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1. Leonard pairs and Leonard systems

We begin by recalling the notion of a Leonard pair. We will use the following terms. Let X denote
a square matrix. Then X is called tridiagonal whenever each nonzero entry lies on either the diagonal,
the subdiagonal, or the superdiagonal. Assume X is tridiagonal. Then X is called irreducible whenever
each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

We now define a Leonard pair. For the rest of this paper KK will denote an algebraically closed field.

Definition 1.1 [4, Definition 1.1]. Let V denote a vector space over K with finite positive dimension. By
a Leonard pair on V, we mean an ordered pair of linear transformationsA : V — VandA* : V — V
that satisfy both (i), (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiag-
onal and the matrix representing A* is diagonal.

(ii) There exists a basis for V with respect to which the matrix representing A* is irreducible tridi-
agonal and the matrix representing A is diagonal.
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Note 1.2. According to a common notational convention A* denotes the conjugate-transpose of A.
We are not using this convention. In a Leonard pair (A, A*) the linear transformations A and A* are
arbitrary subject to (i), (ii) above.

For the rest of this paper we fix an integer d > 0. Let Mat, (K) denote the K-algebra consisting
of alld + 1 by d + 1 matrices that have entries in K. We index the rows and columns by 0, 1, ..., d.
We let K91 denote the K-vector space consisting of all d 4+ 1 by 1 matrices that have entries in K.
We index the rows by 0, 1, ..., d. We view K4+1 35 a left module for Matg1(K). For the rest of the
paper let V denote a vector space over K that has dimension d + 1. Let End(V) denote the K-algebra
consisting of all linear transformations from V to V. Let {v,-}?=0 denote a basis for V. For X € End(V)

and Y € Maty1(K), we say Y represents X with respect to {v,-};j:0 whenever Xv; = Z?:o Y;v; for
0 <j < d.ForA € End(V), by an eigenvalue of A we mean a root of the characteristic polynomial of A.
We say that A is multiplicity-free whenever it has d 4 1 distinct eigenvalues. Assume A is multiplicity-
free. Let {9,}?20 denote an ordering of the eigenvalues of A. For 0 < i < d let V; denote the eigenspace
of A associated with 6;. Define E; € End(V) such that (E; —I)V; = 0and E;V; = Oforj #i(0 < j < d).
Here I denotes the identity of End(V). We call E; the primitive idempotent of A associated with 6;.

Lemma 1.3 [4, Lemma 1.3]. Let (A, A*) denote a Leonard pair on'V. Then each of A, A* is multiplicity-free.
We now define a Leonard system.

Definition 1.4 [4, Definition 1.4]. By a Leonard system on V we mean a sequence ® = (A; {Ei}?zo;
A*; (EF}L,) that satisfies (i)-(v) below.

(i) Each of A, A* is a multiplicity-free element in End (V).
(ii) {E,'}‘Aj= is an ordering of the primitive idempotents of A.
i=0

(iii) {Ei*};j:0 is an ordering of the primitive idempotents of A*.

. 0 ifli—jl>1, .

(iv) EA*E; = (0<i,j<d).
#0ifli—jl=1
0 ifli—j|>1,

(v) EfAEf = i=Jl 0 <i,j<d.
#0if|li—jl=1

We refer to d as the diameter of ® and say @ is over K.
Definition 1.5 [4, Definition 1.8]. Let ® = (A; {Ei}?:o; A% {E] ;1:0) denote a Leonard system on V.

For 0 < i < dlet 6; (resp. 6;") denote the eigenvalue of A (resp. A*) associated with E; (resp. Ej). We
call {6; ?:0 (resp. {0 ?:0) the eigenvalue sequence (resp. dual eigenvalue sequence) of ®.

Definition 1.6 [4, Definition 2.5]. Let (A; {E;}L; A*; {EF}%,) denote a Leonard system. Define
a; = tr(AEf),  af = tr(A*E) 0 <i<d),
where tr denotes trace.
The scalars {a;},, {a}'}_, have the following interpretation.
Lemma 1.7 [5, Lemma 10.2]. With reference to Definition 1.6,

E;'(AEi* = aiEi* (O g i g d),
EA™E; = a;kE,' o0 <igad).
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Let ® = (A; {E,-}?:O; A*; {Ei*}?:o) denote a Leonard system on V. Observe that each of the following
three sequences is a Leonard system on V.

O* 1= (A%, {EF Y gs A (B o),
¥ = (A, (B g; A% {ES_ ),
oV = (A, (Ea—i}o; A% (EF}L,).

Viewing %, |, || as permutations on the set of all Leonard systems,

== =1, (1)
x=x, bx=x, W=y (2)

The group generated by the symbols *, |, |} subject to the relations (1), (2) is the dihedral group Dy.
We recall D4 is the group of symmetries of a square, and has 8 elements. Thus %, |, {} induce an action
of D4 on the set of all Leonard systems.

Definition 1.8 [7, Section 4]. Let ® = (A; {Ei}fizo; A%, {E;“}?ZO) denote a Leonard system on V. Then
the pair (A, A*) forms a Leonard pair on V. We say this pair is associated with ®. Observe each Leonard
system is associated with a unique Leonard pair.

Definition 1.9 [7, Section 4]. Let (A, A*) denote a Leonard pair on V. By the associate class for (A, A*)
we mean the set of Leonard systems on V which are associated with (A, A*). Observe this associate
class contains at least one Leonard system ®. By [7, Section 4] this associate class contains @, oY,
o, o4 and no other Leonard systems.

For the rest of this section let V'’ denote a vector space over K with dimension d + 1. By a K-algebra
isomorphism from End(V) to End(V’) we mean an isomorphism of K-vector spaces ¢ : End(V) —
End(V’) such that (XY)? = X°Y? forall X, Y € End(V).

It is useful to interpret the concept of isomorphism as follows. Let y : V — V'’ denote an isomor-
phism of K-vector spaces. Define a map o : End(V) — End(V’) by X = yXy ! forall X € End(V).
Then o is a K-algebra isomorphism. Conversely let o : End(V) — End(V’) denote a K-algebra
isomorphism. By the Skolem-Noether theorem [3, Corollary 9.122] there exists an isomorphism of
K-vector spaces y : V — V/ such thatX? = yXy ~! forall X € End(V).

We now recall the notion of isomorphism for Leonard pairs and Leonard systems.

Definition 1.10. Let (A, A*) denote a Leonard pair on V. Let (B, B¥) denote a Leonard pair on V. By an
isomorphism of Leonard pairs from (A, A*) to (B, B*) we mean a K-algebra isomorphism o : End(V) —
End(V’) that sends A to B and A* to B*. We say (A, A*) and (B, B¥) are isomorphic whenever there exists
an isomorphism of Leonard pairs from (A, A*) to (B, B*).

Let ® denote the Leonard system from Definition 1.5 and let o : End(V) — End(V’) denote a
K-algebra isomorphism. We write ®° := (A”; {E;’}?ZO; A {Ef° }flzo) and observe ©7 is a Leonard

systemon V’.

Definition 1.11. Let ® denote a Leonard system on V. Let ®" denote a Leonard system on V’. By an
isomorphism of Leonard systems from ® to ® we mean a K-algebra isomorphism o : End(V) —
End(V’) such that ®° = &’. We say ®, ®’ are isomorphic whenever there exists an isomorphism of
Leonard systems from & to ®’.

Definition 1.12. Let LS = LS(d, K) denote the set consisting of the isomorphism classes of Leonard
systems over K that have diameter d.
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Observe that the D4 action on Leonard systems from above Definition 1.8 induces a D4 action on
the set LS from Definition 1.12.

We recall the notion of an antiautomorphism of End(V). By an antiautomorphism of End(V) we
mean an isomorphism of K-vector spaces y : End(V) — End(V) such that (XY)¥ = YVXY for all
X, Y € End(V).

Lemma 1.13 [8, Theorem 6.1]. Let (A, A*) denote a Leonard pair on V. Then there exists a unique antiau-
tomorphism t of End(V) such that AT = A and A*" = A*. Moreover X' = X for all X € End(V).

Definition 1.14 [8, Definition 6.2]. Let (A, A*) denote a Leonard pair on V. By the antiautomorphism
which corresponds to (A, A*) we mean the map f from Lemma 1.13.

2. The parameter array of a Leonard system

Let ® = (A; {E,-}?ZO; A*; {Ei*}?zo) denote a Leonard system on V. In Definition 1.5 we defined the
eigenvalue sequence and the dual eigenvalue sequence of ®. There are two more parameter sequences
of interest to us. In order to define these, we review some results from [4]. For 0 < i < d define

U= EVAHEVA+- +EV)NEYV +EpV+ -+ EqV). 3)
By [4, Lemma 3.8] each of Uy, Uy, ..., Uy has dimension one and
V=U+U +- - -4+Uy (direct sum). (4)

The elements A and A* act on {Ui}?zo as follows. By [4, Lemma 3.9], both

A—-06DU; =Uipn (O<i<d-—1), (A—0a)Uq = 0, (3)
(A" —6DU; =Ui—; (1 <i<d), (A* — 65U = 0. (6)

Setting i = 0in (3) we find Up = E;V. Combining this with (5) we find
U= (A—0i1D) -+ (A— 611)(A — B EgV 0<i<d. (7)

Let v denote a nonzero vector in EjV. By (7), for 0 < i < d the vector (A — 6;_1I) --- (A — Gpl)visa
basis for U;. By this and (4) the sequence

A—=0GiaD---(A—=6DA—-6Ohv (0<i<d) (8)

is a basis for V. With respect to this basis the matrices representing A and A* are

90 0 9; 1 0
1 64 9]* ©2
16, o5 -
: ? 9)
© Pd
0 1 64 0 0F
respectively, where ¢1, ¢, ..., @q are appropriate scalars in K. By a ®-split basis for V we mean a

sequence of the form (8), where v is a nonzero vector in EV. We call {(pi}?zl the first split sequence of

d. We let {¢i}?=] denote the first split sequence of &¥ and call this the second split sequence of ®. For
notational convenience define g = 0, @441 = 0, ¢po = 0, ¢pg+1 = 0.
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Definition 2.1 [7, Definition 13.3]. Let ® denote a Leonard system on V. Define amap ff : End(V) —
Matgy 1 (K) as follows. Forall X € End(V) letX 7 denote the matrix in Matg41 (K) that represents X with
respect to a ®-split basis for V. We observe [ : End(V) — Maty1(K) is a K-algebra isomorphism.
We call g the natural map for ®.

Definition 2.2 [8, Definition 22.3]. Let ® denote a Leonard system on V. By the parameter array of ® we
mean the sequence ({6;} o, {07} 0, (i}, {Pi},), where {6;}L, (resp. {07 }9_,)is the eigenvalue
sequence (resp. dual eigenvalue sequence) of ® and {goi}?zl (resp. {qbi}?:]) is the first split sequence
(resp. second split sequence) of ®.

Lemma 2.3 [4, Lemma 5.1]. Let ® denote a Leonard system over K and let ({9,-}?:0, {Gi*}fzo, {gof}le,
{¢,~}f’=1) denote the corresponding parameter array. Then the scalars {a,-}f’zo, {af}f’zo from Definition 1.6
are given as follows. If d = 0 then ag = 60y and a§ = 6. Ifd > 1 then

a0=90+96k(p_191*7

a= 0+ o —(pie,-*_1 + 91-*?“?;1 a<i<d-1,

ad=9d+9;_¢#,

aéz@&‘—i—eo(p%el,

G =6+ _“”é_l + “_”’*H:H a<i<d—1),
Pd

aZ:Q&k—i—m.

Lemma 2.4 [4, Theorem 1.9]. Let
(1030 (67 Yo {oi}s. (1)) (10)

denote a sequence of scalars taken from IK. Then there exists a Leonard system ® over KK with parameter
array (10) if and only if the following conditions (PA1)-(PA5) hold.

(PA1) 6; # 65, O] #£06 ifi#] 0 <i,j<ad.
(PA2) i #0, ¢i #0 (1<i<ad.
=10, — 04
(PA3) @i = ¢1Z ﬁ + (67 — 05)(6i—1 — 6a) (1 <i<ad.
h=0
S O — ba—n « s .
(PA4) ¢ = 1 > 00— 6a + (0 — 65)(Od—it1 — 6o) (1 <i<ad.
h=0

(PA5) The expressions

Oi—2 — Oi1q 0 — 05
Oi1 —6; 0, —oF

are equal and independent of i for2 < i< d— 1.

Moreover, if (PA1)-(PA5) hold then ® is unique up to isomorphism of Leonard systems.
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Definition 2 5 [8, Definition 22.1]. By a parameter array over K of diameter d we mean a sequence of
scalars ({6?,}, —0» {Qi*}fzo, {(pi}le, {qbi}f:l) taken from K that satisfies (PA1)-(PA5).

Definition 2.6. Let PA = PA(d, K) denote the set consisting of all parameter arrays over K that have
diameter d.

By Lemma 2.4 the map which sends a given Leonard system to its parameter array induces a bijection
from LS to PA. Below Definition 1.12 we gave a D4 action on the set LS. This action induces a D4 action
on PA. We now describe this action.

Lemma 2.7 [4 Theorem 1.11]. Let ® denote a Leonard system with parameter array ({6;}4 o 167 }l 0
{901}, l,{¢>,} —1)- Then (i)-(iii) hold below.

(i) The parameter array of ®* is ({9*}1 0- O} ~0: oty {a—iv1}y).
(ii) The parameter array of @V is ({6;}{_ =0 {05 Yo, {¢ha— ;+1}?:1,{<ﬂa—i+1}?:1)-
(iii) The parameter array of<I>ll is ({O4— ,}, 0 {9*}1 0 {d),}, 1 {(pi}?=1).

We mention a result for later use.

Lemma 2.8 [7, Theorem 17.1]. LetA, A* denote matrices in Maty1 (K). Assume that A is lower bidiagonal
and A* is upper bidiagonal. Then the following (i), (ii) are equivalent.

(i) The pair (A, A*) is a Leonard pair on KA+,
(ii) There exists a parameter array ({6; }l o016 }d 0 {901}, 1,{(]),} ) over K such that

Aii = 0;, A;? = Gi* (0 < d),
AicA =9 (1<i< d)-

Suppose (i), (ii) hold. For 0 < i < d let E; (resp. E}') denote the primitive idempotent of A (resp. A*)
associated with 6; (resp. 6;"). Then (A {E,}, o A% {E*} _o) is a Leonard system on K91 with parameter

array ({6; }, ()7{9 }1 07{901}1 ]7{¢l}1=])'
3. The Askey-Wilson relations for a Leonard pair

In this section we recall a few facts about Leonard pairs that will be used later in the paper.

Lemma 3.1 [6, Theorem 1.5]. Let (A, A*) denote a Leonard pair on V. Then there exists a sequence of
scalars B, v, v*, 0, 0%, w, n, n* taken from K such that both
APA* — BAATA + A*A? — y (AA* + A*A) — 0A* = y*A? + wA + 11, (11)
A*2A — BA*AA* + AA™? — ¥ (A*A + AAY) — 0*A = yA*? + wA* + 'l (12)
The sequence is uniquely determined by the pair (A, A*) provided the dimension of V is at least 4.

We refer to (11), (12) as the Askey-Wilson relations. Later in the paper we will encounter the Askey-
Wilson relations in another form, said to be Z3-symmetric.

Lemma 3.2 [6, Theorems 4.5 and 5.3]. Let (A; {E,}l 0 A% {E*} ) denote a Leonard system over K
with eigenvalue sequence {9,} =0, and dual elgenvalue sequence {6; } _o- Let the scalars a;, af be as in

Definition 1.6. Let B8, v, v*, 0, 0™, , n, n* denote a sequence ofscalars taken from K. Thls sequence
satisfies (11), (12) if and only if thefollowing (i)-(ix) hold.
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(i) The expressions

Oi—2 — Oit1 0y — 654
Oi_1—6; ° 0, — 0
are bothequalto B+ 1for2 <i<d—1.
11))/—01 1 — BO;i + O (]<l d—1).

(i) y* =07 — BO + 6/, a<gig<d-1).

(iv) o = 92 — BOi—10; + 92 v (0i—1 + ) 1<i<d.

(v) o* — BOF L 0F + 602 — y*(OF | + 67) (1 <i<ad).

(Vi) w = q; (91 Oiy1) + a, 1(91 1 91—2) — Y (i 4 6i—1) 1<iga).
(vii) w—ax(9 01) +ai—1(07 — 67, — v (O +07) a<i<d.
(viii) 7 = af(6; — 6i-1)(6; — 6it1) — ¥ 67 — wb; O0<i<d.

(ix) n* = 01(9 =05 OF — 0 — 9*2 — b 0<i<ad.

In the above lines (vi)-(ix), 6—1 and 0441 (resp. 6%, and 9:{“ ) denote scalars in K that satisfy (ii) (resp.
(iii)) fori = 0andi = d.
4. Leonard systems of QRacah type; preliminaries

A bit later in the paper we will consider a family of Leonard systems said to have QRacah type. For
these Leonard systems the eigenvalue sequence and dual eigenvalue sequence have a certain form. In

this section we consider the form. For the rest of this section let a, g denote nonzero scalars in K with
2 £ 41, and let

6 =ag " +a7'g" 0 <i<d. (13)
We first discuss some necessary and sufficient conditions for {Gi}?zo to be mutually distinct.
Lemma 4.1. We have
0= 6= —d g™ —a g 0<ij<a).
Proof. Verify this using (13). O

Lemma 4.2. The scalars {9, —o are mutually distinct if and only if the following (i), (ii) hold.

i) ¢¥ #£1for1 <i<d.
a;équz'for1<l 2d — 1.

Proof. Verify this by using Lemma 4.1. O
Motivated by Lemma 3.2 we now consider some recursions satisfied by the sequence (13).

Lemma 4.3. Assume {9,} —o are mutually distinct. Then

bi2—0iv1 5 -2

=¢+1+ 2<i<d—1).
o — 6, q q ( < )

Proof. In the above fraction, evaluate the numerator and denominator using Lemma 4.1. [
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Lemma 4.4. We have

b1 — (@ +q )6 + 641 =0 1<i<d—1.
Proof. Verify this using (13). O
Lemma 4.5. We have

01— (@ +a 06+ 67 =" —q ) (1<i<d). (14)
Proof. The left-hand side of (14) can be factorized into

Gi-1 — q°6) (Gi—1 — g *6). (15)

By (13) we find 0;_1 — q26; equals —ag?~9(q® — q~2) and 0;_1 — g~ 20; equals a~q?2I(¢? — q72).
By these comments (15) equals the right-hand side of (14). O

In Lemma 2.4 the conditions (PA3), (PA4) involve a certain sum. We now evaluate this sum for the
case (13).

Lemma 4.6. We have

i1 i —iy (yd—i+1 i—d—1

Op — 64— - -
5 O a—n _ (@ Q)(j i ‘id ) 1<i<d, (16)
& 00— 0 (@=a D@ =a79

provided 6y # 6.

Proof. By Lemma 4.1 the summand in the left-hand side of (16) equals

qd—2h — g
gl — g~
Therefore the left-hand side of (16) involves two geometric series {q%~2"}i_{ and {g*"~¢}}_} . We sum
the two series to obtain (16). O
We finish this section with two miscellaneous results that we will need later.
Lemma 4.7. We have
Oa—i = ag"* +a g% O<i<d.
Proof. Immediate from (13). O
Lemma 4.8. Assumed > 1. Then
d d—2
01 — (7
a:q 12 Q_z O' (17)
q° —q

Proof. From (13)we obtain 6y = ag~ ¢ +a~'q% and 6; = ag®~¢ + a~q%~2. Solving these equations
for a we routinely obtain (17). O
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5. Leonard systems of QRacah type

In this section we define a family of Leonard systems said to have QRacah type. We discuss some
related concepts.

Definition 5.1. Let ® denote a Leonard system on V, as in Definition 1.5. We say that ® has QRacah
type whenever both (i) d > 3; (ii) there exist nonzero a, b, q € K such that ¢? # £1and
6 = aq2 i d 2i

(0<i<ad), (18)
ei*zbqZI d+b 1qd 2i (

i<d). (19)

//\ /

In view of Definition 5.1, until further notice we assume d > 3

Definition 5.2. Let QRAC = QRAC(d, K) denote the subset of LS consisting of the isomorphism classes
of Leonard systems that have QRacah type.

Recall the D4 action on the set LS, from below Definition 1.12.
Lemma 5.3. The set QRAC is closed under the action of D4 on LS.

Proof. Immediate from Lemmas 2.7 and 4.7. O

Let (A, A*) denote a Leonard pair on V. By Definition 1.9 and Lemma 5.3, if some associated Leonard
system has QRacah type then every associated Leonard system has QRacah type; in this case (A, A*)
is said to have QRacah type.

6. The parameter arrays of QRacah type

Let ® denote a Leonard system over K that has QRacah type. In this section we give an explicit form
for the parameter array of .

Definition 6.1. Let ({0;}¢ o (6 }1 —0s {(p,}l 1> {qb,'}?:l) denote a parameter array over K. This para-
meter array is said to have QRacah type whenever the corresponding Leonard system has QRacah

type.

Definition 6.2. Let PA-QRAC = PA-QRAC(d, K) denote the set consisting of the parameter arrays in
PA that have QRacah type.

Below Definition 2.6 we gave a bijection from LS to PA. The restriction of that bijection to QRAC
forms a bijection from QRAC to PA-QRAC.

Lemma 6.3. Let ({6’,}, 0 {0*}1 0 {qa,}, 1 {¢,} —1) denote a parameter array over K that has QRacah

type. Let a, b, q denote nonzero scalars in K such that > # 41 and (18), (19) hold. Then for all ¢ € K the
following (i), (ii) are equivalent.

(i) cis nonzero and satisfies

0 = a—lb—lqd+1 (ql _ q—i)(qi—d—l _ qd—i+1)(q—i _ abcqi—d—l)(q—i _ abc_lqi_d_l),
(20)
¢i=ab—1qd+1 (ql _ q—i)(qi—d—l _ qd—i+1)(q—i _ a—lbcqi—d—])(q—i _ a—lbc—1qi—d—1)
(21)

for1 <i<d.
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(ii) cis a root of x* — kx 4+ 1 where

1

K= ab_lqd_l + a_lbql_d + .
(@—a @ —q9

(22)

1

Proof. (i) = (ii): Seti = 1in(21) and rearrange terms to obtain c + ¢~ = k. Therefore c is a root of

2
x° —kx+ 1.
(ii) = (i): Note that c is nonzero, and ¢~ is a root of x> — xx + 1. Therefore ¢ + c~! = k. We
substitute this into the left-hand side of (22) and then solve for ¢ to get

¢1=ab” "¢ (@ —q @ =g —aTbeg (g —a b g7, (23)
This gives (21)withi = 1.To get(20), evaluate the right-hand side of (PA3) using Lemma4.1, Lemma 4.6
and (23). To get (21) for 2 < i < d, evaluate the right-hand side of (PA4) using Lemma 4.1, Lemma 4.6
and (20) with i = 1. The result follows. [J

Corollary 6.4. Let ({9,}, 0 {0*}, —0» {901}, 1 {¢,} 1) denote a parameter array over K that has QRacah
type. Let a, b, q denote nonzero scalars in K such that g° # =41 and (18), (19) hold. Then there exists
¢ € K that satisfies the equivalent conditions of Lemma 6.3. Moreover if c satisfies these conditions then
so does ¢, and no other scalar in K satisfies these conditions.

Proof. Immediate from Lemma 6.3. O

Recall the D4 action on the set PA, from below Definition 2.6.
Lemma 6.5. The set PA-QRAC is closed under the action of D4 on PA.

Proof. Immediate from Lemma 5.3 and Definition 6.1. [

7. A set QRACeq

In (18)-(21) we obtained formulae for a parameter array of QRacah type. Those formulae involve a
sequence of scalars (a, b, c¢; q). In this section we examine the properties of this sequence.

Definition 7.1. Let QRAC,.q = QRACq(d, KK) denote the set of all 4-tuples (a, b, c; q) of scalars in K
that satisfy the following conditions (RQRAC1)-(RQRAC4).

(RQRAC1) a #0,b #0,c #0,q # 0.

(RQRAC2) ¢* # 1 forl i<d.

(RQRAC3) Neither of a2, b2 is among qzd’2 20—4 g .

(RQRAC4) None of abc, a~'bc, ab~'c, abc™!is among g1, gt

Lemma 7.2. Let ({0,}1 0 {9”‘}l —0 {(p,}l 1 {qbl} —1) denote a parameter array over K that has QRacah
type. Let a, b, ¢, q denote nonzero scalars in K that satisfy (18)-(21). Then (a, b, ¢; q) € QRACreq.

Proof. It is clear that a, b, c, g satisfy (RQRAC1). Conditions (RQRAC2), (RQRAC3) follow from (PA1)
and Lemma 4.2. Condition (RQRAC4) follows from (PA2). Therefore (a, b, ¢; q) € QRACeq. O

Lemma 7.3. Let (a,b,c;q) € QRACeq. Define {9,}, 0 {9*}1 o {(pl}l ],{¢,} by (18)-(21). Then
({9,}l "o (0 }l 0 {go,}l 1 {¢,} _1) is a parameter array over K that has QRacah type
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Proof. We show that ({01‘}?:0, {Gi*}?zo, {(pi}f’:1 , {q),-}l‘-i:]) is a parameter array over K. Condition (PA1)
follows from Lemma 4.2, (RQRAC2), (RQRAC3). Condition (PA2) follows from (RQRAC1), (RQRAC2),
(RQRAC4). Using Lemma 4.1 and Lemma 4.6 it is routine to verify (PA3), (PA4). Condition (PA5) follows
from Lemma 4.3. We have shown that ({6}, (6}, {@i}d_,, {¢},) is a parameter array over K.
By construction this parameter array has QRacah type. [

Definition 7.4. Let (a, b, ¢; q) € QRACreq. Let ({Gi}?zo, {Gi*}?zo, {(pi}flzl, {qbi}?:l) denote a parameter
array over K that has QRacah type. We say these correspond whenever they satisfy (18)-(21).

Note that each (a, b, c; ) € QRAC;e4 corresponds to a unique element of PA-QRAC.

Lemma 7.5. Let (a, b, ¢; q) € QRAC;eq. Then all of the following are in QRAC;eq.

(a,b,c; q), ((=1)%a, (=1)%, (—=1)%*c; —q),
(a,b,c""; q), (=%, (=1, (=)™ —g),

(@'b g™, (D% (DT (=DM =g,
(@' b g, (=D !, (=), (=) e; =g 7).

Moreover all the above elements correspond to the same element of PA-QRAC.
Proof. This is routinely checked. [J

Lemma 7.6. Let (a, b, c; q) € QRACeq. Assume p € PA-QRAC corresponds to (a, b, c; q). Then each
element of QRAC,eq4 that corresponds to p is listed in Lemma 7.5.

Proof. Suppose we are given (x,y, z; t) € QRACeq that corresponds to p. By Lemma 4.3 we find
24+t =q¢*+q 2, sot € {q.q ', —q, —q'}. Replacing g by one of ¢, ¢!, —q, —q " if necessary,
we may assume without loss of generality that t = q. Now x = a by Lemma 4.8 and similarly y = b.
By Corollary 6.4,z = c or z = ¢~ !. The result follows. [J

Definition 7.7. Let (a, b, ¢; q) € QRACeq. Let ® denote a Leonard system over K that has QRacah
type. We say (a, b, c; q) and ® correspond whenever (a, b, c; q) corresponds to the parameter array of
D,

Corollary 7.8. Let ® denote a Leonard system over K that has QRacah type. Assume (a, b, ¢; q) € QRACeq
corresponds to ®. Then a given element of QRAC,eq corresponds to ® if and only if it is listed in Lemma 7.5.

Proof. Immediate from Lemmas 7.5 and 7.6. [J

8. A D4 action on QRAC;¢q

Recall the set QRAC¢ from Definition 7.1. In this section we display an action of D4 on QRAC;.q. We
show how this action is related to the D4 action on PA-QRAC given in Lemma 6.5.

Lemma 8.1. There exists a unique D4 action on QRACeq such that

(@ b,c;9*=0b""al,cqh, (24)
(a,b,c; )b = (a, b7, ¢c; q), (25)
(@, b,c;q)t = (@', b,c;q) (26)

forall (a, b, c; q) € QRACreq.
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Proof. For all (a, b, ¢; q) € QRACq the sequence on the right in (24)-(26) is contained in QRACq.
Define maps *, |, || from QRACeq to QRACeq such that (24)-(26) hold for all (a, b, ¢; q) € QRACeq.
One checks that these maps satisfy the relations (1), (2). Therefore the desired D4 action exists. This
D4 action is unique since *, |, |} generate D4. [

Lemma 8.2. Forallg € Dy the following diagram commutes.

QRAC, e PA-QRAC
g g
QRAC e PA-QRAC

cor

Here “cor” denotes the correspondence relation from Definition 7.4.

Proof. Without loss we may assume that g is one of *, |, || . Fix (a, b, ¢; q) € QRAGCrq, and let p
denote the corresponding element in PA-QRAC. It is routine to check that p& and (a, b, c; q)® correspond
according to Definition 7.4. The result follows. [

9. The Askey-Wilson relations for Leonard pairs of QRacah type

Let (A, A*) denote a Leonard pair. In Section 3 we saw that A, A* satisfy the Askey-Wilson relations.
In this section we consider what those relations look like for the case in which (A, A*) has QRacah

type.

Definition 9.1. Let (a, b, ¢; ¢) € QRACeq. Let (A, A*) denote a Leonard pair over K that has diameter
d and QRacah type. We say (a, b, c; q) and (A, A*) correspond whenever (a, b, c¢; q) corresponds to
some Leonard system associated with (A, A*).

Lemma 9.2. Let (A, A*) denote a Leonard pair on V that has QRacah type. Assume (a, b, ¢; q) € QRACyeq
corresponds to (A, A*). Then the scalars B, v, y*, 0, 0*, ®, n, n* from Lemma 3.1 are as follows:

B=q+q?> y=y"=0, o=0"=-(-q?"
o=—@-q ) (@+a Hb+b")+C+cH" +q),
_ —1y (2 ) -1 -1 —1y . d+1 —d—1
n=@—q )@ —qgH(ctcHa+a )+ b+b )@ +q9 7)),
" =@—a D@ =g DB+b e+ +@+a D@+ ).
Proof. The scalar $ is obtained from Lemma 3.2(i) and Lemma 4.3. The scalars y, y* are obtained

from Lemma 3.2(ii),(iii) and Lemma 4.4. The scalars g, o™ are obtained using Lemma 3.2(iv),(v) and
Lemma 4.5. To get the scalars w, 1, n* evaluate Lemma 3.2(vi)-(ix) using Lemma 2.3 and (18)-(21). O

10. The Z3-symmetric Askey-Wilson relations
Let (A, A*) denote a Leonard pair of QRacah type. In the previous section we saw what the corre-

sponding Askey-Wilson relations look like. In this section we show that those Askey-Wilson relations
can be put in a form said to be Z3-symmetric.
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Theorem 10.1. Let (A, A*) denote a Leonard pairon 'V that has QRacah type. Assume (a, b, ¢; q) € QRACreq
corresponds to (A, A*). Then there exists a unique A° € End(V) such that

gA*A® — g 1 ASA* o bt b D+ D+ @t+aHE ™ +477h

27
¢ —q? q+q! @7
GAA—q A (4 Data D+ G+ 47D -
e—q2 07 q+q7" -
gAA* —q'A*A . (a+a DHb+b )+ (c+ (@ 4974
¢ —q q+q"

Proof. Define A® such that (29) holds. We show that A® satisfies (27), (28). In these lines eliminate
A? using (29), and consider the resulting equations in A, A*. These equations are the Askey-Wilson
relations (11), (12) using the parameters from Lemma 9.2. These equations hold by Lemma 9.2. We
have shown that there exists A® that satisfies (27)-(29). It is clear from (29) that A® is unique. [

We refer to (27)-(29) as the Zs-symmetric Askey-Wilson relations.

11. Leonard triples and Leonard triple systems

Motivated by Theorem 10.1 we now consider the notion of a Leonard triple introduced by Curtin
[1]. Until further notice assume d > 0.

Definition 11.1 [1, Definition 1.2]. By a Leonard triple on V we mean an ordered triple of linear trans-
formations (A, A*, A%) in End(V) such that for each B € {A, A*, A®} there exists a basis for V with
respect to which the matrix representing B is diagonal and the matrices representing the other two
linear transformations are irreducible tridiagonal.

We now define a Leonard triple system.

Definition 11.2. By a Leonard triple system on V we mean a sequence ¥ = (A; {Ei}d_; A%; {Ef}d,;
A%; {EFYL ) that satisfies (i)-(vii) below.

(i) Each of A, A*, A® is a multiplicity-free element in End(V).
(ii) {Ei}?zo is an ordering of the primitive idempotents of A.
(iii) {El-*};j=0 is an ordering of the primitive idempotents of A*.
(iv) {Ef }?:0 is an ordering of the primitive idempotents of A®.
(v) For B € {A*, A%},

0 ifli—jl>1, .
E:BE; = (0<i,j<ad.
#0if)i—jl =1

(vi) For B € {A, A%},

N 0 ifjli—j| >1, o
EiBEj = 0<i,j<ga.
#0ifli—jl=1
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(vii) For B € {A, A*},

o | O ifli—j> 1, -
E BE] = ‘ 0 <i,j<d.
0 ifli—jl=1
We refer to d as the diameter of ¥ and say W is over K.

Lemma 11.3. Let ¥V = (A; {E,}l 0 A%; {E*}, —o A% {Eg}d o) denote a sequence of linear transformations
in End(V). Then W is a Leonard triple system on V lfand only if the following (i)-(iii) hold.

i) (A; {E,}l 0, A%, {E*}d O) is a Leonard systemon V.
11) (A% {E* = 0s A% {Eg o) is a Leonard system on V.
(iii) (A%; {Es}l o A {E,}l 0) is a Leonard systemon V.

Proof. Immediate from Definitions 1.4 and 11.2. O

Definition 114. Let ¥ = (A; {E,}, —os A% {E*}, 0: A% {Es} o) denote a Leonard triple system on V.
For0 < i < dlet6;, 6, 6F denote the elgenvalues ofA A* Ag associated with E;, EF, Ef respectively.

1’1’1 i

We call {#;}4 o 167 }l —0 {6?,5}?:O the first, second, third eigenvalue sequences of W.

Let W = (A; {Ei}Lo; A%; {EF}L 0; A% {Ef}?_,) denote a Leonard triple system on V. Observe that
each of the following five sequences is a Leonard triple system on V.
= (A% {EF)Los s (Eiilo: A3 {EF L)
= (A% {E YLos A% (Ef) L os A (B L),
= (A {EiYiogs A% {E Hog: A% {EG i Hoo),
= (A B} A {EG_ )i A% {EDY L),

(A {Ed 1}1 o»A* {E*}l oaAe {Eg} o)

Viewing %, ¢, |, |, { as permutations on the set of all Leonard triple systems,

*2:82:|,2:»L2:~Uf2:11 (30)
wex=exe, =1l Ul=10 Ul=14 (31)
| k=% |, Yx=x, b x==x{, (32)
le=c¢l, Je=¢]|, le=¢l. (33)

The group generated by symbols *, ¢, |, |, { subject to the relations (30)-(33) is a semidirect
product (Z,)3 x S3, where Z, is the cyclic group of order 2 and S is the symmetric group on three
letters. The normal subgroup (Z,)? is generated by |, |, || and the subgroup S; is generated by x, .
By the above comments %, ¢, |, |, { induce an action of (Z,)> x S3 on the set of all Leonard triple
systems. We identify D4 with the subgroup of (Z,)> x S3 generated by =, |, || .

Let W denote a Leonard triple systemon V, as in Definition 11.4. We now display the three eigenvalue
sequences of W8 forg = *, ¢, |, |, | .
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g  The eigenvalue sequences of W&

1st 2nd 3rd
SR U R ) R (U LI
{91'8 },d:o {91'* }?:O {01'}1('1:0
{6 O, 160l
)L, CnN EI (g
Oa-ito 107} 167}

= <~ — @

Definition 11.5. Let ¥ = (A; {Ei},; A*; (EF}q; A%; {EF},) denote a Leonard triple system on V.
Then the triple (A, A*, A®) forms a Leonard triple on V. We say this triple is associated with W. Observe
that each Leonard triple system is associated with a unique Leonard triple.

Definition 11.6. Let (A, A*, A®) denote a Leonard triple on V. By the associate class for (A, A*, A®) we
mean the set of Leonard triple systems on V which are associated with (A, A*, A®). Observe that this
associate class contains at least one Leonard triple system W. Moreover the associate class is exactly
the (Z,)3-orbit containing W.

We now define the notion of isomorphism for Leonard triples and Leonard triple systems. For the
rest of this section let V’ denote a vector space over K with dimension d + 1.

Definition 11.7. Let (A, A*, A®) denote a Leonard triple on V. Let (B, B*, B®) denote a Leonard triple
onV’. By anisomorphism of Leonard triples from (A, A*, A®) to (B, B*, B®) we mean a K-algebra isomor-
phism o : End(V) — End(V’) that sends A, A*, A® to B, B*, B® respectively. We say (A, A*, A®) and
(B, B*, B®) are isomorphic whenever there exists an isomorphism of Leonard triples from (A, A*, A%)
to (B, B*, BY).

Let & denote the Leonard triple system from Definition 11.2 and let o : End(V) — End(V’) denote
aK-algebra isomorphism. We write W := (A%; {E? }_o; A*7; {Ef7 )L ; A% {ES9 ) ) and observe
W7 is a Leonard triple system on V’.

Definition 11.8. Let ¥ denote a Leonard triple system on V. Let ¥’ denote a Leonard triple system
on V. By an isomorphism of Leonard triple systems from W to W' we mean a K-algebra isomorphism
o : End(V) — End(V’) such that W% = W¥’'. We say W, ¥’ are isomorphic whenever there exists an
isomorphism of Leonard triple systems from W to ¥’.

Definition 11.9. Let LTS = LTS(d, K) denote the set consisting of all isomorphism classes of Leonard
triple systems over K that have diameter d.

Observe that the (Z,)? x S3 action on Leonard triple systems from above Definition 11.5 induces a
(Z3)® % S3 action on LTS.

12. Leonard triple systems of QRacah type

In this section we define a family of Leonard triple systems said to have QRacah type. We discuss
some related concepts.

Definition 12.1. Let W denote a Leonard triple system on V, as in Definition 11.4. We say that W has
QRacah type whenever both (i) d > 3; (ii) there exist nonzero a, b, ¢, ¢ € K such that q2 # +1and
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0; = aqzi_d +a'g™H 0<i<ad, (34)
0F =bg "+ b g 0<i<d), (35)
0f = ¥4 + c*qd 2 (0<i<d. (36)

Until further notice assume d > 3

Definition 12.2. Let T-QRAC = T-QRAC(d, K) denote the subset of LTS consisting of the isomorphism
classes of Leonard triple systems that have QRacah type.

Lemma 12.3. The set T-QRAC is closed under the action of (Z,)> x S on LTS.

Proof. Immediate from Lemma 4.7 and the table above Definition 11.5. [

Let (A, A*, A®) denote a Leonard triple on V. By Definition 11.6 and Lemma 12.3, if some associated
Leonard triple system has QRacah type then every associated Leonard triple system has QRacah type;
in this case (A, A*, A®) is said to have QRacah type.

Given Theorem 10.1, it is natural to ask whether every Leonard pair of QRacah type extends to a
Leonard triple of QRacah type. The next two sections are devoted to this issue.

13. The condition for A® to be multiplicity-free

Let (A, A*) denote a Leonard pair on V that has QRacah type. Fix (a, b, ¢; ) € QRACeq Which
corresponds to (A, A*), and let A° € End(V) be the corresponding element from Theorem 10.1. Let
® = (A; {E,-}f:O; A*; {E;k}?zo) denote the Leonard system that corresponds to (a, b, ¢; q). Our next
goal is to find necessary and sufficient conditions for the triple (A, A*, A®) to be a Leonard triple. To
this end we first determine when A® is multiplicity-free. We recall some notation. For any x, t € K
define

X On =1 —=x)(1—=xt)--- (1 —xt"1) n=0,1,2,...

and interpret (x; t)o := 1.

Definition 13.1. Define M to be the upper triangular matrix in Matg4 1 (K) with entries

(@)@ )i b T gAY )

. P} .
Mj := (—1)'b~'d"ig" +@=20i (37)
! (@%; ¢?)j—i
for 0 < i < j < d. Note that the diagonal entries of M are
Mji = (—1)'b g 0 <i<d). (38)

These entries are nonzero so M is invertible. For notational convenience define M;; = 0ifiorjisamong
-1, d+1.

Definition 13.2. Define a map p : End(V) — Maty41 (K) by
XP:=M7'X'M  forallX € End(V),
where f is the natural map for @ from Definition 2.1. Observe that p is a K-algebra isomorphism.

To evaluate A°P we need some lemmas.
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Lemma 13.3. For 0 < i <j < dwith (i, ) # (0, d) we have

a—lqi+j—d—1 (qi _ q—i)(qd—i-H _ qi—d—])(abc _ qd—2i+1)

Mi1j = g1 — g+ M, (39)
j+1 _ 4—i—T1y(qd—J _ 4—d _ d—2j—1
-1 i (@ q77)(q ¢~ (abc —q )
Mi,]'+1 =a b ql ! qj—i-H _ ql’_j_] Ml] (40)
Proof. Use Definition 13.1. O
Lemma 13.4. For 0 < i < j < d we have
. =g
s — i q ,
Mit1j=aq 1 i1\ (ad—i _ qi—d — i Mis (41)
(q g (g g% (abc —q )
. j—i _ gl
Mij—1 = abq 1! ¢ d (42)

@ — )@ — g (abe — g

Proof. To verify (41), replace i by i + 1 in (39) and solve the resulting equation for M ;. To verify
(42), replace j by j — 1in (40) and solve the resulting equation for M; j_¢. O

Lemma 13.5. The matrix A°" € Matg.1 (K) is irreducible tridiagonal with entries

Ay = _p iR, (43)

Ay = a2b7 V(g — g (g — ¢ (abe — g? 2+ ) (abe ! — @2 (44)
for1 <i<dand

(A9 = aqb—]qd—zi(qdﬂ g1 — iR Fq )+ e+ ) (45)
foro <i<d.

Proof. The matrix A” (resp. A*") is given on the left (resp. right) in (9). After a short computation using
(29) we find that the matrix A® Zis tridiagonal with entries

—1px* *
. q 0 — qo
(AS')i,ifl = qzl—iq*z']’ (46)
-1
; 6; — qb;_
(A)ic1,i = @i % (47)
qa —q

for1 <i<d, and

ey, = @A DG+ + (et cH@ +a D 68 awi—a e
! q+q7! q+q! ¢ —q?

(48)

for 0 < i < d. To obtain (43)-(45), evaluate (46)-(48) using (18)-(20). By (RQRACT1), the right-hand
side of (43) is nonzero for 1 < i < d. By (RQRAC2)and (RQRAC4) the right-hand side of (44) is nonzero
for 1 < i < d. Therefore the tridiagonal matrix A*” is irreducible. O



H.-w. Huang / Linear Algebra and its Applications 436 (2012) 1442-1472 1459

In Lemma 13.5 we gave the entries of A?Y. For notational convenience define (Asn),-j = 0ifiorjis
among —1,d + 1.

Lemma 13.6. For 0 < i < j < dwith (i, j) # (0, d) we have

qi _ q—i)(qd—H-l _ qi—d—l)(abc _ qd—Zi—H)
quH»] _ qi*f*]

1 €

(Asu)i,iinq,j =a 'plg M;, (49)

(A aMiprj = a b7 g T (¢ T — ¢ (abe T — ¢ M, (50)

Proof. To obtain (49) evaluate the left-hand side of (49) using (39) and (43). Concerning (50), first

assume i = j. Then (50) holds since each side is zero. Next assume i < j. In this case, (50) is verified
by evaluating the left-hand side using (41) and (44). O

Proposition 13.7. We have

6 0
16
1 6¢
AP = 2 : (51)
0 16§

where {0 }?ZO are from (36).

Proof. Let B denote the matrix on the right in (51). To show that A’ = B, it suffices to show that
A®IM = MB. To do this, for 0 < i, j < d we show that the (i, j)-entry of A°’M equals the (i, j)-entry
of MB. In other words, it suffices to show

(A)i im1Miqj 4+ (A))aMyj + (A% i1 Mg j = 0 Mij + Mi jy1. (52)
To verify (52) we consider the following four cases:

Mmj—i<-—1; (Ij—i=—1;

(Ij—i>0and(j) # (0,d); (V)3 j) = (0, d).

Case (I): Each summand in (52) is zero so (52) holds.
Case (II): In this case (52) reduces to

(A*%); i-1Mi_1.i—1 = M. (53)

Using (38) we find M;_1 ;1 = —bq* %M. By this and (43) the left-hand side of (53) equals M;.
This shows (53) and hence (52).
Case (IlI): Using (36), (40) we find the right-hand side of (52) equals M;; times

2d—-2j—1 1 q2j+1 _ q2d+1 —q! qd+2j+2 + qzj—d _ qd _ q2j+2i—d 1 daj
P +c P +c q .
(54)

a 'p! d

Using (45) and Lemma 13.6 we find the left-hand side of (52) equals Mj; times (54). This shows (52).
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Case (IV): In this case (52) reduces to
(A**)00Moa + (A°*)01Mi14 = 63 Mog. (55)

Put (i, j) = (0, d) in (41) and get
a

(@—q (g4~ — abo)

Using this along with (44) ati = 1 and (45) ati = 0, we find the left-hand side of (55) equals the
right-hand side of (55). This shows (55) and hence (52). We have verified (52) in each of the cases
(I)-(1V). The result follows. O

Corollary 13.8. Let {Qig}fzo denote the scalars from (36). Then the roots of the characteristic polynomial
of A® are {6F ).

Proof. Immediate from Proposition 13.7. O
Corollary 13.9. Let {67 }fzo denote the scalars from (36). Then the following (i)-(iii) are equivalent.

(i) A® is multiplicity-free.
(i) {6f}, are mutually distinct.
(iii) c? is not among qu_Z, qu_4, R qZ_Zd.
Proof. (i) < (ii): By Corollary 13.8.
(ii) < (iii): By Lemma 4.2 and (RQRAC2). O

14. The condition for (A, A*, A®) to be a Leonard triple

Let (A, A*) denote a Leonard pair on V that has QRacah type. Fix (a, b, ¢; ) € QRACeq Which
corresponds to (A, A*), and let A € End(V) be the corresponding element from Theorem 10.1. In
Corollary 13.9 we found necessary and sufficient conditions for A® to be multiplicity-free. In this

section we show that A® is multiplicity-free if and only if (A, A*, A®) is a Leonard triple.

Proposition 14.1. We have

0y ¢7 0
07 5
05 .
A* = 2 : (56)
- @h
0 0

where p is from Definition 13.2, the scalars {6;}{_, are from (35) and
of = b~ g (¢ — ¢ ) (g0 = ¢ (g = abeg =) (g — aTheg ) (57)

for1 <i<d.
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Proof. Let B denote the matrix on the right in (56). To show that A*” = B, it suffices to show that
A*"M = MB. Recall that A*! is the matrix on the right in (9). In order to show A*"M = MB, for
0 < i,j < d we show that the (i, j)-entry of A**M equals the (i, j)-entry of MB. In other words, it
suffices to show

6 = 6 IMij + ¢ir1Mis1j = ¢/ Mij1. (58)

To verify (58) we consider the following two cases: (I)j —i < 0; (II)j —i > 0.

Case (I): Each summand in (58) is zero so (58) holds.

Case (II): Evaluating the left-hand side of (58) using Lemma 4.1 and (20), (41) we find that it equals
M;; times

@7 — ¢ (g —acT g, (59)

Evaluating the right-hand side of (58) using (42), (57) we find that it also equals M;; times (59). Therefore
(58) holds. We have verified (58) in the cases (I), (I). The result follows. [

Lemma 14.2. Assume that A® is multiplicity-free. For 0 < i < d let 67 denote the scalar from (36) and let

Ef denote the primitive idempotent of A* associated with 95 Then (A* {E*}l 0s A% {Eg} o) is a Leonard
sysrem of QRacah type and corresponds to (b, c, a; q).

Proof. By Corollary 13.9, ¢? is not among ¢4~2, ¢4, ..., ¢*~24. By this and since (a, b, ¢; q) €

QRAC;eq, we have (x, y, z; q) € QRACeq for any permutationx, y, zofa, b, c.In particular (c, b, a; q) €
QRAC;¢q. Define

¢l£ — b d+l (q —i)(qi—d—l _ qd—H-l)(q—i _ abc—lqi—d—l)(q—i _ a—lbc—]qi—d—l)

for1 < i < d. Observe
(16510, 16710, (0f Yy (8511 (60)

is an element of PA-QRAC that corresponds to (c, b, a; q). Note that A°# is lower bidiagonal by Propo-
sition 13.7 and A*” is upper bidiagonal by Proposition 14.1. Moreover

(A*P)ii = 67, (A =6 (0<i<d),
(A*P)i i1 (A= @] (1 <i<d).

By this and Lemma 2.8, (A°?; {E 'Sp}l 0 A*P; {E*p}d o) is a Leonard system of QRacah type that has
parameter array (60). Therefore (A%°; {E{”}4_,; A**; {E/*}4_,) corresponds to (c, b, a; q). Since p is
a K-algebra isomorphism ® = (A%; {Es}l 0 A%; {E*} o) is a Leonard system of QRacah type that
corresponds to (c, b, a; q). Therefore ®* = (A*; {E*}l 0s A% {Eg} o) i IS a Leonard system of QRacah

type. By Lemma 8.2 the Leonard system &* corresponds to (b~ !, ’1 ,a~!; g~ 1), and also corresponds

to (b, c, a; q) by Corollary 7.8. 0J

Lemma 14.3. Assume that A® is multiplicity-free. For 0 < i < d let 6 denote the scalar from (36) and let

E; denote the primitive idempotent of A° associated with 98 Then (AE {ES}, —o0s A {El},:o) is a Leonard
system of QRacah type and corresponds to (c, a, b; q).

Proof. By Lemma 14.2 the Leonard pair (A*, A®) has QRacah type and corresponds to (b, ¢, a; q) €
QRAC;eq. Now by Theorem 10.1 there exists an element A¥ in End(V) such that A*, A®, AV satisfy the
Z3-symmetric Askey-Wilson relations, one of which is
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I.

qA*AS _ q—lAsA* +A\/ B (b + b—l)(c+ C—l) + (a + a—l)(qd—H 4 q—d—l)
¢ —q7? q+q!

Comparing this with (27) we find AY = A. We now apply Lemma 14.2 to A’ = A*, A* = A, A®’ = A,
d = b, b = c, ¢ = a, and obtain the desired result. O

Corollary 14.4. Assume that A® is multiplicity-free. For 0 < i < dlet 0 denote the scalar from (36) and let
E¢ denote the primitive idempotent of A° associated with 6f . Then (A; {Ei}d_o; A*; {EF}Lq; A {EF},)
is a Leonard triple system of QRacah type.

Proof. Immediate from Lemma 11.3, Definition 12.1, Lemmas 14.2 and 14.3. [
Theorem 14.5. With reference to Theorem 10.1, the following (i)-(iii) are equivalent.

(i) (A, A*, A®) is a Leonard triple on V.
(ii) A® is multiplicity-free.
(iii) c? is not among qg*4=2, q*4=4, ..., ¢*~%.

Suppose (i)-(iii) hold. For 0 < i < d let 6 denote the scalar from (36). Then the third eigenvalue sequence
of each Leonard triple system associated with (A, A*, A®) is either {6 }?Zo or {05_1-}?:0.

Proof. (i) = (ii): By Lemma 1.3.

(ii) = (i): By Corollary 14.4.

(ii) < (iii): By Corollary 13.9.

Suppose (i)-(iii) hold. By Corollary 14.4 there is a Leonard triple system W associated with (A, A*, A%)
that has the third eigenvalue sequence {6; }?ZO. By Definition 11.6 the associate class for (A, A*, A®) is
the (Z,)3-orbit containing W. Now the last assertion follows from the table above Definition 11.5. O

15. A set T-QRACG;eq
The following definition is motivated by Theorem 14.5.

Definition 15.1. Let T-QRAC.y = T-QRAC4(d, KK) denote the set of all 4-tuples (a, b, c; q) of scalars
in K that satisfy the following conditions (T-RQRAC1)-(T-RQRAC4).

(T-RQRAC1) a # 0, b # 0, c # 0, g # 0.

(T-RQRAC2) q* # 1for1 <i<d.

(T-RQRAC3) None of a?, b?, ¢ is among qu_z, qu_4, e, qz_Zd.

(T-RQRAC4) None of abc, a~'bc, ab™ "¢, abc™" is among q?~1, %3, ..., ¢' 9.

We observe that T-QRAC,q is a subset of the set QRAC,.q from Definition 7.1. Recall the D4 action
on QRACeq, from Lemma 8.1.

Lemma 15.2. The set T-QRAC;q is closed under the action of D4 on QRAC;eq.

Proof. Let(a, b, c; q) € T-QRACq.Itistoutine to checkeachof (a, b, c; q)*, (a, b, c; q)i, (a, b, c; q)ll
is contained in T-QRACq. The result follows since *, |, || generate D4. O

16. Classification of the Leonard triple systems of QRacah type

In this section we classify up to isomorphism the Leonard triple systems of QRacah type. We do this
as follows. Recall from Definition 12.2 that T-QRAC is the set of isomorphism classes of Leonard triple
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systems that have QRacah type. Recall the set T-QRACq from Definition 15.1. We display a bijection
7 : T-QRAGC;eq — T-QRAC.

Definition 16.1. Define a map 7 : T-QRAC;.q — T-QRAC as follows. Let (a, b, c; q) € T-QRACeq. By
Theorem 14.5 along with Lemmas 14.2 and 14.3 there exists a Leonard triple system of QRacah type

W= (A {E)gs A% (B )os A% (EFY)

that satisfies (i)—(iv) below.

(i) The Leonard system (A; {El}l O,A* {E*} 0) corresponds to (a, b, c; q).
(ii) The Leonard system (A*; {E*}l 0s A% {ES} _o) corresponds to (b, ¢, a; q).
(iii) The Leonard system (A%; {ES o As {Ez}zzo) corresponds to (c, a, b; q).
(iv) The elements A, A*, A® satisfy the Z3-symmetric Askey-Wilson relations (27)-(29).

Observe that W is unique up to isomorphism of Leonard triple systems. The map 7 sends (a, b, c; q)
to the isomorphism class of W in the set of all Leonard triple systems.

Definition 16.2. Referring to Definition 16.1 we say that W and (a, b, c; q) correspond via 7. Similarly,
we say that the Leonard triple (A, A*, A%) and (a, b, c; q) correspond via 7.

We are going to show that 7 is a bijection. Before we do this, we give a concrete description of
using matrices. Pick (a, b, ¢; q) in T-QRACyeq. Define {6;}, {6:}%, by (18), (19) and {¢;}L,, i},
by (20), (21). By Lemma 7.3,

(10}o, 167 Yo, {odis (Y1 ) (61)

is a parameter array of QRacah type and corresponds to (a, b, ¢; q). Let A (resp. A*) denote the lower
bidiagonal (resp. upper bidiagonal) matrix in Maty1 (K) with entries

Ai =6, AL =06] (0<i<a),
Aicr=1, Al ;=g 1<i<a.

For 0 < i < dletE;, Ef denote the primitive idempotents of A, A* associated with 6;, 6;* respectively.
By Lemma 2 8, (A; {E,}l 0 A% {Ef }f’zo) is a Leonard system that has parameter array (61). Therefore
the Leonard system (A; {E,}lzo; A*; {Ef ?:0) corresponds to (a, b, c; q). Define

G TA%A — gAA* N (@+a Hb+b)+(c+c D@ +q74 1)

A =
¢ —q? q+q7!

In concrete terms A° is the tridiagonal matrix in Maty 1 (K) with entries

go_ @ra DO+ e+ HE@ +a7 D 667 api— a7 g
! q+q! q+q! ¢ —q?

for0 <i < dand
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for 1 < i < d. By Theorem 10.1 the matrices A, A*, A® satisfy (27)-(29). By Corollaries 13.8 and 13.9
the matrix A® is multiplicity-free with eigenvalues

98 — Cq2i7d + C*lqdfzi (0 < l < d)

1

For 0 < i < dlet Ef denote the primitive idempotent of A° associated with 6. By Corollary 14.4

the sequence ¥ = (A; {Ei}fzo; A% {Ef ?:0; A% {EF }?:0) is a Leonard triple system of QRacah type. By

Lemma 14.2 the Leonard system (A*; {Ei*}?zo; A% {Ef}?zo) corresponds to (b, ¢, a; q). By Lemma 14.3

the Leonard system (A?; {Ef}f’zo; A; {Ei}?zo) corresponds to (c, a, b; q). Therefore the map 7 sends

(a, b, c; q) to the isomorphism class of W. This concludes our concrete description of 7.

In our classification we will make use of the following result.

Theorem 16.3 [2, Theorem 3.2]. Let (A; {E; ?:o; A% {Ef ?:o) denote a Leonard systemonV. Let X denote
the K-subspace of End (V) consisting of the X € End(V) such that both

EXEi =0 ifli—jl>1,
E;“XEf:O ifli—jl>1
for0 < i,j < d. Then the space X is spanned by
I, A, A%, AA*, A*A. (62)
Moreover (62) is a basis for X provided d > 2.
We now give our classification of the Leonard triple systems of QRacah type.
Theorem 16.4. The map w from Definition 16.1 is a bijection.
Proof. Let ¥ = (A; {E; ?:0; A%, {E;“}?ZO; A%, {Ef}?zo) denote a Leonard triple system on V that has
QRacah type. It suffices to show that there exists a unique element of T-QRAC,¢q that corresponds

to W via 7. Let {6;}L,, 107}y, {65}, denote the first, second, third eigenvalue sequences of ¥,
respectively. By Definition 12.1 there exist nonzero a, b, c, g € K that satisfy (34)-(36). Let

@ = (A (B} g A% (EFYL),
@ = (A% (B} g A% {EFYL ),
" = (A%; (E5)Lgs A {Ei) ).

By construction each of ®, ®’, ®” is a Leonard system of QRacah type. By Corollary 6.4 and Lemma 7.2
there exist nonzero scalars x, y, z in K such that each of

(a,b,x;q9), (b,c,y;q), (c,a,z;q)

is in QRACyeq and correspond to ®, &', ®” respectively. Moreover each of x, y, z is unique up to
inversion. By Theorem 16.3 there exist unique e, f, f*, g, g* € K such that

A® =el + fA+ fFA* + gAA™ + g*A™A. (63)

Let ¢; (1 < i < d) denote the scalar in K obtained by changing c to x in (20). Then {(pf}?zl is the first
split sequence of ®. Let § : End(V) — Matg41 (K) denote the natural map for ®. Recall that A” (resp.

A*”) is the matrix on the left (resp. right) in (9). Using this and (63) we find the matrix Aclis tridiagonal
with entries
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(Ao =+ 8074 +8°6], (64)

AF)ic1i = @i(f* + 801 + 8°6) (65)
for1 <i<dand

(A = e+f0; + [ 0] + 8O0 + @) + " (06 + pir1) (66)

for 0 < i < d. Applying Lemma 9.2 to (A°, A) and (c, a, z; q) the Askey-Wilson relations for (A®, A)
are

APA% — (@ + T HAAA + AA? + (¢* — ¢ 2)%A° = wA + 11, (67)
APA — (@ + G 2ATAAY + AR + (¢° — ¢ H)%A = wA® + 1, (68)
where

w=—@q—g D+ Na+a )+ @+ e +q74),
n=@-9¢ @ -aHa+aHe+z )+ c+c HE™ +q),
" =@-a )@ —qg)e+z N+ D+ @+a ) +q).

In what follows, when referring to (68), (67) we mean the relations obtained by applying f to (67), (68)
respectively. For convenience (64)—(66) will be used tacitly to evaluate A®Y.

We now find the values of e, f, f*, g, g*. Concerning the (2, 0)-entry of either side of (67), the
right-hand side is zero. We evaluate the left-hand side and by (RQRAC1), (RQRAC2) some factors in the
resulting equation are nonzero. Eliminating those factors we obtain

e+ (@ +14+q )¢ +a "¢ Df + kg +kg* =0, (69)
where

k=(a+a Db+b N+ x+x @ +q .
Similarly we evaluate (3, 1)-entry of either side of (67) and obtain

e+ (@ +14+q )(ag" " +a "¢ Nf +xg +kg* =0. (70)
Subtracting (69) from (70) we find

@ —q g —a ") =0. (71)

In the left-hand side of (71) the first term is nonzero by (RQRAC2) with i = 3 and the second term is
nonzero by (RQRAC3). Therefore f = 0. Now (69) becomes

e=—k(g+g). (72)

Similarly, under the natural map for ®* consider the (2, 0)-entry and (3, 1)-entry of either side of the
Askey-Wilson relation

A*ZAa _ (qz + q—Z)A*AsA* +A8A>k2 + (qZ _ q—2)2A8 = wA* + C*I
where

o =—@—q¢ H2b+b DN+ )+ @ +y HE +q ),
¢ =@-a @ - HO+y DO+ + c+cTHE +q7).
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One can show f* = 0. We now show that
g=—qg" o g=-q’g" (73)

To do this we divide the argument into the three cases: (A) ¢* # —1; (B)d > 4; (C)d = 3 and
4
q = —1.
Case (A): Concerning the (3, 0)-entry of either side of (68), the right-hand side is zero. We evaluate
the left-hand side and replace e by (72). By (RQRAC1) and (RQRAC2) some factors in the resulting
equation are nonzero. Eliminating those factors we obtain

(@ +q 2@ 'g+ag")qg+q 'g") =0. (74)

In the left-hand side of (74) the first term is nonzero since q* % —1. Therefore (73) holds.

Case (B): In the left-hand side of (74) the first term is nonzero by (RQRAC2) with i = 4. Therefore
(73) holds.

Case (C): Concerning the (2, 0)-entry of either side of (68), the right-hand side is zero. We evaluate
the left-hand side and replace e by (72). By (RQRAC1) and (RQRAC2) some factors in the resulting
equation are nonzero. Eliminating those factors we obtain

v(gg +q 'g")(q 'g +qg*) =0,

where v = 2(a +a~ ') — (b + b~ 1) (x + x~1). Similarly, under the natural map for ®* we consider
the (2, 0)-entry of either side of the Askey-Wilson relation

AEZA* _ (qz _I_q—Z)AsA*Aa +A*A82 + (qz _ q—Z)ZA* — wA® +¢I
where ¢ = (q— ¢ )@ — g H((c+cHy+y )+ b+bH(H! +¢g9")), and obtain

vi(ag+q'g) @ 'g +qg*) =0,

where v* = 2(b + b™") — (a + a V) (x + x~1). To get (73) we show that v # 0 or v* # 0 by
contradiction. By (RQRAC3) we have a> # —1 and b?> # —1. We use this to solve for b, xinv = 0
and v* = 0, and get that (b, x) is one of the following pairs:

(a’ 1)7 (a_151)a (_07_1)7 (_a_17_1)5

any of which contradicts (RQRAC4). This proves (73).
Combining (72) with (73) we find

2 (75)

o | xaa—a e ifg = —q’g*,
—«q '(q—q gt ifg=—q%
Concerning (68), the (0, 1)-entry and (1, 0)-entry of the right-hand side are equal to w (A¢%)g; and
w(Asu)lo, respectively. Therefore the (0, 1)-entry of the left-hand side multiplied by (A® 1)10 minus
the (1, 0)-entry of the left-hand side multiplied by (A°%)¢; is equal to zero. On the other hand, we
directly evaluate the difference and replace e, g by (75), (73) respectively. By (RQRAC1), (RQRAC2),
(RQRAC4) some factors in the resulting equation are nonzero. Eliminating those factors we get

gk (a2 _ =2 -1 ko2 =2\ o—1y _ ifo — _q2g*
'g(g(q qa)+q HE @ —qg°)—q )=0 ifg=—qg", (76)

g @ -aH+9E @ -gaH—g=0 ifg = —q2g*.



H.-w. Huang / Linear Algebra and its Applications 436 (2012) 1442-1472 1467

Ifg* = 0theng = 0by(73) and e = 0 by (75) hence A* = 0, a contradiction. Therefore g* # 0 and
so (76) yields

q —q .
g* = 2 -2 or g* = 2 -2 lfg = _q2g*7
q°=—q q :q (77)
g= o g = ifg=—q "
a—q a —q
Combining (73) with (75) and (77) we find (e, g, g*) is one of the following sequences:
_ -1 _ _ 1
O (Fr e e O (e e e)
q+q a —q a —q q+q a—q a —q
-1 -1
K q —q —K —q q
an ( , , ): ) ( , , )
q+a ' ¢ —q? ¢ —q? G+a ' ¢ -q? g7
By Corollary 7.8 the Leonard system & corresponds to
(a’ b’ X q)a ((_1)6107 (_1)db’ (_1)d+lx; _q)’
(a7 b9 xil; q)v ((_1)da» (_1)dbv (_])d+lel; _q)a (78)
@hbo x g, (D% (=) (=D =g,
(@', b xqh), (=D, (=), (=D —q7h)

and no other elements of QRAC.q. We now divide the argument into the cases (I)-(IV).

Case (I): Applying Theorem 10.1 to (a, b, x; q) or (a, b, x~'; q), the corresponding element in
End(V)is exactlyAg ByTheorem 14.5 the sequences (a, b, x; q), (a, b, x~'; q) are in T-QRAC;4. More-
over 0 = xq 2i—d —i—x‘lq —2iforo0 <i < dorff = qu_z’—l-x_lqz’_ for0 < i < d, and this implies
x = corx = ¢! respectively. Therefore (a, b, c; q) is in T-QRACeq and corresponds to ®. Moreover
A is the corresponding element in End(V) from Theorem 10.1. By Lemma 14.2 and Lemma 14.3 the
Leonard systems &’ and ®" correspond to (b, c, a; q) and (c, a, b; q), respectively. We have shown
that W and (a, b, c; q) correspond via 7. It is routine to check that each sequence in (78) doesn’t cor-
respond to W via it other than (a, b, c; q). Therefore (a, b, c; q) is the unique element of T-QRAC;¢q
that corresponds to W via 7.

Case (II): Applying Theorem 10.1 to ((—1)%a, (=1)4b, (=1)4*1x; —q) or ((—1)%a, (—1)9b,
(=)™ x~1; —q), the corresponding element in End(V) is exactly A®. By the similar argument as
case () we findx = —corx = —c ! and ((—=1)%, (—=1)?b, (—1)%c; —q) is the unique element of
T-QRAC;¢q that corresponds to ¥ via 7.

Case (I1): Applying Theorem 10.1to (a= ', b=, x~'; g Y or(a~!, b1, x; g~ 1), the corresponding
element in End(V) is exactly A®. By the similar argument as case (I) we findx = corx = ¢~! and
(a1, b1, c71; g7 1) is the unique element of T-QRAC;q that corresponds to W via 7.

Case (IV): Applying Theorem 10.1 to ((—1)%~ !, (=)=, (=1)4*F1x~1; —g~ ) or ((—1)%a"?,
(=T b1, (=1)¥*1x; —g1), the corresponding element in End(V) is exactly A?. By the similar
argument as () we findx = —corx = —c ! and (=)%Y, (=14~ 1, (=1)4c1; —¢~ 1) is the
unique element of T-QRAGC,.q that corresponds to W via 7. We have completed the argument for the
cases (I)-(IV). The result follows. [

In Theorem 16.4 we showed that 77 is a bijection. We now describe 7 !

Lemma 16.5. Let ¥ = (A; {E,}l 0 A%; {E*}, o A {Eg}d o) denote a Leonard triple system of QRacah
type. Let {9,}1 "o (6 }, 0- 16 } —o denote the first, second, and third eigenvalue sequences for W, re-
spectively. Let (a, b, c; q) denote the preimage with respect to m, for the isomorphism class of W. Then
(a, b, c; q) is the unique sequence of scalars in K that satisfies (27)—(29) and (34)-(36).
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Proof. We first show that (a, b, c; q) satisfies (27)-(29) and (34)-(36). The sequence (a, b, c; q) sat-
isfies (34), (35) by Definition 16.1(i) and satisfies (36) by Definition 16.1(ii). The sequence (a, b, c; q)
satisfies (27)-(29) by Definition 16.1(iv). Next we show that (a, b, c; q) are uniquely determined by
(27)-(29) and (34)-(36). Suppose we are given a sequence of scalars (x, y, z; t) in K that satisfies

tA*Aé‘ _ t*‘lAé‘A* + —1 7 _i_z*] + X +X7] td+1 + t*df‘l
fA= v+y ) )+ ( )( ) | (79)
t2 —t2 t+t1
and
0; = xt? =4 4 x4 0<i<d),
91‘* — ytZi—d +y71td72i (0 < i < d),
<i<

gf = z2i=d 4 ;=142

~
o
Q
~

We show (x,y, z; t) = (a, b, c; q). By Theorem 16.3 the elements A*A®, A°A*, I are linearly indepen-
dent. Comparing (27), (79) in this light, we find

-t =q"@—q?,
(e — %) =q(@ —q .

Solving the above two equations for t we find t = q. Now by Lemma 4.8, x = a. Similarly y = b and
z = c. The result follows. O

17. Twin pairs of Leonard triple systems

Definition 17.1. Let ¥ and ¥’ denote Leonard triple systems over K. We say that ¥ and W' are twins
whenever

(i) W and W’ have the same first eigenvalue sequence;
(ii) W and W' have the same second eigenvalue sequence;
(iii) W and W' have the same third eigenvalue sequence.

As we will see, there exist twin pairs of Leonard triple systems that are not isomorphic.

Lemma 17.2. Let ¥ = (A; {Ei}?zo; A*; {E,?“}fzo; A% {Ef}fzo) denote a Leonard triple system on V that
has QRacah type. Let | denote the antiautomorphism of End(V) that corresponds to the Leonard pair
(A, A*), in the sense of Definition 1.14. Suppose (a, b, ¢; q) € T-QRACeq corresponds to W via 7. Then
(@', b7, ¢ q7") € T-QRACGq corresponds to W via 7. Moreover W and W' are nonisomorphic
twins.

Proof. By construction W and W' are twins. It is routine to verify that (a=',b~!, ¢~ '; ¢~ 1) is in
T-QRACyeq according to Definition 15.1 and (a=', b=, ¢™1; g~ 1) corresponds to Ul vianw according
to Definition 16.1. By (T-RQRAC2) with i = 1 the sequences (a, b, c; q) and (a=', b~ 1, c~1; g7 1) are
different. Therefore W and W are not isomorphic by Theorem 16.4. The result follows. O

In this section we classify up to isomorphism all the twin pairs of Leonard triple systems that have
QRacah type. To obtain the classification we use the bijection 7 from Definition 16.1.

Definition 17.3. Let (a, b, ¢; q) and (d’, b, ¢’; ') denote two elements of T-QRAC.q. We call these
elements twins whenever the corresponding Leonard triple systems via 7t are twins in the sense of
Definition 17.1.
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Observe that twin is an equivalence relation. We now describe the equivalence classes of the twin
relation.

Theorem 17.4. Let (a, b, c; q) denote an element of T-QRAC;eq. Then the twins of (a, b, c; q) are displayed
below. There are two cases.

(i) Assume that none of abc, a~'bc, ab~'c, abc™ ' is among —q?~1, —q%3, ..., —q"~%. Then the
twins of (a, b, c; q) are

(a,b, ¢; q), (=D, (=1)%, (=1)%¢; —q),
(80)
((1_], b_lﬂ C_l; q_1)7 ((_1)da_17 (_1)db_17 (_1)dc_1; _q_])‘

(If K has characteristic two, then we interpret (80) having only two elements).
(ii) Assume that some of abc, a~'bc, ab~'c, abc™" is among —qd_l, —qd_3, R —ql_d. Then the
twins of (a, b, c; q) are

(a,b,c;q), (@b el h.

Proof. Let (x,y, z; t) € T-QRAC,q which is a twin of (a, b, c; q). Let ¥ and ¥’ denote Leonard triple
systems that correspond to (a, b, c; q) and (x, y, z; t) via 7, respectively. Applying Lemma 16.5 to W
and ¥’ we find

+a1d21= +X—1d21 (Oélgd),

qul d+b 1 d 2i — 217(1 _i_y*]tdfzi (0 < l < d),

+C—1d21: +Z—ld21 (Oglgd)
Solving the above three equations for x, y, z, t we find (x, y, z; t) isone ofthe sequences shown in (80).
If none of abc, a~'bc, ab—'c, abc™1is among —qd_l, —qd_3, e —ql then each sequence shown
in (80) is in T-QRAC;eq. If some of abc, a—'be, ab~'c, abc™! is among —qd 1, g3, —q' 1,
then among the sequences shown in (80) only (a, b, c; ) and (a~', b=, ¢~ '; g~') are in T QRACred

The result follows. [J

18. A (Z3)3 x S action on T-QRACyeq

In Theorem 16.4 we gave a bijection 7 from T-QRAC;4 to T-QRAC. In Lemma 12.3 we gave an action
of (Z3)? x S3 on T-QRAC as a group of automorphism. Via 7z ~! this action induces a (Z)3 x S3 action
on T-QRAC;g. In this section we describe the resulting (Z,)> x Sz action on T-QRAC,eq. As we will see,
it extends the D4 action on T-QRAC.4 that we obtained in Lemma 15.2.

Lemma 18.1. There exists a unique (Z5)> x Sz action on T-QRACyeq such that

(@bcig*=0b"a"cig"), (
(@bcigf =" b a g, (
@b,c;ql = (ab,c g, (83)
@b, c;)¥ = (a, b, c;q), (
(@b,c;¥ =(a ' bc;q (

forall (a, b, c; q) € T-QRACeq.
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Proof. Forall (a, b, c; q) € T-QRAC¢q4 the sequence on the rightin (81)-(85)is contained in T-QRAC¢q.
Define maps *, ¢, |, |, | from T-QRACeq to T-QRAC;eq such that (81)-(85) hold for all (a, b, c; q) € T-
QRAC;eq. One checks that %, €, |, |, | satisfy the relations (30)-(33). Therefore the desired (Z,)> x Ss
action exists. This (Z;)> x S3 action is unique since *, ¢, |, |, | generate (Z,)3 x S3. O

Lemma 18.2. Forallg € (Z,)3 x S; the following diagram commutes.

T-QRAC, .y T-QRAC
g g
T-QRAC, T-QRAC

s

Proof. Without loss we may assume that g is one of %, &, |, |, | . Fix (a, b, ¢; q) € T-QRACreq, and
let ¥ denote the Leonard triple system that corresponds to (a, b, c; q) via 7. It is routine to check that
W& and (a, b, c; q) correspond via 7t according to Definition 16.1. The result follows. [

In Lemma 15.2 we gave an action of D4 on T-QRAC;.¢. In Lemma 18.1 we gave an action of (22)3 X S3
on T-QRACrq. Comparing (24)-(26) and (81), (84), (85) we see that the action of (Z,)3 x S; on T-
QRAC;q4 extends the action of D4 on T-QRACeq.

19. Classification of Leonard triples of QRacah type

The goal of this section is to classify up to isomorphism the Leonard triples of QRacah type. Recall
the (Z5)3 x S3 action on T-QRAC;eq from Lemma 18.1.

Definition 19.1. Let T-QRACq/(Z>)? denote the set of all (Z)3-orbits on T-QRACeq.

Lemma 19.2. Let (a, b, c; q) denote an element of T-QRACyeq. The (Z)3-orbit containing (a, b, c; q)
consists of the eight elements

(a,b, c; q), (a',b,c;q), (a,b71, ¢ q), (a,b,c7 15 q),

(86)
@hb e, (@b lclhg, (@hbcle, (@b co.

Proof. Using (83)-(85) we find that the (Z,)3-orbit containing (a, b, c; q) consists of the sequences
shown in (86). By (T-RQRAC3) none of a2, b?, c? is equal to 1, so the sequences shown in (86) are
mutually distinct. O

Definition 19.3. We define a map t from T-QRACeq/ (Z5)? to the set of all isomorphism classes
of Leonard triples over K that have diameter d and QRacah type. Let (a, b, ¢; q) € T-QRACreq. Let
(A, A*, A®) denote the Leonard triple over K that corresponds to (a, b, ¢; q) via 7. The map t sends
the (Z,)3-orbit containing (a, b, c; q) to the isomorphism class of (A, A*, A®) in the set of all Leonard
triples. By Lemma 18.2 the map t is well-defined.

Theorem 19.4. The map t from Definition 19.3 is a bijection.
Proof. We first show that t is surjective. Let (A, A*, A®) denote a Leonard triple on V that has QRacah

type. By Theorem 16.4 the map i is surjective, so there exists an element (a, b, ¢; q) of T-QRACreq
that corresponds to (A, A*, A®) via 7. Therefore T is surjective. We now show that t is injective.
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Suppose we are given (a, b, ¢, q) and (a’, b/, ¢’; q') in T-QRAC}eq that correspond to the same Leonard
triple (A, A*, A®) via . We show that (a, b, c, q) and (d’, b, ¢’; q') are in the same (Z,)>-orbit. Let
W, U’ denote the Leonard triple systems which are associated with (A, A*, A®) and correspond to
(a,b,c,q), (d,b,c;q)vian, respectively. By Definition 11.6 there exists an element g in (Z,)> such
that &' = W8, By this and by Lemma 18.2 the Leonard triple system W’ and (a, b, c; q)® correspond
via 7. Since 7 is injective we see that (a’, b/, ¢’; ¢) = (a, b, c; q)8. We have shown that T is injective.
The result follows. [

Definition 19.5. For (a, b, ¢; q) € T-QRAGCq define

—

(@b,c;q)=@+a ', b+b"c+clg.
Let T—@?—A?red denote the set of sequences (aIc\;q) where (a, b, ¢; q) € T-QRACreq.

Definition 19.6. Observe that the map (a, b, c; q) (a,/b,?;q) induces a map T-QRAGeq/(Z2)> —
T-QRACeg Which we denote by &.

Theorem 19.7. The map & from Definition 19.6 is a bijection.

Proof. By construction £ is surjective. To show that & is injective, fix (a, b, ¢; q) € T-QRACyq and let
(x,y, z; t) € T-QRACq that satisfies

(*.y.2:t) = (a, b, ¢; q). (87)

Solving (87) for x, y, z, t we find that (x, y, z; t) is one of the sequences shown in (86). Now the map
& is injective in view of Lemma 19.2. The result follows. O

Combining Theorems 19.4 and 19.7 we find that the following three sets are in bijection:

e The set of isomorphism classes of Leonard triples over K that have diameter d and QRacah type.
e The set T-QRACeq/(Z>)3.

e The set T-QRAC¢q.

20. Comments

Let (A, A*, A®) denote a Leonard triple of QRacah type. We saw in Theorem 10.1 that A, A*, A® satisfy
the Zs-symmetric Askey-Wilson relations. We now mention some other relations that are satisfied
by A, A*, A€,

Proposition 20.1. Let (a, b, ¢c; q) € T-QRACyeq. Let (A, A*, A®) denote the Leonard triple over K that
corresponds to (a, b, c; q) via 7. Then V1 is equal to each of

GAAAS + PA2 + g 2A%2 & PAT? — qaA — g atAT — qatAS,
GASAA* + PA%2 4 g 2A2 & AT — qafAS — ¢ oA — qatAY,
GAAA + A 4 A2 4+ A% — qa A — ¢ Tt AT — qaA,
q—lA*AAs + q—ZA*Z +q2A2 + q—ZASZ _ q_loz*A* — qoA — q—lasAs’
q—lAsA*A + q—2A82 + qZA*Z +q_2A2 _ q—lasAa _ qoz*A* _ q_laA,
GIARSA* 4 q2A% + PAT2 4 g 2A%2 — g laA — gatA — g atAR,
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where

Y=0aq+q )’ =@+ —(@+a) = b+b) — ()
—@+a Hb+b D+ DN+

and

o = (b+b_1)(c+c_1) + (a+a—1)(qd+1 +q_d_-l)’
o =+ Hata )+ b+b @ +q ),
(x8 = (a +a_l)(b —+ b_l) + (C+ C—l)(qd+l +q_d_1).

Proof. Use the matrix forms for A, A*, A® displayed below Definition 16.2. I
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