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We theoretically study the infrared (IR)-dressed photoionization of atoms excited by extreme ultraviolet attose-
cond pulse trains above ionization threshold. The initial state of atoms is treated perturbatively by the IR field, and
the continuum states are considered as Coulomb–Volkov (CV) waves. CV waves can much reduce the gauge dif-
ference calculated with Volkov waves, and, in general, the contribution of ground-state perturbation to the photo-
electron spectrum is negligible. Our calculations show qualitative agreement with the experimental results [Phys.
Rev. Lett. 95, 013001 (2005)]. An evident dependence of the photoelectron spectrum on the delay phase between
the IR field and the attosecond pulse train is exhibited in both helium and argon. The angular distribution of
photoelectrons with various IR polarizations and the corresponding photoelectron spectra are presented. The
linearly polarized IR fields are shown to have a higher controlling capability of the spectrum via IR delay phases
than the circularly polarized fields. On the other hand, the circularly polarized IR fields have a fruitful angular
dependence of photoelectrons with various IR delay phases. © 2012 Optical Society of America

OCIS codes: 020.2649, 020.4180, 340.7480.

1. INTRODUCTION
The advent of attosecond light pulse technology opened the
study of electronic dynamics in atoms with unprecedented
time resolution [1,2]. Attosecond light pulses are produced
with extremely ultraviolet (XUV) light, and can be sorted into
attosecond pulse trains (APTs) and single attosecond pulses
(SAPs). The APT consists of a series of evenly spaced infrared
(IR) harmonics, as shown in Fig. 1, and is a powerful tool
when combined with another IR field [3–12]. One example
is the technique called Reconstruction of Attosecond Bea-
ting by Interference of Two-photon Transition (RABITT)
[3], which is used to characterize the APT. By varying the
delay phase between the APT and IR fields, amplitudes
and phases of the APT’s harmonics can be extracted from
photoelectron spectra, and the APT’s temporal shape is
reconstructed.

The APT� IR technique also provides an opportunity for
the quantum control of atomic photoionization. Johnsson et al.
[5] showed experimentally that the IR field is efficient in
controlling the photoelectron spectra excited by the APT
above the atomic ionization threshold. The photoelectron
born at the zero of the IR field (inset of Fig. 2) clearly shows
a more extended energy distribution than that born at the
peak of the IR field. Their numerical solutions of the time-
dependent Schrödinger equation (TDSE) also evinced that.
Otherwise, the analytic approach is generally based on the
strong-field approximation, where the IR-dressed continuum
state is regarded as the Volkov wave [7]. In this paper, we
propose another analytic treatment for the two-color
(XUV� IR) ionization based on the perturbation theory.
While the IR field in the experiment [5] is not weak
(∼1013 W∕cm2), it is still not intense enough to make the io-
nization as compared with that excited by the APT. Thus,
we treat the IR field as a perturbation to the ground state

and consider the continuum states as Coulomb–Volkov
(CV) waves. The perturbation method has been widely used
for dressed issues in the past [13–17].

We show that the CV wave can much reduce the gauge dif-
ference calculated with the Volkov wave. The validity of the
CV wave is examined and the effect of the ground-state
perturbation is discussed. Our calculations agree with the
experimental result [5] qualitatively. A significant spectral de-
pendence on the delay phase between the IR field and the APT
is shown. The model is then applied to study the IR polariza-
tion effect. We calculate the angular distribution of photo-
electrons with various IR polarizations, as well as the
corresponding spectra. Linearly polarized IR fields are shown
to have a higher capability to control the photoelectron spec-
tra than circularly polarized fields, while circularly polarized
IR fields have a more fruitful angular dependence than linearly
polarized fields. The analytical model is helpful for quantum
control of photoionization [5] and the RABITT technique [3]
due to the short computing time as compared with the TDSE
calculations. The remainder of this paper is organized as fol-
lows. In Section 2 we present the theory for the IR-dressed
XUV transition. In Section 3 we show and discuss the calcu-
lated results. Finally, conclusions are drawn in Section 4.

2. THEORY
Consider the S-matrix element for the XUV transition between
IR-dressed atomic states:

S � −i

Z
∞

−∞

dthΨk�r; t�jH int�t�jΨg�r; t�i; (1)

whereH int�t� is either r · EAPT�t� or AAPT�t� · p∕c for the length
or velocity gauges, respectively. Unless otherwise specified,
atomic units (a.u.), i.e., e � me � ℏ � 1, are used in this pa-
per. EAPT�t� and AAPT�t� are the electric field and the vector
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potential of the APT field, respectively, and c is the speed of
light. The APT electric field is described by

EAPT�t� � ẑ
X10
ξ�−10

�−1�ξEx sin�ωx�t − ξTh��

× exp
�
−2 ln 2

�
t − ξTh

τx

�
2
�
exp

�
−2 ln 2

�
t

τT

�
2
�
;

(2)

where Th � π∕ωIR, with ωIR � 1.55 eV being the IR frequency.
Figure 1(a) shows an example with ωx � 23 eV and
τx � 0.3 fs, while Fig. 1(b) shows the corresponding Fourier
spectra with the horizontal axis in units of ωIR. Twice IR
photon spacing can be found.

The IR field with a generalized polarization can bewritten as

EIR�t� � EIR

�
ẑ cos

�Δ
2

�
sin�ωIRt� ϕd�

� ŷ sin
�Δ
2

�
cos�ωIRt� ϕd�

�
; (3)

where Δ is set to 0, π, and π∕2 for the ẑ-axis, ŷ-axis, and cir-
cular polarizations in our calculations, respectively. ϕd is the
delay phase between the IR and APT fields.

The IR-dressed ground state (1s for He and 3p for Ar in
single-active-electron notation) can be described by the first-
order perturbation as long as the IR intensity remains
moderate:

ΨL;V
g �r; t� � e−iωgt

�
jψ �0�

g >

� iEIR

2
�−G�ωg − ωIR�M̂L;V jψ �0�

g > ei�ωIRt�ϕd�

� G�ωg � ωIR�M̂L;V jψ �0�
g > e−i�ωIRt�ϕd��

�
; (4)

where M̂L;V is ẑ · r or ω−1
IR ẑ ·∇r for the length or velocity

gauges, respectively. jψ �0�
g i is the unperturbed ground-state

wave function and

G�Ω� � 1

Ω − Ĥ0

�
X
n

jψ �0�
n ihψ �0�

n j
Ω − En

.

Ĥ0 � p2∕2� VM�r�with VM�r� being the atomic model poten-
tial [18] and with jψ �0�

n i being corresponding eigenkets. The
summation in the Green function runs over the discrete
and continuum states. The term ofG�Ω�M̂L;V jψ �0�

g i≡ jφgi is ob-
tained by solving the Dalgarno–Lewis differential equation
[19] as �Ω − Ĥ0�jφgi � M̂L;V jψ �0�

g i, and Ω � ωg∓ωIR. To solve
the equation, we apply the generalized pseudospectral method
[20,21] with the detailed derivation in [22] and the modifica-
tion for the boundary’s error described in [23].

For the IR-dressed continuum state, both the CV and
Volkov waves are considered:

ΨCV
k �r; t� � e−iωkte−iαIR�t�·kjψ �0�

k i; (5a)

ΨV
k �r; t� � �2π�−3∕2k−1∕2e−iωkte−iαIR�t�·keik·r; (5b)

where αIR�t� � c−1
R
t
−∞ AIR�t0�dt0, AIR�t� is the IR vector poten-

tial, jψ �0�
k i � P

∞
l�0

P
l
m�−l i

le−i�σl�δl�REl�r�Ylm�Ωr�Y�
lm�Ωk�, and

REl�r� �
����
2
πk

q
ul�r�
r
. The factor k−1∕2 comes from the energy nor-

malization. E � k2∕2 is the photoelectron energy, and σl and δl
are the Coulomb and short-range phase shifts, respectively.
The function ul�r� satisfies [24–26]

�
−
1
2
d2

dr2
� l�l� 1�

2r2
� VM�r� −

k2

2

�
ul�r� � 0; (6a)

ul�r� →
r→∞

sin
�
kr −

l

2
π −

1
k
ln�2kr� � σl � δl

�
: (6b)

With the Jacobi–Anger expansion [27], the Volkov phase in
Eq. (5a) or (5b) can be written as

eiαIR�t�·k �
X∞

n;m�−∞

~Jn;me
i��n�m��ωIRt�ϕd�; (7)

where ~Jn;m � i�mJn�αIRkj cos θkj cos Δ
2�Jm�αIRkj sin θkj·

j sin ϕkj sin Δ
2 �, with αIR being EIR∕ω2

IR and Jn being the
first-kind Bessel function. �n holds for θk ∈ �0; 0.5π�, and
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Fig. 1. (Color online) (a) Profile and (b) frequency spectrum of APT
at ωx � 23 eV (central frequency), τx � 0.3 fs (FWHM of each burst),
and Th � π∕ωIR. A variation from SAP to APT by tuning τT (FWHM of
APT) is demonstrated. FWHM: full width at half-maximum.
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−n for θk ∈ �0.5π; π�. �m holds for ϕk ∈ �0; π�, and −m

for ϕk ∈ �π; 2π�.
By substituting the IR-dressed ground state in Eq. (4) and

the continuum state in Eq. (5) into Eq. (1), with the help of
Eq. (7), the zero-order SL;V matrix element due to the unper-
turbed ground state under the length (LG) and the velocity
(VG) gauges can be expressed as, respectively,

S
�0�
L �ωkg� � −ihφ�0�

k jẑ · rjψ �0�
g i

X∞
n;m�−∞

~Jn;me
i��n�m�ϕd

× FAPT�−ωkg − ��n�m�ωIR�; (8a)

S
�0�
V �ωkg� � ihφ�0�

k jẑ ·∇rjψ �0�
g i

X∞
n;m�−∞

~Jn;me
i��n�m�ϕd

×
FAPT�−ωkg − ��n�m�ωIR�

ωkg � ��n�m�ωIR
; (8b)

where φ�0�
k is jψ �0�

k i or �2π�−3∕2k−1∕2eik·r for the CV wave and
Volkov wave, respectively. FAPT�ω� denotes the Fourier trans-
form of the APT electric field in Eq. (2) and ωkg � ωk − ωg.
The rule for the sign of index n and m is the same as that
in Eq. (7). The angular quantum number of the continuum
state l � 1 for He, while l � 0, 2 for Ar.

The first-order S matrix element due to the perturbed
ground state can be expressed as

S
�1�
L �ωkg� �

EIR

2

X∞
n;m�−∞

~Jn;m

×
�
−ei��n�m�1�ϕdFAPT�−ωkg − ��n�m� 1�ωIR�

× hφ�0�
k jẑ · rjG�ωg − ωIR�ẑ · rψ �0�

g i
� ei��n�m−1�ϕdFAPT�−ωkg − ��n�m − 1�ωIR�

× hφ�0�
k jẑ · rjG�ωg � ωIR�ẑ · rψ �0�

g i
�
; (9a)

S
�1�
V �ωkg� �

EIR

2ωIR

X∞
n;m�−∞

~Jn;m

×
�
ei��n�m�1�ϕd

FAPT�−ωkg − ��n�m� 1�ωIR�
ωkg � ��n�m� 1�ωIR

× hφ�0�
k jẑ ·∇rjG�ωg − ωIR�ẑ ·∇rψ �0�

g i

� ei��n�m−1�ϕd
FAPT�−ωkg − ��n�m − 1�ωIR�

ωkg � ��n�m − 1�ωIR

× hφ�0�
k jẑ ·∇rjG�ωg � ωIR�ẑ ·∇rψ �0�

g i
�
; (9b)

where the angular quantum number of the continuum state
differs from that of Eqs. (8a) and (8b) due to the perturbed
ground state. Here l � 0, 2 for He, while l � 1, 3 for Ar.

Finally, the transition probability can be calculated
by jS�0�

L;V �ωkg� � S
�1�
L;V �ωkg�j2.

3. RESULTS AND DISCUSSION
We consider the APT and IR intensities of 5 × 1013 W∕cm2 and
1013 W∕cm2, respectively. The APT is characterized by

τx � 0.3 fs, τT � 3 fs, and ωx � 35 eV for He, and ωx �
26 eV for Ar. With such ωx choice, the central photoelectron
energy ionized by the APT for He (Ei ≈ 24.6 eV) and for Ar
(Ei ≈ 15.76 eV) is about 10 eV, where Ei is the ionization
potential. The atomic potential is adapted from Tong and
Lin [18]. The ground-state wave function of He (1s) is assumed
as 2α1.5 exp�−αr� with α � 1.67, while that of Ar (3p) is ob-
tained numerically.

First, we consider the contribution from the unperturbed
term S

�0�
L;V �ω�. Figure 2(a) shows the photoelectron spectra

of He under the LG (dotted curve) and VG (solid curve) for
the IR delay phase ϕd � 0.5π. The CV results (left panel) give
good agreement between the LG and the VG, while the Volkov
results (right panel) show an evident gauge difference. Each
spectral peak separated by ωIR instead of 2ωIR as shown in
Fig. 1(b) manifests that a single XUV photon with multiple-
IR-photon processes occurs. The photoelectrons are localized
around the central APT’s excitation about 10 eV, and thus we
call it one-group behavior. Figure 2(b) shows the spectrum in
He at the IR delay phase ϕd � 0. Here, both the CV and Volkov
results have gauge differences, but the CV results show a bet-
ter agreement than the Volkov results. At ϕd � 0, the photo-
electrons drift away from the central APT’s excitation and
then result in two-group behavior, where one is a low-energy
group (<10 eV) and the other is a high-energy group (>10 eV).
Because of the high-energy group, the photoelectron spectra
at ϕd � 0 has a more extended distribution than that at
ϕd � 0.5π.

Figures 2(c) and (d) show the photoelectron spectra of Ar
for ϕd � 0.5π and 0, respectively. At ϕd � 0.5π, the CV results
remain in good gauge agreement, while for the Volkov results,
the gauge difference enlarges clearly as compared with the He
case. At ϕd � 0, the CV results still keeps a low gauge differ-
ence, while for the Volkov results, the gauge difference be-
comes significantly large. Thus, the CV wave is better than
the Volkov wave in modeling the IR-dressed continuum states
of both atoms. Otherwise, there is an essential spectral differ-
ence between the two atoms at ϕd � 0. The amplitude ratio of
the high-energy to low-energy groups in Ar is clearly lower
than that in He. This can be easily understood by the analytic
theory because the dipole matrix element in Eq. (8a) of Ar
(solid curve) decreases with photoelectron energy faster than
that of He (dashed curve) as shown in the inset of Fig. 2(d).

Next, we consider the contribution from the perturbed term
S
�1�
L;V �ω�. Under the LG, the perturbed term is always negligible

due to the small EIR (0.017 a.u.) and the tiny difference be-
tween the functions of G�ωg∓ωIR�ε̂ · rψ �0�

g in Eq. (9a). Under
the VG, the perturbed term is visible when ϕd � 0. Figure 3(a)
shows the spectral results with (solid curve) and without
(dotted curve) the perturbed term in He. The result with
the perturbed term below (above) 10 eV is lower (higher) than
the result without the perturbed term. As compared with
Fig. 2(b), the perturbed term amplifies the CV gauge differ-
ence, except the peak near 10 eV. This manifests that the
CV gauge difference in Fig. 2(b) is not due to the perturbed
ground state, but it is due to the inaccuracy of the CV wave.
If the CV wave is substituted by an exact dressed continuum
state, the CV gauge difference can be eliminated and the cor-
responding VG perturbation should also become evanescent.
While the gauge difference at ϕd � 0 is not large [28], the CV
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wave is still a good approximation as long as the IR intensity
keeps at an appropriate level.

Figure 3(b) shows the result with the perturbed term in
Ar. For the CV result, the perturbation dependence on the
photoelectron energy is consistent with that of He, but not
for the Volkov result. This also manifests that the CV wave is
more reliable than the Volkov wave. Finally, we exam the CV
result with the TDSE calculation shown in Fig. 3(c). The TDSE
result also shows the one-group and two-group behaviors at
ϕd � 0.5π and 0, respectively. The CV result agrees with the
TDSE one qualitatively, except the fact that, at ϕd � 0, the val-
ley between the low-energy and high-energy groups in the
TDSE result is not as deep as that in the CV. Quantitatively,
a slight difference between the CV and TDSE results can be
obtained.

After examining the CV wave and the ground-state pertur-
bation, we now apply the theory to study the IR polarization
effect, which can be understood by using the concept of one-
group and two-group behaviors. While the concept is the con-
sequence of electron-wave-packet interference, we first show
the angular distribution of interferometry with various IR po-
larizations [6,7]. For comparison, the case of EIR∥EXUV is
shown. The calculation is performed in He under the LG. Fig-
ure 4(a) shows the angular distribution of a photoelectron by
an XUV burst without the IR field. If the burst is at the zero of
AIR�t� (ϕd � 0.5π), the burst-excited electron gains no mo-
mentum from the IR field [Fig. 4(b)], as the semiclassical

theory predicts photoelectrons momentum transferred by
jAIR�t�j∕c. The distribution stays ring-shaped and centered
at the origin, similar to Fig. 4(a). Thus, the interference of elec-
tron wave packets excited by double bursts makes the distri-
bution one-group behavior [Fig. 4(c)]. Otherwise, if the burst
is at the peak of AIR�t� (ϕd � 0), the burst-excited electron
shifts along the kz axis due to the IR field [Fig. 4(d)], and thus
leads the distribution to split into two groups (one toward
higher kz and the other lower) as double bursts are excited
[Fig. 4(e)].

For the perpendicular case (EIR∥ŷ and EXUV∥ẑ), the XUV
burst becomes born at the peak of AIR�t� for ϕd � 0.5π and
born at the zero of AIR�t� for ϕd � 0 according to Eq. (3). In-
terestingly, the electron excited by the burst at the peak of
AIR�t� does not shift along the ky axis, as the semiclassical the-
ory predicts, but it shrinks [Fig. 4(f)] or elongates [Fig. 4(g)] at
the maximum or minimum of AIR�t�, respectively. Hence, the
interference of electron wave packets excited by the double
XUV bursts also leads the distribution to split into two groups
[Fig. 4(h)] along the ky axis. Otherwise, if the burst is at the
zero of AIR�t�, the angular distribution [Fig. 4(i)] does not
change much, and the distribution remains in one group as
the double bursts are excited [Fig. 4(j)]. For the circular IR
polarization, the result is like the combination of the parallel
and perpendicular cases. At ϕd � 0.5π, the angular distribu-
tion is dominated by Ay (dashed curve). Thus, the distribution
shrinks [Fig. 4(k)] or elongates [Fig. 4(l)] for the XUV burst at
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Fig. 2. (Color online) CV and Volkov photoelectron spectra under the LG (dotted curves) and VG (solid curves) for (a) He at ϕd � 0.5π, (b) He at
ϕd � 0, (c) Ar at ϕd � 0.5π, and (d) Ar at ϕd � 0. IAPT � 5 × 1013 W∕cm2, τx � 0.3 fs, τT � 3 fs, and ωx � 35 eV for He, and ωx � 26 eV for Ar.
IIR � 1013 W∕cm2 and ωIR � 1.55 eV. Insets of (a) and (b) show schematic diagrams for delay phases between IR and APT electric fields. Inset of
(d) shows the dipole matrix element hφ�0�

k jẑ · rjψ �0�
g i in Eq. (8a) for He (l � 1: dashed curve) and Ar (l � 2: solid curve; l � 0: minor not shown). The

photoelectron spectra are integrated over solid angle.
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the peak of Ay, and the two-group behavior along the ky axis
results as double bursts are excited [Fig. 4(m)], just as in
the perpendicularly polarized case. At ϕd � 0, the angular
distribution becomes dominated by Az (solid curve)
[Fig. 4(n)]. The distribution shifts toward the kz axis for the
burst at the peak of Az, and finally two groups along the kz
axis result as double bursts are excited [Fig. 4(o)], which
resembles the parallel polarized case.

With the above understanding of interference, we now can
see the IR polarization effect on the photoelectron spectrum.
Figure 5(a) shows the APT-excited spectrum as a function of
IR delay phase in He for the case of EIR∥EXUV under the LG.
Two-group behavior around ϕd � κπ (κ is an integer) is shown
clearly. As ϕd moves to �κ � 0.5�π, the spectrum becomes
one-group behavior. For the case of EIR⊥EXUV, the two-group

behavior shifts to the delay phase of �κ� 0.5�π, as shown in
Fig. 5(b) as predicted earlier in Figs. 4(f)–(j). The spectral
extension to higher (or lower) energies than the central APT’s
excitation in Fig. 5(b) is weaker than that in Fig. 5(a). In the
EIR∥EAPT case, the spectrum at ϕd � 0 can extend to higher
energies with a five-IR-photon difference than that at
ϕd � 0.5π, while, in the EIR⊥EAPT case, there is a three-IR-
photon difference. Therefore, the IR parallel polarization
has an only slightly higher capability of quantum control than
the perpendicular case.

Figure 5(c) shows the APT-excited spectrum with the cir-
cular IR polarization. The pattern is like the superposition of
the EIR∥EAPT and EIR⊥EAPT cases, as Figs. 4(k)–(o) describe.
Around ϕd � �κ � 0.5�π, the parallel and perpendicular IR
fields contribute to the one- group and the two-group spectra,
respectively. As ϕd becomes around κπ, the parallel and per-
pendicular IR fields turn to contribute to the two-group and
one-group spectra, respectively. As a result, the spectrum be-
comes broad and full at any IR delay phase, implying a much
lower capability of quantum control than that of linear IR po-
larizations. Regarding the species issue, He has a higher con-
trolling capability than Ar, as shown in Fig. 5(d). In Ar, there is
an only three-IR-photon spectral difference between ϕd � 0
and 0.5π for the EIR∥EAPT case. This is attributed to the faster
decay of the dipole matrix in Ar than He, as shown in the inset
of Fig. 2(d).

To compare with the experimental result, we also show the
Ar spectrum in Fig. 5(e) with the same conditions as those in
[5], where IIR � 3 × 1013 W∕cm2 and τx � 0.2 fs to include the
IR harmonics 13 through 35, and ωx is at the middle of these
harmonics. First, the spectral dependence agrees with the ex-
perimental results qualitatively. The photoelectrons at ϕd �
�κ � 0.5�π are confined around the central APT’s excitation,
while the photoelectrons at ϕd � κπ have a more extended
energy distribution. Second, at ϕd � �κ � 0.5�π, our maximum
photoelectron energy is about 28 eV and is close to the experi-
mental result. At ϕd � �κ� 0.5�π, the maximum energy ex-
tends over 40 eV. This resembles their TDSE result, but it
is higher than the experimental one [5]. Third, in our calcula-
tion, the central photoelectron energy ionized by the APT is
20 eV. This value is about 5 eV higher than the experimental
one. This is probably due to our APT modeling with a Gaus-
sian shape in the energy domain [Fig. 1(b)], while the actual
APT is synthesized from harmonics in plateau with equal
height. The effect also causes our spectrum to decay quickly
as the photoelectron energy approaches zero.

Although the circular IR polarization is too weak to control
the spectrum, its photoelectron’s angular distribution is much
richer than that of linear IR polarizations. Figures 6(a)–(c)
show the angular distributions of photoelectrons in He under
the LG of circular polarization at various IR delay phases,
where the arrow denotes the z-axis direction. At the zero de-
lay phase [Fig. 6(a)], both upper (azimuthal angle θk ≤ 0.5π)
and lower (θk > 0.5π) spheres have the same dependence
on the polar angle ϕk. For brevity, we call it ϕk symmetry
for P�θk;ϕk� � P�π − θk;ϕk�, where P is the probability den-
sity. The photoelectron is strong around ϕk � �κ� 0.5�π,
and evanescent around ϕk � κπ. Thus, there are two nodes
along the ϕk direction. The symmetry changes when the delay
phase varies. At the delay phase of 0.25π [Fig. 6(b)], the sym-
metry becomes antisymmetry P�θk;−ϕk� � P�π − θk;ϕk�. The
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Fig. 3. (Color online) Unperturbed (dotted curve) and perturbed (so-
lid curve) photoelectron spectra integrated over solid angle under the
VG for (a) He at ϕd � 0 and (b) Ar at ϕd � 0. Other optical conditions
are the same as those in Fig. 2. (c) Comparison of spectra in He be-
tween the TDSE calculations (solid curve) and S-matrix results
(dotted curve) of CV waves.
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upper sphere has an opposite ϕk dependence to the lower
sphere. In addition, the photoelectron does not vanish along
the ϕk direction, i.e., there is no node, unlike that at the zero
delay phase. At the delay phase of 0.5π [Fig. 6(c)], the ϕk sym-
metry is retrieved, but the photoelectron always stays brilliant
along the polar direction. The strongest and the weakest
photoelectrons are around ϕk � κπ and �κ� 0.5�π, respec-
tively. As we can see, the three distinct delay phases result
in three quite different angular distributions. In contrast,
the angular distribution of linear IR polarization is simple.
Figures 6(d) and (e) show the results in He under the LG
of EIR⊥EAPT at the delay phases of 0, 0.25π, and 0.5π, respec-
tively. The three results are similar. All of them are ϕk sym-
metry and have two nodes at ϕk � κπ. For the EIR∥EAPT

case, the angular distribution is the simplest among the three
cases since its S matrix is independent of ϕk (Δ � 0), which is
related only to θk. Hence, the priority about the angular
distribution becomes the circular, perpendicular, and parallel
polarizations.

4. CONCLUSION
In conclusion, we theoretically studied the IR-dressed XUV
transition in He and Ar atoms by applying the perturbation
theory to the ground state and considering the CV wave.
The CV wave can much reduce the gauge inconsistency cal-
culated with the Volkov wave. The contribution of ground-

state perturbation to the photoelectron spectra is generally
negligible, and the spectra are more sensitive to the dressed
continuum states than the perturbed ground state. Our results
agree with the experimental results of Johnsson et al. [5] qua-
litatively. The considerable spectral dependence on the delay
phase between the IR and the APT fields is shown. As the
APT’s burst is at the zero of AIR, the photoelectrons are loca-
lized around the central APT’s excitation, and result in the
one-group behavior. As the burst is at the peak of AIR, the
photoelectrons drift away from the central APT’s excitation,
and result in the two-group behavior. The amplitude ratio of
high- to low-energy groups is lower in Ar than in He. The
photoelectron spectrum is also sensitive to the IR polariza-
tion. Linear IR polarizations (EIR∥EAPT and EIR⊥EAPT) have
a stronger spectral dependence on the IR delay phase than
the circular IR polarization. Among the three polarizations,
the EIR∥EAPT case is the best at controlling the XUV-induced
photoelectron spectrum. On the other hand, the circular
IR polarization can result in a more fruitful angular depen-
dence of photoelectrons than linear polarizations, while the
EIR∥EAPT case has the simplest angular distribution among
them.
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