + a−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1)

q + q−1
I.

In concrete terms Aε is the tridiagonal matrix in Matd+1(K)with entries

Aεii = (a + a−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1)

q + q−1
− θiθ

∗
i

q + q−1
− qϕi − q−1ϕi+1

q2 − q−2

for 0 � i � d and

Aεi,i−1 = q−1θ∗
i − qθ∗

i−1

q2 − q−2
, Aεi−1,i = ϕi

q−1θi − qθi−1

q2 − q−2
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for 1 � i � d. By Theorem 10.1 the matrices A, A∗, Aε satisfy (27)–(29). By Corollaries 13.8 and 13.9

the matrix Aε is multiplicity-free with eigenvalues

θεi = cq2i−d + c−1qd−2i (0 � i � d).

For 0 � i � d let Eεi denote the primitive idempotent of Aε associated with θεi . By Corollary 14.4

the sequence� = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) is a Leonard triple system of QRacah type. By

Lemma 14.2 the Leonard system (A∗; {E∗
i }di=0; Aε; {Eεi }di=0) corresponds to (b, c, a; q). By Lemma 14.3

the Leonard system (Aε; {Eεi }di=0; A; {Ei}di=0) corresponds to (c, a, b; q). Therefore the map π sends

(a, b, c; q) to the isomorphism class of�. This concludes our concrete description of π.

In our classification we will make use of the following result.

Theorem16.3 [2, Theorem3.2]. Let (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a Leonard systemonV . LetX denote

the K-subspace of End(V) consisting of the X ∈ End(V) such that both

EiXEj = 0 if |i − j| > 1,

E∗
i XE

∗
j = 0 if |i − j| > 1

for 0 � i, j � d. Then the space X is spanned by

I, A, A∗, AA∗, A∗A. (62)

Moreover (62) is a basis for X provided d � 2.

We now give our classification of the Leonard triple systems of QRacah type.

Theorem 16.4. The map π from Definition 16.1 is a bijection.

Proof. Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a Leonard triple system on V that has

QRacah type. It suffices to show that there exists a unique element of T-QRACred that corresponds

to � via π. Let {θi}di=0, {θ∗
i }di=0, {θεi }di=0 denote the first, second, third eigenvalue sequences of �,

respectively. By Definition 12.1 there exist nonzero a, b, c, q ∈ K that satisfy (34)–(36). Let

� = (A; {Ei}di=0; A∗; {E∗
i }di=0),

�′ = (A∗; {E∗
i }di=0; Aε; {Eεi }di=0),

�′′ = (Aε; {Eεi }di=0; A; {Ei}di=0).

By construction each of�,�′, �′′ is a Leonard system of QRacah type. By Corollary 6.4 and Lemma 7.2

there exist nonzero scalars x, y, z in K such that each of

(a, b, x; q), (b, c, y; q), (c, a, z; q)
is in QRACred and correspond to �, �′, �′′ respectively. Moreover each of x, y, z is unique up to

inversion. By Theorem 16.3 there exist unique e, f , f ∗, g, g∗ ∈ K such that

Aε = eI + fA + f ∗A∗ + gAA∗ + g∗A∗A. (63)

Let ϕi (1 � i � d) denote the scalar in K obtained by changing c to x in (20). Then {ϕi}di=1 is the first

split sequence of�. Let � : End(V) → Matd+1(K) denote the natural map for�. Recall that A� (resp.

A∗�) is thematrix on the left (resp. right) in (9). Using this and (63)we find thematrix Aε� is tridiagonal

with entries
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(Aε�)i,i−1 = f + gθ∗
i−1 + g∗θ∗

i , (64)

(Aε�)i−1,i = ϕi(f
∗ + gθi−1 + g∗θi) (65)

for 1 � i � d and

(Aε�)ii = e + f θi + f ∗θ∗
i + g(θiθ

∗
i + ϕi)+ g∗(θiθ∗

i + ϕi+1) (66)

for 0 � i � d. Applying Lemma 9.2 to (Aε, A) and (c, a, z; q) the Askey–Wilson relations for (Aε, A)
are

A2Aε − (q2 + q−2)AAεA + AεA2 + (q2 − q−2)2Aε = ωA + η I, (67)

Aε2A − (q2 + q−2)AεAAε + AAε2 + (q2 − q−2)2A = ωAε + ηεI, (68)

where

ω = −(q − q−1)2
(
(c + c−1)(a + a−1)+ (z + z−1)(qd+1 + q−d−1)

)
,

η = (q − q−1)(q2 − q−2)
(
(a + a−1)(z + z−1)+ (c + c−1)(qd+1 + q−d−1)

)
,

ηε = (q − q−1)(q2 − q−2)
(
(z + z−1)(c + c−1)+ (a + a−1)(qd+1 + q−d−1)

)
.

In what follows, when referring to (68), (67) wemean the relations obtained by applying � to (67), (68)

respectively. For convenience (64)–(66) will be used tacitly to evaluate Aε�.
We now find the values of e, f , f ∗, g, g∗. Concerning the (2, 0)-entry of either side of (67), the

right-hand side is zero.We evaluate the left-hand side and by (RQRAC1), (RQRAC2) some factors in the

resulting equation are nonzero. Eliminating those factors we obtain

e + (q2 + 1 + q−2)(aq2−d + a−1qd−2)f + κg + κg∗ = 0, (69)

where

κ = (a + a−1)(b + b−1)+ (x + x−1)(qd+1 + q−d−1).

Similarly we evaluate (3, 1)-entry of either side of (67) and obtain

e + (q2 + 1 + q−2)(aq4−d + a−1qd−4)f + κg + κg∗ = 0. (70)

Subtracting (69) from (70) we find

(q3 − q−3)(aq3−d − a−1qd−3)f = 0. (71)

In the left-hand side of (71) the first term is nonzero by (RQRAC2) with i = 3 and the second term is

nonzero by (RQRAC3). Therefore f = 0. Now (69) becomes

e = −κ(g + g∗). (72)

Similarly, under the natural map for�∗ consider the (2, 0)-entry and (3, 1)-entry of either side of the

Askey–Wilson relation

A∗2Aε − (q2 + q−2)A∗AεA∗ + AεA∗2 + (q2 − q−2)2Aε = �A∗ + ζ ∗I

where

� = −(q − q−1)2
(
(b + b−1)(c + c−1)+ (y + y−1)(qd+1 + q−d−1)

)
,

ζ ∗ = (q − q−1)(q2 − q−2)
(
(y + y−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1)

)
.
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One can show f ∗ = 0.We now show that

g = −q2g∗ or g = −q−2g∗. (73)

To do this we divide the argument into the three cases: (A) q4 �= −1; (B) d � 4; (C) d = 3 and

q4 = −1.
Case (A): Concerning the (3, 0)-entry of either side of (68), the right-hand side is zero.We evaluate

the left-hand side and replace e by (72). By (RQRAC1) and (RQRAC2) some factors in the resulting

equation are nonzero. Eliminating those factors we obtain

(q2 + q−2)(q−1g + qg∗)(qg + q−1g∗) = 0. (74)

In the left-hand side of (74) the first term is nonzero since q4 �= −1. Therefore (73) holds.

Case (B): In the left-hand side of (74) the first term is nonzero by (RQRAC2) with i = 4. Therefore
(73) holds.

Case (C): Concerning the (2, 0)-entry of either side of (68), the right-hand side is zero. We evaluate

the left-hand side and replace e by (72). By (RQRAC1) and (RQRAC2) some factors in the resulting

equation are nonzero. Eliminating those factors we obtain

ν(qg + q−1g∗)(q−1g + qg∗) = 0,

where ν = 2(a + a−1)− (b + b−1)(x + x−1). Similarly, under the natural map for�∗ we consider

the (2, 0)-entry of either side of the Askey–Wilson relation

Aε2A∗ − (q2 + q−2)AεA∗Aε + A∗Aε2 + (q2 − q−2)2A∗ = �Aε + ζ I

where ζ = (q − q−1)(q2 − q−2)
(
(c + c−1)(y + y−1)+ (b + b−1)(qd+1 + q−d−1)

)
, and obtain

ν∗(qg + q−1g∗)(q−1g + qg∗) = 0,

where ν∗ = 2(b + b−1) − (a + a−1)(x + x−1). To get (73) we show that ν �= 0 or ν∗ �= 0 by

contradiction. By (RQRAC3) we have a2 �= −1 and b2 �= −1.We use this to solve for b, x in ν = 0

and ν∗ = 0, and get that (b, x) is one of the following pairs:

(a, 1), (a−1, 1), (−a,−1), (−a−1,−1),

any of which contradicts (RQRAC4). This proves (73).

Combining (72) with (73) we find

e =
⎧⎨
⎩
κq(q − q−1)g∗ if g = −q2g∗,
−κq−1(q − q−1)g∗ if g = −q−2g∗.

(75)

Concerning (68), the (0, 1)-entry and (1, 0)-entry of the right-hand side are equal to ω(Aε�)01 and

ω(Aε�)10, respectively. Therefore the (0, 1)-entry of the left-hand side multiplied by (Aε�)10 minus

the (1, 0)-entry of the left-hand side multiplied by (Aε�)01 is equal to zero. On the other hand, we

directly evaluate the difference and replace e, g by (75), (73) respectively. By (RQRAC1), (RQRAC2),

(RQRAC4) some factors in the resulting equation are nonzero. Eliminating those factors we get

⎧⎨
⎩

g∗(g∗(q2 − q−2)+ q−1)(g∗(q2 − q−2)− q−1) = 0 if g = −q2g∗,
g∗(g∗(q2 − q−2)+ q)(g∗(q2 − q−2)− q) = 0 if g = −q−2g∗.

(76)
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If g∗ = 0 then g = 0 by (73) and e = 0 by (75) hence Aε = 0, a contradiction. Therefore g∗ �= 0 and

so (76) yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g∗ = q−1

q2 − q−2
or g∗ = −q−1

q2 − q−2
if g = −q2g∗,

g∗ = q

q2 − q−2
or g∗ = −q

q2 − q−2
if g = −q−2g∗.

(77)

Combining (73) with (75) and (77) we find (e, g, g∗) is one of the following sequences:

(I)

(
κ

q + q−1
,

−q

q2 − q−2
,

q−1

q2 − q−2

)
; (II)

( −κ
q + q−1

,
q

q2 − q−2
,

−q−1

q2 − q−2

)
;

(III)

(
κ

q + q−1
,

q−1

q2 − q−2
,

−q

q2 − q−2

)
; (IV)

( −κ
q + q−1

,
−q−1

q2 − q−2
,

q

q2 − q−2

)
.

By Corollary 7.8 the Leonard system� corresponds to

(a, b, x; q), ((−1)da, (−1)db, (−1)d+1x; −q),

(a, b, x−1; q), ((−1)da, (−1)db, (−1)d+1x−1; −q),

(a−1, b−1, x−1; q−1), ((−1)da−1, (−1)db−1, (−1)d+1x−1; −q−1),

(a−1, b−1, x; q−1), ((−1)da−1, (−1)db−1, (−1)d+1x; −q−1)

(78)

and no other elements of QRACred.We now divide the argument into the cases (I)–(IV).

Case (I): Applying Theorem 10.1 to (a, b, x; q) or (a, b, x−1; q), the corresponding element in

End(V) is exactly Aε. By Theorem14.5 the sequences (a, b, x; q), (a, b, x−1; q) are in T-QRACred.More-

over θεi = xq2i−d + x−1qd−2i for 0 � i � d or θεi = xqd−2i + x−1q2i−d for 0 � i � d, and this implies

x = c or x = c−1 respectively. Therefore (a, b, c; q) is in T-QRACred and corresponds to�.Moreover

Aε is the corresponding element in End(V) from Theorem 10.1. By Lemma 14.2 and Lemma 14.3 the

Leonard systems �′ and �′′ correspond to (b, c, a; q) and (c, a, b; q), respectively. We have shown

that� and (a, b, c; q) correspond via π. It is routine to check that each sequence in (78) doesn’t cor-

respond to � via π other than (a, b, c; q). Therefore (a, b, c; q) is the unique element of T-QRACred
that corresponds to� via π.

Case (II): Applying Theorem 10.1 to ((−1)da, (−1)db, (−1)d+1x; −q) or ((−1)da, (−1)db,
(−1)d+1 x−1; −q), the corresponding element in End(V) is exactly Aε. By the similar argument as

case (I) we find x = −c or x = −c−1 and ((−1)da, (−1)db, (−1)dc; −q) is the unique element of

T-QRACred that corresponds to� via π.
Case (III): Applying Theorem10.1 to (a−1, b−1, x−1; q−1) or (a−1, b−1, x; q−1), the corresponding

element in End(V) is exactly Aε. By the similar argument as case (I) we find x = c or x = c−1 and

(a−1, b−1, c−1; q−1) is the unique element of T-QRACred that corresponds to� via π.
Case (IV): Applying Theorem 10.1 to ((−1)da−1, (−1)db−1, (−1)d+1x−1; −q−1) or ((−1)da−1,

(−1)d b−1, (−1)d+1x; −q−1), the corresponding element in End(V) is exactly Aε. By the similar

argument as (I) we find x = −c or x = −c−1 and ((−1)da−1, (−1)db−1, (−1)dc−1; −q−1) is the

unique element of T-QRACred that corresponds to � via π.We have completed the argument for the

cases (I)–(IV). The result follows. �

In Theorem 16.4 we showed that π is a bijection. We now describe π−1.

Lemma 16.5. Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a Leonard triple system of QRacah

type. Let {θi}di=0, {θ∗
i }di=0, {θεi }di=0 denote the first, second, and third eigenvalue sequences for �, re-

spectively. Let (a, b, c; q) denote the preimage with respect to π, for the isomorphism class of �. Then
(a, b, c; q) is the unique sequence of scalars in K that satisfies (27)–(29) and (34)–(36).
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Proof. We first show that (a, b, c; q) satisfies (27)–(29) and (34)–(36). The sequence (a, b, c; q) sat-
isfies (34), (35) by Definition 16.1(i) and satisfies (36) by Definition 16.1(ii). The sequence (a, b, c; q)
satisfies (27)–(29) by Definition 16.1(iv). Next we show that (a, b, c; q) are uniquely determined by

(27)–(29) and (34)–(36). Suppose we are given a sequence of scalars (x, y, z; t) in K that satisfies

tA∗Aε − t−1AεA∗

t2 − t−2
+ A = (y + y−1)(z + z−1)+ (x + x−1)(td+1 + t−d−1)

t + t−1
I (79)

and

θi = xt2i−d + x−1td−2i (0 � i � d),

θ∗
i = yt2i−d + y−1td−2i (0 � i � d),

θεi = zt2i−d + z−1td−2i (0 � i � d).

We show (x, y, z; t) = (a, b, c; q). By Theorem 16.3 the elements A∗Aε, AεA∗, I are linearly indepen-

dent. Comparing (27), (79) in this light, we find

t−1(t2 − t−2) = q−1(q2 − q−2),

t(t2 − t−2) = q(q2 − q−2).

Solving the above two equations for t we find t = q. Now by Lemma 4.8, x = a. Similarly y = b and

z = c. The result follows. �

17. Twin pairs of Leonard triple systems

Definition 17.1. Let� and� ′ denote Leonard triple systems over K.We say that� and� ′ are twins

whenever

(i) � and� ′ have the same first eigenvalue sequence;

(ii) � and� ′ have the same second eigenvalue sequence;

(iii) � and� ′ have the same third eigenvalue sequence.

As we will see, there exist twin pairs of Leonard triple systems that are not isomorphic.

Lemma 17.2. Let � = (A; {Ei}di=0; A∗; {E∗
i }di=0; Aε; {Eεi }di=0) denote a Leonard triple system on V that

has QRacah type. Let † denote the antiautomorphism of End(V) that corresponds to the Leonard pair

(A, A∗), in the sense of Definition 1.14. Suppose (a, b, c; q) ∈ T-QRACred corresponds to � via π. Then
(a−1, b−1, c−1; q−1) ∈ T-QRACred corresponds to �† via π. Moreover � and �† are nonisomorphic

twins.

Proof. By construction � and �† are twins. It is routine to verify that (a−1, b−1, c−1; q−1) is in

T-QRACred according to Definition 15.1 and (a−1, b−1, c−1; q−1) corresponds to �† via π according

to Definition 16.1. By (T-RQRAC2) with i = 1 the sequences (a, b, c; q) and (a−1, b−1, c−1; q−1) are
different. Therefore� and�† are not isomorphic by Theorem 16.4. The result follows. �

In this section we classify up to isomorphism all the twin pairs of Leonard triple systems that have

QRacah type. To obtain the classification we use the bijection π from Definition 16.1.

Definition 17.3. Let (a, b, c; q) and (a′, b′, c′; q′) denote two elements of T-QRACred. We call these

elements twins whenever the corresponding Leonard triple systems via π are twins in the sense of

Definition 17.1.
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Observe that twin is an equivalence relation. We now describe the equivalence classes of the twin

relation.

Theorem17.4. Let (a, b, c; q) denote an element of T-QRACred. Then the twins of (a, b, c; q) are displayed
below. There are two cases.

(i) Assume that none of abc, a−1bc, ab−1c, abc−1 is among −qd−1,−qd−3, . . . ,−q1−d. Then the

twins of (a, b, c; q) are

(a, b, c; q), ((−1)da, (−1)db, (−1)dc; −q),

(a−1, b−1, c−1; q−1), ((−1)da−1, (−1)db−1, (−1)dc−1; −q−1).
(80)

(If K has characteristic two, then we interpret (80) having only two elements).

(ii) Assume that some of abc, a−1bc, ab−1c, abc−1 is among −qd−1,−qd−3, . . . ,−q1−d. Then the

twins of (a, b, c; q) are

(a, b, c; q), (a−1, b−1, c−1; q−1).

Proof. Let (x, y, z; t) ∈ T-QRACred which is a twin of (a, b, c; q). Let � and � ′ denote Leonard triple

systems that correspond to (a, b, c; q) and (x, y, z; t) via π, respectively. Applying Lemma 16.5 to �

and� ′ we find

aq2i−d + a−1qd−2i = xt2i−d + x−1td−2i (0 � i � d),

bq2i−d + b−1qd−2i = yt2i−d + y−1td−2i (0 � i � d),

c q2i−d + c−1qd−2i = zt2i−d + z−1td−2i (0 � i � d).

Solving the above three equations for x, y, z, twefind (x, y, z; t) is one of the sequences shown in (80).

If none of abc, a−1bc, ab−1c, abc−1 is among−qd−1,−qd−3, . . . ,−q1−d, then each sequence shown

in (80) is in T-QRACred. If some of abc, a−1bc, ab−1c, abc−1 is among −qd−1,−qd−3, . . . ,−q1−d,
then among the sequences shown in (80) only (a, b, c; q) and (a−1, b−1, c−1; q−1) are in T-QRACred.
The result follows. �

18. A (Z2)
3 � S3 action on T-QRACred

In Theorem 16.4 we gave a bijectionπ from T-QRACred to T-QRAC. In Lemma 12.3 we gave an action

of (Z2)
3 � S3 on T-QRAC as a group of automorphism. Viaπ−1 this action induces a (Z2)

3 � S3 action

on T-QRACred. In this section we describe the resulting (Z2)
3 � S3 action on T-QRACred. As wewill see,

it extends the D4 action on T-QRACred that we obtained in Lemma 15.2.

Lemma 18.1. There exists a unique (Z2)
3 � S3 action on T-QRACred such that

(a, b, c; q)∗ = (b−1, a−1, c−1; q−1), (81)

(a, b, c; q)ε = (c−1, b−1, a−1; q−1), (82)

(a, b, c; q)� = (a, b, c−1; q), (83)

(a, b, c; q)↓ = (a, b−1, c; q), (84)

(a, b, c; q)⇓ = (a−1, b, c; q) (85)

for all (a, b, c; q) ∈ T-QRACred.
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Proof. For all (a, b, c; q) ∈ T-QRACred the sequence on the right in (81)–(85) is contained in T-QRACred.
Definemaps ∗, ε, �,↓,⇓ from T-QRACred to T-QRACred such that (81)–(85) hold for all (a, b, c; q) ∈ T-

QRACred.One checks that ∗, ε, �,↓,⇓ satisfy the relations (30)–(33). Therefore the desired (Z2)
3 � S3

action exists. This (Z2)
3 � S3 action is unique since ∗, ε, �,↓,⇓ generate (Z2)

3 � S3. �

Lemma 18.2. For all g ∈ (Z2)
3 � S3 the following diagram commutes.

Proof. Without loss we may assume that g is one of ∗, ε, �,↓,⇓ . Fix (a, b, c; q) ∈ T-QRACred, and
let� denote the Leonard triple system that corresponds to (a, b, c; q) via π. It is routine to check that

�g and (a, b, c; q)g correspond via π according to Definition 16.1. The result follows. �

In Lemma 15.2we gave an action ofD4 on T-QRACred. In Lemma 18.1we gave an action of (Z2)
3�S3

on T-QRACred. Comparing (24)–(26) and (81), (84), (85) we see that the action of (Z2)
3 � S3 on T-

QRACred extends the action of D4 on T-QRACred.

19. Classification of Leonard triples of QRacah type

The goal of this section is to classify up to isomorphism the Leonard triples of QRacah type. Recall

the (Z2)
3 � S3 action on T-QRACred from Lemma 18.1.

Definition 19.1. Let T-QRACred/(Z2)
3 denote the set of all (Z2)

3-orbits on T-QRACred.

Lemma 19.2. Let (a, b, c; q) denote an element of T-QRACred. The (Z2)
3-orbit containing (a, b, c; q)

consists of the eight elements

(a, b, c; q), (a−1, b, c; q), (a, b−1, c; q), (a, b, c−1; q),
(a−1, b−1, c−1; q), (a, b−1, c−1; q), (a−1, b, c−1; q), (a−1, b−1, c; q). (86)

Proof. Using (83)–(85) we find that the (Z2)
3-orbit containing (a, b, c; q) consists of the sequences

shown in (86). By (T-RQRAC3) none of a2, b2, c2 is equal to 1, so the sequences shown in (86) are

mutually distinct. �

Definition 19.3. We define a map τ from T-QRACred/(Z2)
3 to the set of all isomorphism classes

of Leonard triples over K that have diameter d and QRacah type. Let (a, b, c; q) ∈ T-QRACred. Let
(A, A∗, Aε) denote the Leonard triple over K that corresponds to (a, b, c; q) via π. The map τ sends

the (Z2)
3-orbit containing (a, b, c; q) to the isomorphism class of (A, A∗, Aε) in the set of all Leonard

triples. By Lemma 18.2 the map τ is well-defined.

Theorem 19.4. The map τ from Definition 19.3 is a bijection.

Proof. We first show that τ is surjective. Let (A, A∗, Aε) denote a Leonard triple on V that has QRacah

type. By Theorem 16.4 the map π is surjective, so there exists an element (a, b, c; q) of T-QRACred
that corresponds to (A, A∗, Aε) via π. Therefore τ is surjective. We now show that τ is injective.
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Suppose we are given (a, b, c, q) and (a′, b′, c′; q′) in T-QRACred that correspond to the same Leonard

triple (A, A∗, Aε) via π.We show that (a, b, c, q) and (a′, b′, c′; q′) are in the same (Z2)
3-orbit. Let

�, � ′ denote the Leonard triple systems which are associated with (A, A∗, Aε) and correspond to

(a, b, c, q), (a′, b′, c′; q′) viaπ, respectively. By Definition 11.6 there exists an element g in (Z2)
3 such

that � ′ = �g . By this and by Lemma 18.2 the Leonard triple system � ′ and (a, b, c; q)g correspond

via π. Since π is injective we see that (a′, b′, c′; q′) = (a, b, c; q)g .We have shown that τ is injective.

The result follows. �

Definition 19.5. For (a, b, c; q) ∈ T-QRACred define

̂(a, b, c; q) = (a + a−1, b + b−1, c + c−1; q).

Let ̂T-QRACred denote the set of sequences ̂(a, b, c; q)where (a, b, c; q) ∈ T-QRACred.

Definition 19.6. Observe that the map (a, b, c; q) 
→ ̂(a, b, c; q) induces a map T-QRACred/(Z2)
3 →

̂T-QRACred which we denote by ξ.

Theorem 19.7. The map ξ from Definition 19.6 is a bijection.

Proof. By construction ξ is surjective. To show that ξ is injective, fix (a, b, c; q) ∈ T-QRACred and let

(x, y, z; t) ∈ T-QRACred that satisfies

̂(x, y, z; t) = ̂(a, b, c; q). (87)

Solving (87) for x, y, z, t we find that (x, y, z; t) is one of the sequences shown in (86). Now the map

ξ is injective in view of Lemma 19.2. The result follows. �

Combining Theorems 19.4 and 19.7 we find that the following three sets are in bijection:

• The set of isomorphism classes of Leonard triples overK that have diameter d and QRacah type.

• The set T-QRACred/(Z2)
3.

• The set ̂T-QRACred.

20. Comments

Let (A, A∗, Aε)denote a Leonard triple of QRacah type.We saw in Theorem10.1 thatA, A∗, Aε satisfy
the Z3-symmetric Askey–Wilson relations. We now mention some other relations that are satisfied

by A, A∗, Aε.

Proposition 20.1. Let (a, b, c; q) ∈ T-QRACred. Let (A, A
∗, Aε) denote the Leonard triple over K that

corresponds to (a, b, c; q) via π. Thenψ I is equal to each of

qAA∗Aε + q2A2 + q−2A∗2 + q2Aε2 − qαA − q−1α∗A∗ − qαεAε,

qAεAA∗ + q2Aε2 + q−2A2 + q2A∗2 − qαεAε − q−1αA − qα∗A∗,
qA∗AεA + q2A∗2 + q−2Aε2 + q2A2 − qα∗A∗ − q−1αεAε − qαA,

q−1A∗AAε + q−2A∗2 + q2A2 + q−2Aε2 − q−1α∗A∗ − qαA − q−1αεAε,

q−1AεA∗A + q−2Aε2 + q2A∗2 + q−2A2 − q−1αεAε − qα∗A∗ − q−1αA,

q−1AAεA∗ + q−2A2 + q2Aε2 + q−2A∗2 − q−1αA − qαεAε − q−1α∗A∗,



1472 H.-w. Huang / Linear Algebra and its Applications 436 (2012) 1442–1472

where

ψ = (q + q−1)2 − (qd+1 + q−d−1)2 − (a + a−1)2 − (b + b−1)2 − (c + c−1)2

− (a + a−1)(b + b−1)(c + c−1)(qd+1 + q−d−1)

and

α = (b + b−1)(c + c−1)+ (a + a−1)(qd+1 + q−d−1),

α∗ = (c + c−1)(a + a−1)+ (b + b−1)(qd+1 + q−d−1),

αε = (a + a−1)(b + b−1)+ (c + c−1)(qd+1 + q−d−1).

Proof. Use the matrix forms for A, A∗, Aε displayed below Definition 16.2. �
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