# Fouling Mitigation by TiO<sub>2</sub> Composite Membrane in Membrane Bioreactors

Yu-Chun Su<sup>1</sup>; Chihpin Huang<sup>2</sup>; Jill Ruhsing Pan<sup>3</sup>; Wen-Pin Hsieh<sup>4</sup>; and Min-Chia Chu<sup>5</sup>

**Abstract:** Membrane bioreactors (MBRs) have attracted widespread attention in advanced water treatment because of their production of consistent and high-quality effluent. However, membrane fouling during operation has greatly hindered their application. Studies have suggested that a coating of TiO<sub>2</sub> nanoparticles on membranes may reduce membrane fouling by enhancing the hydrophilicity of the membrane. In this study, two membranes were coated with TiO<sub>2</sub> nanoparticles for membrane fouling mitigation. To evaluate the filtration performance of the TiO<sub>2</sub> composite membranes, a synthetic wastewater was prepared to model the municipal wastewater for the MBR operation. The mixed liquor from the MBR was used in the filtration test to evaluate the performance of the TiO<sub>2</sub> composite membrane. Filtration tests showed that membrane fouling was reduced substantially, which was attributable to the increased hydrophilicity of the membrane. Results also shows that optimal amount of coating is important in fouling mitigation. An ultrasonic washing test suggests that most of the TiO<sub>2</sub> particles were firmly coated on the surface of the composite membrane. **DOI: 10.1061/(ASCE)EE.1943-7870.0000419.** © *2012 American Society of Civil Engineers*.

CE Database subject headings: Fouling; Membranes; Biological processes; Reactors.

Author keywords: Fouling mitigation; Membrane bioreactor (MBRs); Membrane separation; Sol-gel; TiO<sub>2</sub>.

# Introduction

By combining an activated sludge reactor with a membrane unit, membrane bioreactors (MBRs) have emerged as promising solutions for wastewater treatment and reclamation. However, membrane fouling in MBRs has restricted their widespread application because it leads to decreased permeate flux or increased transmembrane pressure, thus requiring frequent membrane cleaning and replacement (Chang et al. 2002). Many strategies have been proposed to solve this problem, including physical or chemical cleaning (Liao et al. 2004), optimization of membrane characteristics (Yamato et al. 2006), optimization of operating conditions (Guglielmi et al. 2007), and optimization of biomass characteristics (Pan et al. 2010). Membranes with hydrophobic characteristics are prone to membrane fouling because of the hydrophobichydrophobic inter action between solutes, microbial cells, and membrane materials (Choi et al. 2002; Yu et al. 2005). Hydrophilic

<sup>5</sup>Master Student, Institute of Environmental Engineering, National Chiao Tung Univ., Hsinchu, Taiwan. E-mail: fionachiaaa@gmail.com

Note. This manuscript was submitted on November 26, 2010; approved on April 28, 2011; published online on April 30, 2011. Discussion period open until August 1, 2012; separate discussions must be submitted for individual papers. This paper is part of the *Journal of Environmental Engineering*, Vol. 138, No. 3, March 1, 2012. ©ASCE, ISSN 0733-9372/2012/3-344–350/\$25.00.

modification of the membrane surface has therefore been proposed to reduce membrane fouling in MBRs.

Membrane modification with  $TiO_2$  has become an alternative for reducing membrane fouling because of its photocatalytic effect and high hydrophilicity. The  $TiO_2$  thin-film-composite membrane was first developed by Kwak et al (2001) and Kim et al (2003), but a degree of antibacterial fouling potential with ultraviolet (UV) light illumination was demonstrated. Recently, Madaeni and Ghaemi (2007) also reported that under UV irradiation,  $TiO_2$  coating on reverse osmosis (RO) membranes could reduce membrane fouling resulting from photocatalysis and superhydrophilicity. Bae and coworkers investigated fouling mitigation in MBR systems by modifying membranes with  $TiO_2$  nanoparticles (Bae and Tak 2005a, Bae et al. 2006). Polysulfone- $TiO_2$  and polyether sulfone- $TiO_2$  composite ultrafiltration membranes have been effective in reducing fouling when filtering bovine serum albumin and polyethylene glycol, respectively (Luo et al. 2005; Yang et al. 2007).

TiO<sub>2</sub> composite membranes have been prepared from two TiO<sub>2</sub> materials. Most TiO<sub>2</sub> composite membranes have been made by dip-coating involving the use of acidic TiO<sub>2</sub> colloidal sol (pH 1.5) (Luo et al. 2005; Bae and Tak 2005b; Bae et al. 2006; Kwak et al. 2001; Kim et al. 2003), which may damage the membrane. Madaeni and Ghaemi (2007) have tried to coat a membrane by using a commercial TiO<sub>2</sub> powder, P25, from Degussa. However, the TiO<sub>2</sub> particles were found easily detached from the membrane surface because of the weak adsorption between TiO<sub>2</sub> particles and the membrane.

In this research, a neutral sol was prepared containing 1% TiO<sub>2</sub> nanoparticles by chemical coprecipitation—peptization for a TiO<sub>2</sub> composite membrane. The particle size and crystal structure of the synthesized TiO<sub>2</sub> particles were characterized by use of a transmission electron microscope (TEM) and X-ray diffraction (XRD). Surface morphology and hydrophilicity of the composite membranes were studied by field-emission scanning electron microscopy (FE-SEM) and contact angle goniometer. The membrane dip-coated with the neutral sol to form the TiO<sub>2</sub> composite

<sup>&</sup>lt;sup>1</sup>Postdoctoral Fellow, Disaster Prevention and Water Environment Research Center, National Chiao Tung Univ., Hsinchu, Taiwan. E-mail: harrysu.ev92g@nctu.edu.tw

<sup>&</sup>lt;sup>2</sup>Professor, Institute of Environmental Engineering, National Chiao Tung Univ., Hsinchu, Taiwan (corresponding author). E-mail: cphuang@ mail.nctu.edu.tw

<sup>&</sup>lt;sup>3</sup>Professor, Dept. of Biological Science and Technology, National Chiao Tung Univ., Hsinchu, Taiwan. E-mail: jrpan@mail.nctu .edu.tw

<sup>&</sup>lt;sup>4</sup>Postdoctoral Fellow, Disaster Prevention and Water Environment Research Center, National Chiao Tung Univ., Hsinchu, Taiwan. E-mail: wp.hsieh@msa.hinet.net

membrane was characterized by X-ray photoelectron spectroscopy (XPS). The fouling mitigation by the  $TiO_2$  composite membranes made from acidic  $TiO_2$  sol was examined and compared with that made from neutral  $TiO_2$  sol.

#### Materials and Methods

# Preparation and Characterization of Nanosized TiO<sub>2</sub> Particles

The neutral TiO<sub>2</sub> sol was prepared by a chemical coprecipitizationpeptization method, as described in a previous study (Huang et al. 2007). Ammonium hydroxide (NH<sub>4</sub>OH) was dropped into a 1-M titanium tetrachloride (TiCl<sub>4</sub>) solution to form Ti(OH)<sub>4</sub>. The yellow, transparent TiO<sub>2</sub> sol (1 wt% of TiO<sub>2</sub>) formed after 2-h peptization with H<sub>2</sub>O<sub>2</sub> (10%) and 24-h heating at 95°C. The prepared TiO<sub>2</sub> sol remained homogeneous for a long time without any noticeable sedimentation.

The acidic TiO<sub>2</sub> colloidal solution was prepared from the controlled hydrolysis of titanium tetraisoproposide, Ti(OCH(CH<sub>3</sub>)<sub>2</sub>)<sub>4</sub> (Choi et al. 1994). A sample of 1.25 ml Ti(OCH(CH<sub>3</sub>)<sub>2</sub>)<sub>4</sub> (Aldrich, 97%) was mixed with 25 ml absolute ethanol. The solution was added drop by drop to 250 ml of distilled water (4°C), followed by pH adjustment to 1.5 with nitric acid. The mixture was stirred overnight until it was clear.

The crystal structure of TiO<sub>2</sub> particles was characterized by XRD with use of a Mac Science MXP-18 X-ray diffractometer and Cu  $K_{\alpha}$  (voltage: 30 kV; current: 20 mA;  $\lambda = 0.154056$  nm) radiation. The particle-size of TiO<sub>2</sub> was determined by use of a Philip TEM (Philip CM-200 TWIN) at 200 kV. Particle size distribution of TiO<sub>2</sub> particles was measured by use of a dynamic light-scattering particle-size distribution analyzer (Zetasizer Nano ZS, Malvern, United Kingdom).

# Preparation of TiO<sub>2</sub> Composite Membranes

Two microfiltration membranes, cellulose acetate (CA) and mixed cellulose ester (MCE) membranes (Advantec MFS, Inc.) were chosen. Both have a nominal pore size of 0.2  $\mu$ m. They were cut into a circle of 26.42 cm<sup>2</sup> to fit the experimental device. The virgin membrane was dipped in the TiO<sub>2</sub> sol for 10 min. Then the membrane was washed with distilled water and put into an oven at 50°C for 1 h. To investigate the effect of the TiO<sub>2</sub> amount on membrane fouling mitigation, the aforementioned coating procedure was performed one, two, and three times, respectively.

## Characterization of Morphology and Chemical Composition of the Membrane Surface

The surface topography of the  $TiO_2$  composite membrane was observed with use of a JEOL JSM-6700F FE-SEM.

The chemical composition of the membrane surface and the relative atomic concentrations of the individual elements were determined by XPS (Thermo VG-Scientific, United Kingdom) with a monochromatized  $K_{\alpha}$  X-ray beam at 3.8 kW generated from an Al rotating anode. The reference to calibrate the binding energies was C 1s (284.8 V).

The contact angle goniometer (MagicDroplet Model 100, Future Digital Scientific) was used to characterize the hydrophilicity of the composite membranes by the sessile drop method. Contact angles were determined by taking the average of three measurements.

## Fouling Test of the Composite Membranes

The membrane fouling tests for the composite membranes involved use of a stirred cell system (Fig. 1). The cell has a working volume of 200 mL and an effective membrane filtration area of 26.42 cm<sup>2</sup>. The system can filter samples up to 4 L. The activated sludge used as the feed of the fouling test was taken from a 30-L submerged MBR system with a synthetic municipal wastewater influent. A synthetic feed was prepared to simulate the municipal wastewater, and the composition was as follows: sodium acetate, 210.58 mg/L; starch, 12.5 mg/L; beef extract, 20.83 mg/L; NH<sub>4</sub>Cl, 55.83 mg/ L; KH<sub>2</sub>PO<sub>4</sub>, 12.83 mg/L; MgSO<sub>4</sub>. 7H<sub>2</sub>O, 29.58 mg/L; CaCl<sub>2</sub>, 6.08 mg/L; FeSO<sub>4</sub>. 7H<sub>2</sub>O, 7.25 mg/L; CuCl<sub>2</sub>. 2H<sub>2</sub>O, 0.03 mg/L; MnCl<sub>2</sub>. 4H<sub>2</sub>O, 0.05 mg/L; ZnSO<sub>4</sub>. 7H<sub>2</sub>O<sub>2</sub>, 0.06 mg/L; CoCl<sub>2</sub>. 6H<sub>2</sub>O, 0.01 mg/L; Na<sub>2</sub>MoO<sub>4</sub>. 2H<sub>2</sub>O, 0.01 mg/L; H<sub>3</sub>BO<sub>3</sub>, 0.01 mg/L; and KI, 0.01 mg/L. The sample in the filtration cell was stirred at a constant rate for the duration of the experiment, and the data were automatically logged into a computer. The filtration experiments were carried out at 0.3-bar constant pressure maintained by a nitrogen cylinder.

A resistance-in-series model was used to assess the degree of membrane fouling

$$J = \frac{\Delta P_T}{\mu R t} \tag{1}$$

where J = permeate flux (m<sup>3</sup>/m<sup>2</sup>s);  $\Delta P_T$  = transmembrane pressure (Pa);  $\mu$  = viscosity of the permeate (Pa s); and  $R_t$  = total filtration resistance (m<sup>-1</sup>).

# Ultrasonic Washing of TiO<sub>2</sub>-Laden Membrane

To evaluate the stability of  $TiO_2$  coating on the membrane, ultrasonic washing (40 KHz) was used. The relative atomic concentrations of elements on the membrane surface were



Fig. 1. Schematic diagram of the dead-end stirred cell system

quantified by XPS. The relative atomic concentrations of the individual elements can be calculated as follows:

$$C_i = \frac{A_i/S_i}{\sum_j^m A_j/S_j} \tag{2}$$

in which  $A_i$  is the photoelectron peak area of the element *i*,  $S_i$  is the sensitivity factor for the element *i*, and *m* is the number of the elements in the sample.

# **Results and Discussion**

#### Particle Size and Crystal Structure of Synthesized TiO<sub>2</sub>

The structures of the  $TiO_2$  particles synthesized in neutral and acidic colloidal sol were directly observed by TEM. The black





**Fig. 2.** Transmission electron microscopy micrographs of the  $TiO_2$  nanoparticles: (a) neutral sol; (b) acidic sol

spots displayed in Fig. 2 are the synthesized  $\text{TiO}_2$  in neutral and acidic sol. All  $\text{TiO}_2$  particles were < 10 nm regardless of the synthetic method used. Zetasizer further confirmed that most  $\text{TiO}_2$  particles synthesized in neutral sol were < 10 nm (Fig. 3).

TiO<sub>2</sub> exists in three crystalline phases: anatase, rutile, and brookite. Rutile is thermodynamically stable, and the other two are metastable. The XRD diffraction pattern of the TiO<sub>2</sub> nanoparticles revealed the  $2\theta$  of the eminent peaks as 25.24° for anatase and 27.46° for rutile (Fig. 4). Therefore, the TiO<sub>2</sub> nanoparticles synthesized in acidic sol contained both anatase and rutile, which differs from results by Luo et al. (2005), Kwak et al. (2001), and Kim et al. (2003), who showed synthesized TiO<sub>2</sub> particles composed entirely of anatase. Thus, the acidic method may result in more than one mineral phase. However, the TiO<sub>2</sub> nanoparticles synthesized in neutral sol were composed entirely of anatase.



**Fig. 3.** Particle-size distribution of  $TiO_2$  nanoparticles in neutral sol as determined by a dynamic light-scattering size distribution analyzer



**Fig. 4.** X-ray diffraction patterns of the synthesized  $TiO_2$  nanoparticles: (a) acidic sol; (b) neutral sol



**Fig. 5.** X-ray photoelectron spectroscopy spectra for the cellulose acetate (CA)-TiO<sub>2</sub> composite membrane: (a) C; (b) O; (c) Ti

**Table 1.** Contact Angle of the Virgin Membrane and the Cellulose Acetate (CA)-TiO2 Composite Membranes

|                          | Contact angle (°) |
|--------------------------|-------------------|
| Virgin membrane          | 89.13             |
| Composite-1 <sup>a</sup> | 80.72             |
| Composite-2              | 21.18             |

<sup>a</sup>Composite membrane with a single coating of neutral TiO<sub>2</sub> sol.

# Surface Characterization of the Composite Membrane

The coating of  $TiO_2$  nanoparticles on the surface of the composite membrane was confirmed by XPS. Fig. 5 shows XPS spectra of the CA –  $TiO_2$  composite membrane. The electron binding energies of



**Fig. 6.** Fouling mitigation patterns of the virgin and the  $TiO_2$  composite membrane: (a) CA composite membrane; (b) mixed cellulose ester composite membrane



**Fig. 7.** Flux decline of the virgin and the CA-TiO<sub>2</sub> composite membrane (coated with acidic TiO<sub>2</sub> sol)

JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / MARCH 2012 / 347



**Fig. 8.** Antifouling ability of CA-TiO<sub>2</sub> composite membranes with different dip-coating times in neutral TiO<sub>2</sub> sol (Composite-1, CA composite membrane with one coating; Composite-2, CA composite membrane with two coatings; Composite-3, CA composite membrane with three coatings)

the constituent elements were 284.6 eV for C 1s, 530.1 eV for O 1s, 464 eV for Ti  $2p_{1/2}$ , and 458.5 eV for Ti  $2p_{3/2}$ . The major constituents of the TiO<sub>2</sub> composite membranes are H, C, O, and Ti. Because XPS is insensitive to H, only C, O, and Ti can be detected. The XPS spectra of the CA-TiO<sub>2</sub> composite membrane confirmed

that  $TiO_2$  was successfully coated on the membrane by the dipcoating method.

Table 1 shows contact angles of  $89.13^{\circ}$  for the virgin membrane and the TiO<sub>2</sub> composite membranes. After the membrane was coated once and three times with TiO<sub>2</sub> particles, the contact angles of the TiO<sub>2</sub> composite membranes decreased to  $80.72^{\circ}$  and  $21.18^{\circ}$ , respectively, which indicates the increase in hydrophilicity by the immobilization of TiO<sub>2</sub> nanoparticles on the membrane surface (Steen et al. 2002).

## Fouling Mitigation of the Composite Membranes

The CA and MCE membranes were made into  $\text{TiO}_2$  composite membranes by coating with neutral  $\text{TiO}_2$  sol to evaluate the antifouling ability of the modified membranes. Fig. 6(a) shows the flux declines for the CA membrane and CA-TiO<sub>2</sub> composite membrane, and Fig. 6(b) shows them for the MCE membrane and MCE-TiO<sub>2</sub> composite membrane. The CA-TiO<sub>2</sub> composite membrane showed better antifouling ability than did the virgin membrane, whereas TiO<sub>2</sub> coating had no effect on fouling mitigation of the MCE membrane.

Fig. 7 shows the flux declines of the virgin CA membrane and the CA-TiO<sub>2</sub> composite membrane dip-coated in acidic TiO<sub>2</sub> sol; TiO<sub>2</sub> coating mitigated fouling. Results from Figs. 6 and 7 suggest that membrane modification can be a simple, effective way to reduce membrane fouling. To avoid the potential hazard of acidic TiO<sub>2</sub> sol on membrane, neutral sol was used for subsequent study.



(a)

(b)



**Fig. 9.** Scanning electron microscopy micrographs: (a) virgin CA membrane; (b) CA composite membrane coated once with neutral  $TiO_2$  sol; (c) CA composite membrane coated three times with neutral  $TiO_2$  sol



**Fig. 10.** Pure water flux and permeability of the virgin membrane and the  $TiO_2$  composite membranes

The membrane was dip-coated in TiO<sub>2</sub> sol for various times to determine the optimal amount of TiO<sub>2</sub> particles on the membrane surface for the best fouling mitigation. Fig. 8 illustrates the filtration resistance for different coatings. Although a second coating further improved the filtration, three coats reversed the effect. Increasing the amount of TiO2 particles on the membrane surface by increasing the number of coats ameliorated membrane fouling before a critical point was reached. SEM micrographs of the surface topography of the virgin membrane and the TiO<sub>2</sub> composite membranes strongly suggest that the higher filtration resistance of the three-coated membrane was due to blocking the membrane pores (Fig. 9). The virgin CA membrane shows a characteristic spongelike structure. The surface of the CA-TiO<sub>2</sub> composite membrane coated once by neutral TiO<sub>2</sub> sol was covered with  $TiO_2$  in nodular shapes, but with a three coats, the surface pores had become severely blocked [Fig. 9(c)]. The loss of pores on the three-coated composite membranes contributed to the increased filtration resistance, as reflected in the pure water flux and the permeability of the virgin membrane and the TiO<sub>2</sub> composite membranes (Fig. 10). Therefore, the amount of  $TiO_2$  on the membrane surface must be accurately controlled to obtain maximal antifouling effect.

# Stability of TiO<sub>2</sub> Particles on Composite Membranes

Table 2 summarizes the relative atomic concentrations of elements remaining on the membrane surface after various ultrasonic washings. After ultrasonic washing for 3 min, the relative atomic concentration of titanium element decreased from 52.6 to 27.4%. No significant further reduction of Ti was observed with longer washing. Therefore, loosely attached TiO<sub>2</sub> particles were lost in the first

**Table 2.** Relative Atomic Concentrations of Elements on the  $TiO_2$ Composite Membrane Surface under Various Ultrasonic WashingConditions

|                                    | Relative atomic concentration (percentage) |      |      |
|------------------------------------|--------------------------------------------|------|------|
| Sample <sup>a</sup>                | С                                          | 0    | Ti   |
| Freshly prepared                   | 8.3                                        | 39.1 | 52.6 |
| After ultrasonic washing for 3 min | 15.3                                       | 57.3 | 27.4 |
| 30 min                             | 14.7                                       | 55.1 | 30.2 |
| 1 h                                | 16.5                                       | 61.9 | 21.6 |

<sup>a</sup>Analysis was performed for the TiO<sub>2</sub> composite membrane.

couple of minutes of ultrasonic washing. Most  $TiO_2$  particles were tightly bound onto the membrane even after vigorous membrane cleaning by ultrasonic washing.

# Conclusions

This study concludes the following:

- 1. Membrane fouling is reduced by TiO<sub>2</sub> coating on the surface of CA membrane.
- 2. Both acidic TiO<sub>2</sub> sol and neutral TiO<sub>2</sub> sol particles are effective in modification of CA membranes for fouling reduction.
- 3. TiO<sub>2</sub> coating enhances the hydrophilicity of the membrane surface and the fouling mitigation.
- 4. The amount of TiO<sub>2</sub> coating must be optimized to mitigate membrane fouling.
- Dip-coating the membrane in neutral TiO<sub>2</sub> sol provides stable fixation of TiO<sub>2</sub> particles on the membrane surface even after rigorous ultrasonic washing.

## Acknowledgments

The authors acknowledge financial support from the National Science Council of the Republic of China (Project No. 96-2628-E-009-006-MY3).

#### References

- Bae, T. H., Kim, I. C., and Tak, T. M. (2006). "Preparation and characterization of fouling-resistant TiO<sub>2</sub> self-assembled nanocomposite membranes." J. Membr. Sci., 275(1–2), 1–5.
- Bae, T. H., and Tak, T. M. (2005a). "Effect of TiO<sub>2</sub> nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration." *J. Membr. Sci.*, 249(1–2), 1–8.
- Bae, T. H., and Tak, T. M. (2005b). "Preparation of TiO<sub>2</sub> self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system." *J. Membr. Sci.*, 266(1–2), 1–5.
- Chang, I. S., Le Clech, P. L., Jefferson, B., and Judd, S. (2002). "Membrane fouling in membrane bioreactors for wastewater treatment." *J. Environ. Eng.*, 128(11), 1018–1029.
- Choi, J. G., Bae, T. H., Kim, J. H., and Randall, A. A. (2002). "The behavior of membrane fouling initiation on the crossflow membrane bioreactor system." J. Membr. Sci., 203(1–2), 103–113.
- Choi, W., Termin, A., and Hoffmann, M. R. (1994). "The role of metal ion dopants in quantum-sized TiO<sub>2</sub>: Correlation between photoreactivity and charge carrier recombination dynamics." *J. Phys. Chem.*, 98(51), 13669–13679.
- Guglielmi, G., Chiarani, D., Judd, S. J., and Andreottola, G. (2007). "Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment." *J. Membr. Sci.*, 289(1–2), 241–248.
- Huang, C. P., Hsieh, W. P., Pan, J. R., and Chang, S. M. (2007). "Characteristics of an innovative TiO<sub>2</sub>/Fe<sup>0</sup> composite for treatment of azo dye." *Sep. Purif. Technol.*, 58(1), 152–158.
- Kim, S. H., Kwak, S. Y., Sohn, B. H., and Park, T. H. (2003). "Design of TiO<sub>2</sub> nanoparticle self-assembled aromatic polyamide thin-filmcomposite (TFC) membrane as an approach to solve biofouling problem." *J. Membr. Sci.*, 211(1), 157–165.
- Kwak, S. Y., Kim, S. H., and Kim, S. S. (2001). "Hybrid organic/inorganic reverse osmosis (RO) membrane for bacterial anti-fouling: 1. Preparation and characterization of TiO<sub>2</sub> nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane." *Environ. Sci. Technol.*, 35(11), 2388–2394.
- Liao, B. Q., Bagley, D. M., Kraemer, H. E., Leppard, G. G., and Liss, S. N. (2004). "A review of biofouling and its control in membrane separation bioreactors." *Water Environ. Res.*, 76(5), 425–436.

JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / MARCH 2012 / 349

- Luo, M. L., Zhao, J. Q., Tang, W., and Pu, C. S. (2005). "Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by selfassembly of TiO<sub>2</sub> nanopaticles." *Appl. Surf. Sci.*, 249(1–4), 76–84.
- Madaeni, S. S., and Ghaemi, N. (2007). "Characterization of self-cleaning RO membranes coated with TiO<sub>2</sub> particles under UV irradiation." *J. Membr. Sci.*, 303(1–2), 221–233.
- Pan, J. R., Su, Y. C., Huang, C. P., and Lee, H. C. (2010). "Effect of sludge characteristics on membrane fouling in membrane bioreactors." *J. Membr. Sci.*, 349(1–2), 287–294.
- Steen, M. L., Jordan, A. C., and Fisher, E. R. (2002). "Hydrophilic modification of polymeric membranes by low temperature H<sub>2</sub>O plasma

treatment." J. Membr. Sci., 204(1-2), 341-357.

- Yamato, N., Kimura, K., Miyoshi, T., and Watanabe, Y. (2006). "Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials." *J. Membr. Sci.*, 280(1–2), 911–919.
- Yang, Y., Zhang, H., Wang, P., Zheng, Q., and Li, J. (2007). "The influence of nano-sized TiO<sub>2</sub> fillers on the morphologies and properties of PSF UF membrane." J. Membr. Sci., 288(1–2), 231–238.
- Yu, H. Y., Hu, M. X., Xu, Z. K., Wang, J. L., and Wang, S. Y. (2005). "Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH<sub>3</sub> plasma treatment." *Sep. Purif. Technol.*, 45(1), 8–15.