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Abstract This study integrates an artificial neural network (ANN) and constrained differential
dynamic programming (CDDP) to search for optimal solutions to a nonlinear time-varying
groundwater remediation-planning problem. The proposed model (ANN-CDDP) determines
optimal dynamic pumping schemes to minimize operating costs and meet water quality
requirements. The model uses two embedded ANNs, including groundwater flow and contam-
inant transport models, as transition functions to predict groundwater levels and contaminant
concentrations under time-varying pumping. Results demonstrate that ANN-CDDP is a sim-
plified management model that requires considerably less computation time to solve a fine
mesh problem. For example, the ANN-CDDP computing time for a case involving 364 nodes is
1/26.5 that of the conventional optimization model.

Keywords Neural network . Constrained differential dynamic programming . Groundwater
quality . Optimization

1 Introduction

Ground water is a valuable water resource available on earth with diverse uses for domestic,
agricultural, and industrial purposes (Philbrick and Kitanidis 1998; Basagaoglu and Marino
1999; Feuillette et al. 2003; Chang et al. 2007; Chu and Chang 2009a; Chu and Chang 2010).
However, groundwater contamination occurs when man-made products such as gasoline, oil,
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waste disposal practices and chemicals mix with groundwater. To ensure sustainable ground-
water use, administrators must employ remediation policies such as the pump-and-treat (P&T)
method. The P&T method is primarily common and useful for decontaminating groundwater
with highly soluble pollutants by pumping out and treating contaminated groundwater (Chu and
Chang 2009b). Several studies have investigated the feasibility of coupling optimization
technique with groundwater flow and transporting simulation to design P&T systems (Chang
et al. 1992; McKinney and Lin 1994;Wang and Zheng 1998; Chang and Hsiao 2002; Chu et al.
2005; Chang et al. 2007). Significant advances over the past two decades apply optimized
ground water management (Gorelick et al. 1984; Jones et al. 1987; Yeh 1992; Ahlfeld et al.
1988; McKinney and Lin 1994; Chang and Hsiao 2002; Hsiao and Chang 2002; Hsiao and
Chang 2005; Chu and Chang 2010). However, the solution of the optimal groundwater
contamination problem is computationally difficult because the nonconvexities inherent in
the contaminant transport equation (Ahlfeld and Sprong 1998).

Strategic planning for groundwater remediation implicitly relies upon understanding the
physical processes involved. Optimal remediation design is based on groundwater flow and
pollutant transport simulation. Typical flow and pollutant transport models of contaminated
aquifers predict the effectiveness of a single prospective pumping strategy in P&T remedi-
ation (McKinney and Lin 1994; Chang and Hsiao 2002; Hsiao and Chang 2005). Solving
field-scale problems related to groundwater remediation design is time-consuming, as
hundreds to thousands of numerical simulation runs may be required for searching optimal
pumping strategies. However, the most well-calibrated simulation model is still a highly
idealized representation of the real-world system because of the difficulties concerning
accurate parameter estimation and simplifying model assumptions. One approach to save
design time is to simplify the simulation model as much as possible, while retaining enough
complexity so that it adequately reproduces system behavior.

Artificial neural network (ANN) which originated about several decades (McCulloch and
Pitts 1943), were inspired by a desire to emulate human learning. The ANN is an alternative
modeling and simulation tool and is proven to be highly effective for modeling nonlinear
problem (Samani et al. 2007; Feng et al. 2008; Yesilnacar et al. 2008; Banerjee et al. 2011).
Unlike traditional physical-based numerical models, an ANN often does not require explicit
quantification and characterization of physical properties and conditions and are not based
upon simplifying mathematical assumptions (Coppola et al. 2003a,b; Banerjee et al. 2011).
Moreover, ANN models provide useful results without costly calibration time (Daliakopoulos
et al. 2005; Feng et al. 2008). AnANN can effectively learn the system behavior of interest from
representative data (Yesilnacar et al. 2008). Previous studies demonstrated anANNmethodology
as a groundwater simulator in the optimization model. An ANN embedded within an optimiza-
tion model can accurately predict ground water state in response to management alternatives
(Rogers and Dowla 1994; Rao et al. 2005; Becker et al. 2006; Coppola et al. 2007; Chu and
Chang 2009a). Rogers and Dowla (1994) used an ANN- Genetic Algorithm (GA) methodology
to replace a traditional simulation-optimization model. The model used twenty pre-selected
extraction locations with steady-state pumping and searched for the subset of wells producing the
smallest volume of pumping water over a 40-year planning period. The ANN-GA methodology
optimizes the set of pumping patterns for meeting remediation objectives (Rogers et al. 1995).
Becker et al. (2006) coupled optimization and transport simulation models to three pump-and-
treat systems for real problems. They used ANN-derived state transition equations to replace
time-consuming simulation models in the optimization algorithm. Coppola et al. (2007) devel-
oped ANN with simulation data from a numerical ground water flow model developed for the
study area. The ANNs were embedded into a multiobjective linear optimization model to find a
compromise pumping policy that effectively balances the two conflicting objectives between
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water supply and wellfield vulnerability in the nearby contaminant area. Chu and Chang (2009a)
integrated the ANNs and constrained differential dynamic programming (CDDP) for a ground-
water resource-planning problem. The ANNs were used as surrogates of numerical models in
groundwater flow simulation.

The above studies consider the fixed rates of pumping in the design problem and lack the
insight between the dynamic operation, such as time-varying pumping rates, and operating
costs. Remediation systems require a dynamic simulation or nonlinear optimization model in
order to yield satisfactory results, unless the input assumptions justify a static system (Chang
et al. 2007). Applying an optimization technique such as GA and simulated annealing (SA)
to solve time-varying policies would dramatically increase required computational resources
(Mckinney and Lin 1994; Wang and Zheng 1998; Rao et al. 2003). Accommodating these
situations, an optimal dynamic groundwater remediation design is required to use con-
strained differential dynamic programming (CDDP) (Jones et al. 1987; Chang et al. 1992;
Culver and Shoemaker 1992). Furthermore, the CDDP significantly reduces working di-
mensionality of the algorithm over that of mathematical programming algorithms, by taking
advantage of the dynamic groundwater supply or water quality optimization problems
through stage-wise decomposition (Hsiao and Chang 2002). Accordingly, the CDDP
overcomes a serious limitation for conventional dynamic programming (DP) (Murray
and Yakowitz 1979; Jones et al. 1987) and is efficient for solving time-varying
management problems (Mansfield et al. 1998; Liu and Minsker 2001; Chang, et al.
2009). However, the computational work for CDDP model is proportional to the total
number of state variables (Liao and Shoemaker 1991; Mansfield et al. 1998; Chang,
et al. 2009). The significant increase in computational effort can be expected when
using a fine mesh rather than a coarse mesh due to the nonlinearity and dynamic
properties of this remediation strategy. Computational burdens that accompany field-
scale problems hinder using the CDDP in actual remediation projects (Liu and
Minsker 2001; Liu and Minsker 2002).

This study presents that the approach handles this optimization problem by effectively
combining ANNs with the CDDP. The algorithm (ANN-CDDP) is a CDDP embedded with
the ANNs. The ANN-CDDP computes optimal nonlinear time-varying pumping schemes to
minimize the cost while meeting water quality-constraints. The embedded ANNs predict and
evaluate system response, hydraulic head and contaminant concentrations under a series of
pumping policies.

2 Formulation of the Proposed Management Model

The management model attempts to minimize the total cost of remediation composed of
pumping and treatment system operating costs while meeting water quality-constraints
(Chang et al. 1992). The dynamic optimal planning concerns with how to operate in the
pumping wells at the most contaminated area. The remediation planning model is formulated
as follows:

min
uit ;t¼1;...;T

J ¼
X
i2I

XT
t¼1

a1u
i
t Li� � hitþ1

� �þ a2u
i
t

� � ð1Þ

subject to

xtþ1f g ¼ T xt; ut; tð Þ; t ¼ 1; 2; :::; T ð2Þ
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c j
N � cmax; j 2 Φ ð3Þ

P
i2I

uit � utotal; t ¼ 1; 2; . . . ; T ; i 2 I ð4Þ

umin � uit � umax; t ¼ 1; 2; . . . ; T ; i 2 I ð5Þ
where Eq. (1) represents the operating cost associated with network (I).The uit denotes
pumping rate at well I at time t and hitþ1 denotes hydraulic head at well I at time t+1.
Li�ðIÞ is the distance between the ground surface and the lower datum of the aquifer for each
well. The expression Li� � hitþ1 simply represents drawdown at pumping well i. a1 is the cost
coefficient for pumping the contaminated groundwater, a2 is the cost coefficient for the
pumped water treatment. Equation (2) represents the system dynamics relation in the
optimization and the transition equation. xt ¼ ht : ct½ �T represents the continuous state
variables representing hydraulic heads (ht) and solute concentrations (ct). In the study, the
ANNs are used as the transition equations in nonlinear dynamic optimization. Equation (3)
ensures the water-quality standard will be met at specified monitoring well j at the end of the
planning period (t0N). Equation (4) specifies the capacity constraint for the treatment plants.
The upper limit of Eq. (5) denotes each well capacity, while the lower limit can be applied to
avoid well installation that has small pumping rates, which are obviously infeasible. cmax

represents the maximum allowable concentration; utotal represents the maximum allowable
treatment capacity from all extraction wells; umin and umax denote the minimum and
maximum pumping rate for each well. I is an index set defining a pumping network ; Φ
represents the set of observation wells.

3 Integration of CDDP and ANN

A hybrid model that integrates the ANNs with the CDDP solves the dynamic contaminant
remediation problem as formulated by Eqs. (1) to (5). The following shows the procedure to
develop the ANN-CDDP model (Chu and Chang 2009a), explained in more detail:

Step 1: Create training data by case simulations

The procedure generates data from case simulations performed by using ISOQUAD.
ISOQUAD is a groundwater flow and contaminants transport simulation model for a
confined two-dimensional aquifer (Pinder 1978). The transport model includes changes of
contaminant concentration owing to advection, diffusion, dispersion, and the adsorption
isotherm of aquifer (Chu and Chang 2009b). Numerical scheme applied in the model is the
Galerkin finite element method for spatial integration and implicit finite difference for time
integration. In the study, the total available data has been divided into two sets, training and
validation set: 400 cases were used to train the ANNs, and 100 cases were used for
validation. Each case is a series of simulations during the planning periods based on random
pumping.

Step 2: Train ANNs to simulate hydraulic head and contaminant concentration

The ANN attempts simulation of brain (biological neural network). The network consists
of an interconnected group of artificial neurons and processes information using a connec-
tionist approach for computation. An ANN has two neural processing phases (Kumar 2004).
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Learning is a process of adapting connection weights in an ANN to produce desired outputs.
The recalling process attempts to retrieve information, based on weights obtained from the
learning process, and predicts output data of the new example.

htþ1ð Þ ¼ g1 ht; utð Þ; t ¼ 1; 2; . . . ;T ð6Þ

ðctþ1Þ ¼ g2 ct; ht; utð Þ; t ¼ 1; 2; . . . ;T ð7Þ
In this study, two ANNs perform as groundwater flow and pollutant transport state

transition equations, respectively (Fig. 1). Figure 1 (a) represents the groundwater flow
ANN model, where the input state vector includes head and pumping rate at time t and the
output state vector is the head at t+1. Equation (6) represents the the groundwater flow ANN
model. The dimension of input state vector in Eq. (6) is m+n and the output vector is n,
where n is the number of observation well and m is the number of pumping well. For
example, the groundwater flow ANN includes three inputs and two outputs if there are a
pumping well and two observation wells in the case. Figure 1 (b) shows the ANN model for
contaminant transport and indicates that the concentration at time t+1 is determined via the

h(t)

u(t)

h(t+1)

(a) 

c(t)

u(t)

c(t+1)

h(t)

(b)

Fig. 1 a Groundwater flow ANN
model (b) Contaminant transport
ANN model
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pumping rate, concentration, and hydraulic head at time t. Equation (7) is the input-output
function in the contaminant transport ANN model, where the output, concentration at time t+1
(ct+1), is a function of inputs, pumping rate (ut), concentration (ct) and hydraulic head (ht) at time
t. When predicting the concentration (ct+1) for t01…T, resulting from a pumping policy (ut), the
concentration (ct) and the hydraulic head required (ht) for t01…T in the contaminant transport
ANN, Eq. (7). The dimension of input state vector in Eq. (7) is 2 n+m and the dimension of
output state vector is n. For example, there are five inputs and two outputs in the pollution
transport ANN with one pumping well and two observations.

The back-propagation algorithm was used as the learning process in the multi-layer feed-
forward network (Tsai and Lee 1999; MATLAB 2000; Pijanowski et al. 2002). The ANNs are
trained using an ANN toolbox by the MATLAB 2000. In this model, a number of neurons are
arranged in an input layer, two hidden layers with ten hidden neurons, and an output layer in the
study. The activation functions (transfer function) for two hidden layers are hyperbolic tangents.
In general, an ANN learns much faster when activation function is represented by a hyperbolic
tangent (Negnevitsky 2002). Moreover, a network training function updates weight and bias
values according to the Levenberg-Marquardt optimization (Gill et al. 1981). The algorithm
will continue if the stopping criteria are not met. After training and validation, the ANNmodels
are embedded with CDDP.

Step 3: Embedding ANNs into CDDP and computing the optimal policy

The ANN-CDDP is a successive approximation technique for solving optimal control
problems, iteratively determining the optimal solution to the problem stated in Eqs. (1) to
(5). The objective function depends upon control and state variables with identical time
index (t). Equation (2) is the transition function to simulate system response induced by the
control policy, the groundwater flow and pollution transport ANN models (Eqs. (6) and (7))
The ANN-CDDP computes the optimal solution by resolving a series of quadratic problems,
the quadratic approximation of the original problem in Eqs. (1) to (5). Through the backward
and forward sweeps, the ANN-CDDP searches the optimal policy and determines the minimal
operating costs.

The CDDP algorithm is employed in the backward and forward sweeps to resolve
the series of sub-problems. In the backward sweep, an update control policy is
evaluated through solving a series of sub-problems that require the variable derivative
values (Chang et al. 1992; Hsiao and Chang 2002). The derivatives of the transition
equation (Eq. (2)), the ANN models (Eqs. (6) and (7)) in this study, are obtained by
chain rule (Dimopoulos et al. 1995; Chu and Chang 2009a). Derivative of transition
equation with respect to xt, ut is:

@T

@xt

� �
¼ @xtþ1

@xt

� �
¼

@htþ1

@ht
@htþ1

@ct
@ctþ1

@ht
@ctþ1

@ct

" #
ð8Þ

@T

@ut

� �
¼ @xtþ1

@ut

� �
¼

@htþ1

@ut
@ctþ1

@ut

" #
ð9Þ

For a multilayered network, the derivatives in the transition equation are derived by ANN
in the following (Chu and Chang 2009a).

@Ok

@Oi
¼

X
jn

X
jn�1

X
jn�2

� �
X
j1

wjn;k
@f netkð Þ
@netk

� wjn�1;jn �
@f netjn

� �
@netjn

� wjn�2;jn�1 �
@f netjn�1

� �
@netjn�1

. . .wi;j1 �
@f netj1

� �
@netj1

ð10Þ
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where Ok (i.e. ht+1, ct+1 in the algorithm) denotes the output for node k in the output layer; jn,
jn−1,…, and j1 denote the neural units in the nth, n−1th,…, and 1st hidden layer; Oi (i.e. ht,
ct, ut) denotes the input for node I in the input layer; f is transfer function;
netj ¼

P
i
wi;jOi � bj; j0k, jn, jn−1,…, and j1, wi,j denotes a connected weight between jth

node in the output layer with ith node in the input layer; bj represents bias value in the output
layer.

The algorithm in the forward sweep computes updated policy using feedback function
and performs the ANN to determine latter system state at each time step. Quadratic
programming is applied to solve the series of quadratic sub-problems for t01…T, forward
in time, and obtains the optimal policy. Notably, the computed optimal policy becomes the
nominal policy for the next iteration (Chang and Hsiao 2002; Chang et al. 2007). Since a
quadratic problem is only an approximation of the original problem, iterations are required.
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Fig. 2 Finite-element mesh, boundary conditions, and initial plume in Case 1

Table 1 Aquifer properties and
simulation parameters of cases Parameter Value

Hydraulic conductivity 4.31×10−4 m/s

Longitudinal dispersivity 70 m

Transverse dispersivity 3 m

Diffusion coefficient 1×10−1 m2/s

Storage coefficient 0.001

Porosity 0.2

Sorption partitioning coefficient 0.245 cm3/g

Media bulk density 2.12 g/cm3

Aquifer thickness 10 m

Ground elevation 120 m
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Moreover, Murray and Yakowitz (1979), Jones et al. (1987), and Chang et al. (1992)
provided a detailed discussion of the CDDP algorithm.

4 Results and Discussion

4.1 Case1: Comparison of the Results of Various Pumping Wells

This study performs numerical analyses on a hypothetical groundwater remediation problem
to verify effectiveness of the proposed methodology. The procedure adapted a groundwater
remediation problem from the example in Chang and Hsiao (2002). Figure 2 displays a
hypothetical confined aquifer with dimensions of 600 m by 1200 m to demonstrate algo-
rithm performance described above. The boundary conditions on the north and south sides
are no-flow boundaries for head and concentration. Constant-head boundaries with 22 m and
10 m are located on the west and east sides individually, and constant-concentration
boundaries with 0 mg/L are located on both sides. The aquifer properties and simulation
parameters are listed in Table 1. The initial peak concentration within the aquifer is 150 mg/
L, and the water quality goal at the end of five years must not exceed 0.5 mg/L at all the
observation wells. Twenty management periods are included in the procedure and each
period (Δt) is 91.25 days. The management model parameters associated with the con-
straints and cost coefficients are listed in Table 2.

Table 2 Management model
parameters and cost coefficients Parameter Value

Maximum allowable treatment capacity (utotal) 150 L/s

Maximum pumping rates (umax) 100 L/s

Minimum pumping rates (umin) 0 L/s

Maximum allowable concentration (cmax) 0.5mg/L

Cost coefficient a1 $1000 /(m3/s·Δt)

Cost coefficient a2 $40000 /(m3/s·Δt)

Period length (Δt) 91.25 day

Period number 20

1 2 4 6

3 5

Case 1-1a b

1 2 4 6

3 5

Case 1-2

Observation well Pumping well

Fig. 3 Remediation system design of Case 1-1 and Case 1-2
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Figure 3 shows the plan view of Case 1-1 with one pumping well (black triangle), eight
observations (open square) and Case 1-2 with two pumping wells and eight observations.
Owing to the symmetrical condition of this study, only six observation wells need to be
considered. The inputs and outputs of the ANNs depend on the information from pumping
and observation wells. In groundwater flow ANN, the input vector includes hydraulic heads
and pumping rate at time t and the output vector is the hydraulic heads at t+1. In the
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Fig. 4 Optimal pumping rates at each period in (a) case 1-1, (b) case 1-2
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contaminant transport ANN, the inputs are pumping rate, concentration, and hydraulic head
at time t and the outputs are the concentration at t+1. The typical processes of the ANN
parameters identification such as the hidden layer number and the neuron number are listed
in Negnevitsky (2002) and Kumar (2004). The following demonstrates the influence of
neuron number in the ANN. The contaminant transport ANN is more complicated than the
groundwater flow ANN, so the contaminant transport ANN is taken as the example for
demonstration. In the cases, the average CPU time for training cases is 531 s in two hidden
layers with five neurons and the ANN root mean squared error (RMSE) is 0.270 ppm. The
average CPU time for the cases is 3,210 s and the RMSE of the ANN with ten neurons in
two hidden layers is 0.106 ppm. The average CPU time for cases with twenty neurons is
9,590 s and the RMSE increases to 0.120 ppm. Thus, ten hidden neurons are used in the
network to ensure a balance of both accuracy and computation effort. The relative validation
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1262 L.-C. Chang et al.



errors with respect to average hydraulic head and concentration are less than 0.02% and
0.5% for the validation data sets, illustrating high predictive performance. Additionally, the
accuracy of the ANN for predicting hydraulic heads and concentrations will be demonstrated
with the following case studies.
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Fig. 6 Concentration at each period in (a) case 1-1, (b) case 1-2

Table 3 Comparison of ANN-CDDP and ISOQUAD-CDDP solutions in Case1

Pumping well
number

Optimal cost using
ANN-CDDP

Optimal cost using
ISOQUAD-CDDP

Relative error
(%)

Case 1-1 1 $69,652 $68,174 2.16

Case 1-2 2 $68,845 $68,533 0.45
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In Case 1-1 and Case 1-2, these cases are different in the well locations and numbers.
Optimal pumping rates in Case 1-1 and Case 1-2 are determined by ANN-CDDP, shown as
Fig. 4 (a) and (b). Hydraulic heads at each period are varied with pumping rate (Fig. 5 (a)
and (b)). Concentration variations during remediation period are shown in Fig. 6 (a) and (b).
The symbols represent hydraulic head and concentration of ANNs while the line represents
the ISOQUAD simulations under the same condition. Results show the ANN and ISO-
QUAD solutions for hydraulic head and concentration under the optimal pumping rate are
similar. For these cases, there is a good fit between the ANN and ISOQUAD. The ANN is
trained with the simulation data to predict ground water level at various locations under
variable pumping conditions (Coppola (2000)). The groundwater level at next time is
forecasted based on the management alternatives. The study demonstrates that an ANN
can be trained to accurately predict hydraulic head and concentration under pumping. The
results reveal that this ANN technique performs close to conventional simulations and
achieves an equally high degree of predictive accuracy. The ANN greatly simplifies the

1 2 3 4

Observation well Pumping well

Fig. 7 Plan view of Cases 2-1(blue), 2-2 (red) and 2-3 (green)

Table 4 Three case-study sizes
in Case 2 Number of

nodes
Number of
elements

Number of
state variables

Case 2-1 91 72 77

Case 2-2 187 160 165

Case 2-3 315 280 285
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complex dynamics inside when compared to using simulation models. Besides, optimal
operating cost in ANN-CDDP and ISOQUAD-CDDP is illustrated in Table 3. Proposed
model (ANN-CDDP) accuracy can be quantified when compared with ISOQUAD-CDDP
(Chang et al. 1992; Culver and Shoemaker 1992). The cost results demonstrate that relative
error is 2.16% or less. Therefore, the case verifies the feasibility of the ANN-CDDP. The
ANN-CDDP is an alternative for dynamic optimal groundwater quality management.
Furthermore, containing the contamination by removing contaminated ground water should
be a dynamic process. Dynamic policies which allow changing pumping policies as the
contaminant plume moves, would expectedly be more cost-effective than static policies
(Chang et al. 1992, 2007).The optimal remediation system is cost-effective and the time-
varying operation policy is allowed to change as the contaminant plume moves.

4.2 Case2: Comparison of the Influence of Various Domain Sizes

This study presents the optimal solutions for three hypothetical, isotropic, confined aquifers
with different dimensions: 600 m by 1200 m (Case2-1: blue), 1000 m by 1600 m (Case2-2:
red) and 1400 m by 2000 m (Case2-3: green). The three different domains with finite-
element mesh, along with one pumping well (black triangle) and four observation wells
(open square) are shown in Fig. 7. Table 4 lists the number of finite-element nodes and
elements in the cases. The boundary conditions, initial conditions, and time scale are the
same for both Case 1 and Case 2. The aquifer properties and simulation parameters also are
listed in Table 1.

The ANN training data are generated independently from the simulation results based on
different domain sizes. After training and validation, ANNs are embedded in CDDP and the
current study compares the present operating cost value under various cases between ANN-
CDDP and ISOQUAD-CDDP. Table 5 illustrates the operating costs of the optimal policy.
Results also show that the cost difference between ISOQUAD-CDDP and ANN-CDDP in
three various cases is 5.45% or less. However, Table 6 indicates that the difference of
computational work is related to domain size. Result provides information to support for the
hypothesis that computational work for the ISOQUAD-CDDP is proportional to O (Ns 3),

Table 5 Comparison of ANN-
CDDP and ISOQUAD-CDDP sol-
utions in Case2. Optimal operating
cost

ANN-CDDP ISOQUAD-CDDP Relative error (%)

Case 2-1 $104,454 $103,264 1.14

Case 2-2 $107,112 $103,099 3.75

Case 2-3 $109,221 $103,260 5.45

Table 6 Comparison of ANN-CDDP and ISOQUAD-CDDP solutions in Case2. CPU time (unit: Sec)

ANN-CDDP ISOQUAD-CDDP Ratio

Case 2-1 CPU time 84.37 (7) 33.22 (14) 1/0.4

CPU time each iteration 11.32 2.37 1/0.2

Case 2-2 CPU time 160.92 (15) 148.70 (13) 1/0.9

CPU time each iteration 10.62 11.90 1/1.1

Case 2-3 CPU time 130.57 (15) 1659.16(11) 1/12.7

CPU time each iteration 8.43 150.83 1/17.9

() iteration number
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where Ns is the total number of state variables (Mansfield et al. 1998). However, the ANN
including few representative state variables is applied as a response function for the aquifer
system. From the cases results, the computational loading for ANN-CDDP does not increase
with domain size. Particularly, case 2-3 presents a comparative table involving ISOQUAD-
CDDP and ANN-CDDP and shows that the latter saves significant computational time. The
ANN-CDDP computational time is as little as 1/17.9 when compared to the ISOQUAD-
CDDP.

4.3 Case3: A Fine Mesh Problem

This study presents the ANN samples obtained for a fine mesh problem with dimensions of
650 m by 1250 m to demonstrate the ANN-CDDP algorithm performance described below.
Figure 8 shows the finite-element mesh with 364 finite-element nodes and 336 active state
variables. The site includes four pumping wells (black triangle) and ten observation wells
(open square). Owing to the symmetrical condition of this study, only two pumping wells
and five observation wells should be considered. The boundary conditions on the north and
south sides are no-flow boundaries for head and concentration. Constant-head boundaries
with 42 m and 30 m are located on the west and east sides individually, and constant-
concentration boundaries with 0 mg/L are located on both sides. This study assumes the
initial condition of the hydraulic head distribution prior to pumping to be steady state. The
initial peak concentration within the aquifer is 120 mg/L, and the water quality goal at the
end must be limited to 0.5 mg/L at all observation wells. The planning horizon is divided

1 3 4 52

Observation well Pumping well

Fig. 8 Plan view of Case 3

Table 7 Comparison of ANN-CDDP and ISOQUAD-CDDP solutions in Case 3. Optimal operating cost

ANN-CDDP ISOQUAD-CDDP Relative error (%)

Optimal operating cost $462,906 $441,636 4.81%
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into twenty periods and the time between each period in the management model (Δt) is
10.2 days. The aquifer properties and simulation parameters are illustrated in Table 1.

ANN models are trained using the above-described procedures and then ANN-CDDP
finds the near-optimal solutions when compared to ISOQUAD-CDDP. Tables 7 and
8 illustrates the comparison of optimal policy cost and computational time between
ANN-CDDP and ISOQUAD-CDDP in Case 3. Results imply that the optimal operating
cost difference between ANN-CDDP and ISOQUAD-CDDP is 4.81%. Many research-
ers have successfully applied the ANN for regional groundwater level simulations in
the field data (Coppola et al. 2003b; Feng et al. 2008).The study incorporates the
ANNs into the CDDP and the system is reduced to few representative control points by
using the ANNs. Enforcing the computational time reduction in the design potentially
enhances comprehensive concerns in the dynamic decision process but increases a little
cost. However, the suggested pumping policy is a good reference and fast response for
decision making. Although the ANN-CDDP policy is not optimal, it is more compu-
tationally efficient than the traditional model. In the site operation, the model uncer-
tainty could be compensated by the observation data through feedback. A practical
remediation system requires the effective planning model for an appropriate usage. The
ANN-CDDP is a good choice because it reduces computational time each iteration by
as much as 1/26.5 compared to the time required by the ISOQUAD-CDDP in the case
of 364 nodes. Compared with previous studies, the multiscale method (Liu and Minsker
2001) reduces the computational time of each iteration by 0.53 in the case of 429
nodes; the sparsity (Mansfield et al. 1998) method reduces the computational time of
each iteration by 0.31 in the case of 500 nodes. Accordingly, it is demonstrated that
ANN-CDDP obtains better results than these methods. Comparison implies that the
ANN-CDDP computes optimal operating cost efficiently. Although the model error
increases slightly, computational time relating to ANN-CDDP remains economical in
the large-field case. Future work will consider applying the ANN to field-site cases in
the remediation planning.

5 Conclusions

This study proposes a novel optimization scheme for nonlinear dynamic groundwater quality
management. The proposed model integrates a neural network (ANN) with constrained
differential dynamic programming (CDDP) to determine optimal time-varying operations in
groundwater remediation planning. Specifically, a trained ANN is embedded with the
derivative-based CDDP optimization technique. Applying an ANN as a transition function
greatly simplifies the complex dynamics involved in simulation models. This study uses the
ANN-CDDP to determine dynamic optimal operating costs for a specified network. This
approach benefits groundwater remediation planning by training neural networks to predict

Table 8 Comparison of ANN-CDDP and ISOQUAD-CDDP solutions in Case 3. CPU time (unit: Sec)

ANN-CDDP ISOQUAD-CDDP Ratio

CPU time 133.375 (14) 10236.30 (40) 1/76.7

CPU time each iteration 9.65 255.90 1/26.5

() iteration number
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results based on a few representative wells. It is an efficient procedure for determining
dynamic pumping rates at each well, and its optimal operation strategy effectively controls
contaminant plumes.

The proposed methodology reduces the computational time and complexity of large-
field case compared to the conventional models. The computational time of the ANN-
CDDP for a case involving 364 nodes is 1/26.5 of the time required by the conven-
tional model (ISOQUAD-CDDP). Large-field problems may considerably increase the
number of state variables, greatly increasing the complexity of optimization. By
embedding ANN into the optimization model, the proposed methodology can handle
large-field problems using representative observed states, irrespective of domain sizes.
Future studies should apply field data to train the ANN, revealing the details of a real-
world remediation case.
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