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a  b  s  t  r  a  c  t

The  purpose  of  this  study  was  to improve  the accuracy  of  tissue  segmentation  on brain  magnetic  res-
onance  (MR)  images  preprocessed  by  multiscale  retinex  (MSR),  segmented  with  a  combined  boosted
decision  tree  (BDT)  and  MSR  algorithm  (hereinafter  referred  to  as the  MSRBDT  algorithm).  Simulated
brain  MR  (SBMR)  T1-weighted  images  of  different  noise  levels  and  RF inhomogeneities  were  adopted
to  evaluate  the  outcome  of  the  proposed  method;  the MSRBDT  algorithm  was  used to  identify  the  gray
eywords:
egmentation
oosted decision tree
ultiscale retinex

patial feature
rain tissue

matter  (GM),  white  matter  (WM),  and  cerebral-spinal  fluid  (CSF)  in  the brain  tissues.  The  accuracy  rates  of
GM,  WM,  and  CSF  segmentation,  with  spatial  features  (G,  x,  y,  r, �),  were  respectively  greater  than  0.9805,
0.9817,  and  0.9871.  In addition,  images  segmented  with  the  MSRBDT  algorithm  were  better  than  those
obtained  with  the  expectation  maximization  (EM)  algorithm;  brain  tissue  segmentation  in MR  images
was  significantly  more  precise.  The  proposed  MSRBDT  algorithm  could  be beneficial  in  clinical  image
segmentation.
. Introduction

The segmentation of brain magnetic resonance (MR) images is
 pivotal technique in the assessment of volumetric differences for
linical diagnosis, such as brain tissue and brain tumor segmenta-
ion [1–4]. Brain tissue segmentation is an important issue among
rain MR  image segmentation research [5–8]; there exist several
rain tissue segmentation methods for MR  image studies. Shen
t al. [9] proposed an intelligent segmentation technique to identify
rain tissues, including the gray matter (GM), white matter (WM),
nd cerebral spinal fluid (CSF), in brain MR  images. A neighborhood
ttraction, which includes pixel intensities (feature attraction), spa-
ial position of neighbors (distance attraction), and improved fuzzy

-means (FCM), was used to improve segmentation accuracy. In
ddition, the degree of feature attraction and distance attraction
as optimized by an artificial neural-network model. This tech-
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nique was  an improvement from the traditional FCM algorithm;
simulated T1-weighted MR  images with different noise levels and
real MR images were segmented for better results. Vrooman et al.
[10] presented a new, fully automatic k-Nearest-Neighbor (KNN)
training procedure with non-rigid registration to identify brain tis-
sues; results showed improved accuracy in the segmentation of
GM,  WM,  and CSF. This robust segmentation performance was  also
evaluated with a similar index (SI). Manjon et al. [11] proposed a
tissue type parameter estimation method to estimate mean inten-
sity values of GM,  WM,  and CSF accurately. As indicated from the
preponderous amount of literature, improving the accuracy of brain
tissue segmentation in MR  images is important for the identifica-
tion of GM,  WM,  and CSF for neuro-imaging application.

The signal to noise ratio (SNR) of MR images is sometimes
reduced by the receive coils. The image quality is affected by the
decreased SNR. In general, the surface coil provides better SNR
than the volume coil during MR  image acquisition. The surface

coil often generates radio-frequency (RF) inhomogeneities when
acquiring MR signals. However, RF inhomogeneity, as well as the
background noise and partial volume effect, reduces the accuracy
of tissue segmentation for brain MR  images. Attempts have been

dx.doi.org/10.1016/j.bspc.2011.04.001
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:irradiance@so-net.net.tw
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Fig. 1. Image pr

ade to minimize segmentation errors of MR  images with cor-
ection algorithms. A robust automatic algorithm with correcting
adio-frequency (RF) inhomogeneity has been designed to segment
M,  WM,  and CSF of MR  images in phantom studies and clini-
al experiments [12]. Gispert et al. [13] proposed a nonuniform
ntensity correction (NIC) algorithm (bias field estimation and tis-
ue classification) to segment the phantom dataset and the real
mage dataset. The NIC algorithm showed the best performance
or classifying GM,  WM,  and CSF in T1-weighted MR images on
hantom and real images. Garcia-Sebastian et al. [14] proposed a
arametric intensity inhomogeneity (IIH) correction schema and
n online estimation of the image model intensity class means to
egment MR  images. Several previous studies [12–15] have demon-
trated brain tissue segmentation with decreased noise-induced
rrors. However, segmentation errors were increased due to RF
nhomogeneities. In an effort to resolve this problem, we pro-
osed a boosted decision tree (BDT) combined with the multiscale
etinex (MSR) algorithm (hereinafter referred to as the MSRBDT
lgorithm) as a preprocessing process. The retinex algorithm was
sed to reduce the nonuniformity of MR  images caused by RF inho-
ogeneity in MR  image intensity. Land [16] proposed a retinex
odel based on the neurophysiological processing of brain image

nformation in retinas to describe color constancy in human visual
erception. The model was developed according to the concept
hat human perception is not defined solely by the spectral char-
cter of the light that reaches the eye; it includes the processing
f spatial-dependant color and intensity information on the retina.
he process is accomplished by computing dynamic-range com-
ression and color rendition [16–20].  Accordingly, Hurlbert and
oggio [17] and Hurlbert [18] derived a general mathematical func-
ion by applying the retinex properties and luminosity principles.
mages from various center/surrounding functions in three gray-
evel scales show different retinex outputs. Moreover, Jobson et al.
21] found that the selection of surrounding function parameters
as a significant effect for the retinex output [21,22]. The dynamic
ompression and color rendition were then balanced with MSR.
lthough the inhomogeneities of MR  image could be reduced with
mproved hardware, it would be more feasible to develop a prepro-
essing algorithm to improve the segmentation of brain MR  images.
he current MSR  was hereby proposed for the preprocessing of
rain MR  images.
ing procedures.

After preprocessing, the brain tissues of MR images were seg-
mented with decision tree algorithms. Two decision trees have
been developed in existing literature: the classification and regres-
sion tree (CART) and the See5/C5.0 (BDT). The CART is a binary tree
that can be used for classification and regression analysis [23–26];
the See5/C5.0 [27–29] was  advanced from the ID3 learning tree
[30] and has been adopted for various biomedical applications
[31]. In the previous study, a BDT was applied as the segmenta-
tion algorithm as it can effectively classify data structure, predict
the accuracy of non-linear problems, interpret rules in a decision
tree rule set, and eliminate outliers [25]. Combining the advantages
of the MSR  and the BDT decision trees, the MSRBDT algorithm was
proposed for the identification of GM,  WM,  and CSF in brain tissues.
The goal of the current study was  to improve the accuracy rates of
brain MR  image segmentation.

2. Materials and methods

Image processing procedures are shown in Fig. 1. The decision
tree structure was  constructed by a training procedure from a stan-
dard image (manually identified by an expert), which was tested
to identify different types of brain tissues for all brain MR  images.
Two image preprocessing methods are available for the testing pro-
cedure. The first method applies the MSR  algorithm to correct for
RF inhomogeneities of MR  images; spatial features were extracted
from the corrected MR  images, the images were then segmented.
An alternative method is to segment the brain MR  images after
extracting spatial features. Two decision trees, CART and BDT, were
used to evaluate the results of segmented brain images.

2.1. MR  images

The simulated brain MR (SBMR) images obtained from Brain-
Web  (http://www.bic.mni.mcgill.ca/brainweb)  were T1-weighted
3-mm-thick images with 3%, 5%, 7%, and 9% noise levels. At each
noise levels, RF inhomogeneities of 20% or 40% were introduced
to the SBMR images. Details of the SBMR images are described in

Table 1. Segmentation results from images of different qualities
were examined. An expert manually identified a standard brain MR
image from an original image with no noise and inhomogeneity as
a training data; it was  adopted as the standard image in the present

http://www.bic.mni.mcgill.ca/brainweb
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Table 1
Designations of original simulated MR images obtained by combining the noise
levels and inhomogeneities.

Designation Noise level and inhomogeneity parameters

T1n3 Noise level = 3%
T1n5 Noise level = 5%
T1n7 Noise level = 7%
T1n9 Noise level = 9%
T1n3RF20 Noise level = 3% and 20% RF inhomogeneity
T1n5RF20 Noise level = 5% and 20% RF inhomogeneity
T1n7RF20 Noise level = 7% and 20% RF inhomogeneity
T1n9RF20 Noise level = 9% and 20% RF inhomogeneity
T1n3RF40 Noise level = 3% and 40% RF inhomogeneity
T1n5RF40 Noise level = 5% and 40% RF inhomogeneity
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T1n7RF40 Noise level = 7% and 40% RF inhomogeneity
T1n9RF40 Noise level = 9% and 40% RF inhomogeneity

tudy. The SBMR images were preprocessed with correction or fea-
ure extraction at different noise levels and RF inhomogeneities,
hich were then segmented with decision tree algorithms.

.2. Image preprocessing

Image preprocessing procedures are shown in Fig. 1 and
escribed as follows. In the training course, spatial features were
xtracted from the standard image for image preprocessing. In the
esting course, two image preprocessing methods were utilized.
he first method applied the MSR  algorithm to correct for RF inho-
ogeneities of MR  images, after which the spatial features were

xtracted. For the second method, the spatial features were only
xtracted for image preprocessing.

.2.1. Multiscale retinex for RF inhomogeneity correction
Image quality and segmentation accuracy are affected by RF

nhomogeneities in MR  images; the MSR  was thus used to resolve
his problem. An MSR  [16] consistent with the processing mecha-
isms of human vision, in terms of dynamic-range compression and
rightness variations of the image, was proposed as a preprocess-

ng step to correct RF inhomogeneities in MR  images. The MSR  was
onstructed by merging three single-scale retinex (SSR) scales with
hree weightings [21,22]; the SSR algorithm was utilized to support
ifferent dynamic-range compressions [21,22]. The MSR  can repli-
ate human visual processing by manipulating an acquired image
o correspond to the real grayscale variations of a scene. Research
as indicated that dynamic-range compression was more signifi-
ant than brightness variations in acquired images [21,22]; thus,
he present study emphasized on the dynamic-range compression
omputation of such images. Since results obtained from the MSR
ere similar to observations of a real scene [16–22],  a retinex algo-

ithm was applied to improve the contrast histogram and image
uality prior to image preprocessing.

The basics of an SSR [16] were described as follows. Based on
 center/surround organization, a logarithmic photoreceptor func-
ion that approximates the vision system was applied [16,22]. The
SR was indicated by

i(x, y) = log Ii(x, y) − log[(Ii(x, y) ∗ F(x, y)], (1)

here Ri(x, y) was the retinex output, Ii(x, y) was the image distribu-
ion in the i-th spectral band, and “*” represented the convolution
perator. In addition, F(x, y) was defined in Eq. (8) and

 ∫
F(x, y) dx dy = 1, (2)
hich was the normalized surround function. The purpose of the
ogarithmic manipulation was to transform a ratio at the pixel level
o a mean value for a larger region.
ssing and Control 7 (2012) 129– 140 131

SSR was  applied to each spectral band to improve the luminosity,
as suggested by Land [16]. It was independent from the spectral
distribution of a single-source illumination since

Ii(x, y) = Si(x, y)ri(x, y), (3)

where Si(x, y) was  the spatial distribution on an illumination source,
S̄i(x, y) represented the spatially weighted average value, and ri(x,
y) was  the reflectance distribution in an image, hence

Ri(x, y) = log
Si(x, y)ri(x, y)

S̄i(x, y)r̄i(x, y)
. (4)

However, there is a great overlap of the Fourier spectra between
Si(x, y) and S̄i(x, y). There is no use of MRI  inhomogeneity correction
and then the illumination inhomogeneity is assumed as

Si(x, y) ≈ S̄i(x, y), (5)

so this approximate equation was  the reflectance ratio

Ri(x, y) ≈ log
ri(x, y)
r̄i(x, y)

, (6)

which was  equivalent to illumination variations.
Hurlbert and Poggio [17] and Hurlbert [18] used the Gaussian

surround function to reconcile natural and human vision. With a
space constant, the inverse-square surround function accounted for
a greater response from the neighboring pixels than the exponen-
tial and Gaussian functions. The spatial response of the exponential
surround function was larger than that of the Gaussian function
at distant pixels. The Gaussian surround function was generally
used in regional dynamic-range compression [21], they were able
to produce good dynamic-range compression over neighboring pix-
els [17,20,21].  Among the proposed surround functions in [19–22],
the Gaussian surround function demonstrated good performance
over a wider range of space constants. Heretofore, the present study
adopted the Gaussian surround function to enhance contrasts and
resolve the inhomogeneity of MR  images.

The final process output from the center/surround retinex could
be adjusted to produce the SSR output [16]. Moore et al. [19] pro-
posed an automatic gain and offset operation, in which the triplet
retinex outputs were regulated by the absolute maximum and min-
imum values of all scales in a scene. In this study, a constant gain and
offset technique was used to select the best rendition, as well as the
transferred output interval of the highest- and lowest-scale rendi-
tion scenes for each SSR. There was no significant information loss
due to adjustments to the gain and offset result in the retinex out-
puts; the constant gain and offset of the retinex was independent of
the image content. Histogram variations in a gray-level scene were
evaluated. The gain and offset were constant across images accord-
ing to Land’s algorithm [16], an indication that it is applicable for
the manipulation of most images.

The best value of scale factor c was selected for the surround
function, F(x, y), based on the dynamic range compression and
brightness rendition for each SSR. The dynamic range compres-
sion and brightness rendition were also optimized by the selected
scale factor c and the adjustment of SSR output. The MSR  was a
good method for summing a weighted SSR to mix  the SSR output
variations, which was  defined as

RMSRi
=

N∑
ωiRni, (7)
where N was  a scaling parameter, Rni was the i-th component of
the n-th scale, RMSRi

was the n-th spectral component of the MSR
output, ωi was the multiplication weight for the i-th scale, and the
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Fig. 3, a decision tree is a tree structure growing from a root node
of the tree, which flows toward the internal nodes and terminates
at the leaf nodes. The leaf nodes represent the class; a classifier
is a model built from the training dataset, applied to predict the
32 W.-H. Chao et al. / Biomedical Signal

um of ωi was equal to 1 (i = 1, . . .,  N). Ri(x, y) of Eq. (6) became Rni
n Eq. (7) where

n(x, y) = Ke−r2/c2
n (8)

nd

 =
√

x2 + y2. (9)

Combining various SSR weightings [21,22], the MSR  selected the
umber of scales used for the application and evaluated the number
f scales that could be merged. The numbers of scales and scaling
alues in the surround function, as well as the weights in the MSR
ere issues of concern. MSR  was implemented by a series of MR

mages, based on a trade-off between dynamic-range compression
nd brightness rendition. Also, weights were accordingly selected
o obtain the appropriate dynamic-range compression at the light
nd dark boundaries of the image, as well as to maximize the bright-
ess rendition of the entire image. MSR  results on visual rendition
ere verified with a series of MR  images. Furthermore, the effi-

acy of the MSR  technique in MR  image contrast enhancement was
ompared with other image processing techniques.

Previous literature has proposed an algorithm for MSR  appli-
able in human vision [21,22]. By comparing the psychophysical
echanisms between human visual perceptions of a real scene and

 captured image, as well as comparing the captured image with
he measured reflectance values of the real scene, MSR  compen-
ated for lighting variations to approximate human perceptions
f a real scene. The present method combined specific features
f MSR  with the SSR process, in which a Gaussian function was
dopted for the center/surround operation. A narrow Gaussian dis-
ribution was used for the neighboring areas of a pixel (regarded as
he center). Space constants for Gaussian functions with scales of
5, 80, and 250 pixels in the surrounding area, as proposed by Job-
on et al. [21,22], were adopted. Logarithm was then applied after
urround function processing (i.e., two-dimensional spatial convo-
ution). Next, appropriate gain and offset values were determined
ccording to the retinex output and the histogram characteristics;
hese values remained constant for all images. The MSR  function
as hence obtained.

.2.2. Feature extraction
Spatial features were extracted from every MR  image pixel loca-

ion; they were used as the segmentation algorithm input for image
reprocessing. The spatial features used in the present study were:
, S, x, y, r, and �, where G was the gray level intensity of every pixel,

 was the spatial gray level of every pixel, (x, y) were the Euclidean
oordinates, and (r, �) were the polar coordinates. The spatial fea-
ures of the general gray level, and spatial gray level were combined
n Euclidean (x, y) or polar coordinates (r, �) through image prepro-
essing. As the quality of MR  images was often affected by noise and
F inhomogeneities, their effect on segmentation accuracy needs
o be reduced by image manipulation.

The general gray level represented the intensity of each pixel
or MR  image segmentation. It was suggested that the accuracy of
mage segmentation was improved by the enhanced image spatial
eatures used. The spatial gray (S) level is shown in Fig. 2 and defined
s

(x, y) =
n∑

i=1

ωigi(x, y), (10)
hich is the sum of combined weighting ωi and gray level gi(x, y) of
ixel i on the neighboring area. The neighboring area weighting of
he gray level around the center pixel with the nearest four pixels
re n = 5 and ωi = 1/5.
Fig. 2. The spatial gray (S) level is defined as the center pixel and with the nearest
four pixels.

2.3. Segmentation

A decision tree combined with boost trials of segmentation
method was used in this study. Quinlan [29] proposed to model
the prediction tree with statistical analysis, taking into account the
outcome variables and decision question for an accurate prediction.
The procedure was  described as follows.

2.3.1. Decision tree classification
A classifier structure form that could be integrated with boost-

ing and fuzzy threshold was constructed with the decision tree
[27–29]. The brain tissues (GM, WM,  and CSF) of the SBMR images
were segmented with the decision tree algorithm. As shown in
Fig. 3. A schematic example of a decision tree structure.
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lass values in a test dataset. Each internal node of the tree struc-
ure is divided by a condition related to a feature, and each branch
enotes the outcome of attribute splitting. Each node (root node
nd internal node) is split into two or more branch nodes. Exam-
les of the splitting condition are “A > d”, “B > e”, or “C > f”, for each
ode in every attribute. Branch splitting is determined by the node’s
ondition. The leaf nodes indicate that the classes are classified
y the splitting conditions, with the corresponding class labeled
n each leaf node. A decision tree structure is then constructed.
n addition, the fuzzy threshold can reduce the effects of noise to
uild classification structure. Each feature partition and node is also
etermined by the fuzzy threshold process [27,29]. The branches of
he feature values are constructed according to probability within
he fuzzy threshold to determine the partition for approaching the
lassification sensitivity.

.3.2. Decision tree construction with Gain Ratio
The proposed decision tree was constructed from a data set S

ith the training criteria; Gain Ratio was a measure of incorpo-
ated entropy [27–30].  The procedures of Gain Ratio criteria were
escribed as follows. For simulated MR  data, assume that a train-

ng data set S consists of C class examples. The function p(S, r) is
he ratio of the MR  data set class number from class r, with a total
lass number |S| in a MR  data set S, where 1 ≤ r ≤ C. The entropy is
efined as

ntropy(S) = −
∑C

r=1
p(S, r) × log2 p(S, r). (11)

Suppose T is a feature with v total partitions. The value i is any v,
nd Si is a subset of MR  data set S corresponding to the value i of T.
he information gain, Gain(S, T), corresponding to the partitioning
f S from the feature T, is calculated with

ain(S, T) = Entropy(S) −
∑v

i=1

|Si|
|S| × Entropy(Si), (12)

here |S| is the number of subset Si in the MR  data. Entropy(Si) is
imilarly defined as Entropy(S). Bias was reduced to obtain good
eneration; the gain ratio Gain Ratio(S, T) was calculated where the
plit info (Eq. (14)) is first defined as

plit Info(S, T) = −
∑v

i=1

|Si|
|S| × log2

( |Si|
|S|

)
. (13)

ecause the function Gain(S, T) was very sensitive to the value of v,
he ratio of information gain was manipulated as

ain Ratio(S, T) = Gain(S, T)
Split Info(S, T)

. (14)

he feature T satisfying

 = argmax
T

(Gain Ratio(S, T)) (15)

as selected as the reference in this step of partitioning. The
ecision tree was constructed by splitting all of the features and
aximizing the gain ratio (� ).

.3.3. Boosting
Boosting may  also be included in the decision tree to improve

he predicted segmentation accuracy rate. It is known as adaptive
oosting [27,29,32].  Adaptive boosting is conducted based on the

earning algorithm of the decision tree classifier over the repeated
eries of trials, t = 1, . . .,  T. One possible approach is to select the best
eight and tree structure from the distribution of weights over the

raining set. In boosting, multiple classifiers are constructed from a

ingle training dataset. A classifier is constructed to form a decision
ree structure or a rule set with the training data. When a new case
s classified by a classifier, the predicted class and the final class are
ecided based on votes from multiple classifiers. The first step of
ssing and Control 7 (2012) 129– 140 133

boosting is to build a decision tree structure or a rule set from the
training data. In some cases, boosting results in errors in which the
wrong class is generated by the first decision tree structure. Next,
the second classifier is constructed, focusing on obtaining the cor-
rect cases. Thus, the tree structure of the second classifier differs
from the first. Accuracy of the cases is further emphasized for the
third classifier, even though the possibility of errors remains. By
setting the number of boost trials in advance, the boosting process
continues with each iteration. The boosting process is terminated
when the most recent classifier is either highly accurate or inaccu-
rate.

2.3.4. Pruning
The construction of a decision tree is a two-phase process

[27,30]. The decision tree is initially generated in the growth phase,
followed by the pruning phase. The pruning phase is used to opti-
mize the structure of the decision tree; global pruning was selected
in the present algorithm. Subtree replacement was conducted in
the pruning step to reduce the subtree error rates for the training
set. If error generation was improved, the nodes of tree structure
were trimmed, replacing the subtree with a leaf node. The class
label of the leaf node was then defined as a simplified tree with a
class of attributes in a subtree. The purpose of pruning was to reduce
the risk of tree overfitting; overfitting occurs when the learned tree
is overspecialized to the training set. The pruning phase was  devel-
oped to improve the accuracy rates of classification and to build the
tree structures.

2.4. Evaluation of segmentation performance

Accuracy rate was used to quantify the performance of seg-
mentation in this present study. It was compared by overlapping
the standard reference image (manually labeled by an expert)
with a segmented image obtained from the proposed segmenta-
tion method. The accuracy rate (AR) was calculated as the overlap
fraction of the two  images [9,10,33], defined as

Accuracy rate = Ref (k) ∩ Seg(k)
Ref (k)

, (16)

where the accuracy rate of the segmented area in class k is relative
to the area in the standard image. Three classes (GM, WM,  and CSF)
of SBMR images were segmented in this study. The numerator in
Eq. (16) represented the number classified or the intersection area
of class k voxels between the segmented image and the standard
image. The denominator represented the area of class k voxels in
the standard image.

The similarity index (SI), as defined in Eq. (17), was the Dice
coefficient; it was  frequently used to measure the similarity of two
images in previous studies [9,10,33]. It was  also used as an alterna-
tive evaluation index to quantify the performance of segmentation.
SI was defined as

Similarity index = 2|S1 ∩ S2|
|S1| + |S2| .  (17)

Given two  binary images, S1 represented the standard image
(manually labeled by an expert), while S2 represented the seg-
mented image. The |S1 ∩ S2| represented the number of binary
image that were assigned to the tissue between S1 and S2. It could
also be rewritten as

|S1 ∩ S2|

Similarity index =

(1/2)(|S1| + |S2|) . (18)

The similarity index, ranging from 0 to 1, was applied to compare
the segmented image and standard image.
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patial feature (G, x, y, r, �) and (S, x, y, r, �) for different boost trial numbers.

. Results

.1. Results of images

In order to obtain the appropriate number of boost trials, the
BMR images with T1n9 were tested with the boosted decision tree,
rom trial 0 to 40. The MSR  was not used in this test for image pre-
rocessing to ascertain that the BDT segmentation was not affected.
verage segmentation accuracy rates of BDT with spatial feature

G, x, y, r, �) and (S, x, y, r, �) from SBMR images with T1n9 are shown
n Fig. 4. The amount of time consumed increased as more boost
rials were applied, yet the accuracy rates (ARs) of segmentation
ecreased with less boost trials. As the optimal ARs of brain tissue
egmentation (GM, WM,  and CSF) were obtained using the deci-
ion tree at 20 boost trials, the decision tree with 20 boost trials
as adopted to form the BDT for segmentation on all SBMR images

see Fig. 4).
Images in rows 1 and 2 of Fig. 5 were the T1n3RF20 and

1n9RF40 of SBMR images, respectively. The original images and
mages corrected with MSR  algorithm are respectively presented
n columns 1 and 2 of Fig. 5. The corrected images showed more
rightness and contrast of brain tissue than the original images. In
he present study, the weight ωn and the MSR  scale were combined
ith the 15-pixel small-scale SSR weightings of ω1 = 1/3, 80-pixel
oderate-scale SSR weightings of ω2 = 1/3, and 250-pixel large-

cale SSR weightings of ω3 = 1/3 [21,22]. Images segmented by the
SRBDT algorithms with spatial feature (G, x, y, r, �) are presented

n column 3 of Fig. 5. The brain tissues (GM, WM,  and CSF) were
learly identified with the MSRBDT algorithm.

.2. Segmentation of SBMR images

Segmentation results using CART and BDT from SBMR images
ith T1n3RF20, T1n5RF20, T1n7RF20, and T1n9RF20 are shown in

igs. 6 and 7. Spatial features (G, x, y, r, �) and (S, x, y, r, �) for fea-
ure extraction with combined-MSR and non-MSR were used for
mage preprocessing. The AR curve plots of GM,  WM,  and CSF from
BMR images are shown in rows 1, 2, and 3 of Figs. 6 and 7. The
R curve plots of brain tissue segmentation using CART with spa-
ial features (G, x, y, r, �) and (S, x, y, r, �) are respectively presented
n Fig. 6. Brain tissue segmentation results using BDT with spatial
eatures (G, x, y, r, �) and (S, x, y, r, �) are respectively shown in the
urve plots in Fig. 7. The BDT algorithm attained higher segmen-
ssing and Control 7 (2012) 129– 140

tation ARs than the CART algorithm. The ARs showed significant
improvement when the MSRBDT algorithm and the MSR  algorithm
with spatial features (G, x, y, r, �) and (S, x, y, r, �) were applied. The
optimum ARs were achieved when the MSRBDT algorithm with
spatial feature (G, x, y, r, �).

Segmentation results using CART and BDT from SBMR images
with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40 are shown
in Figs. 8 and 9, respectively. Spatial features (G, x, y, r, �) and
(S, x, y, r, �) for feature extraction with combined MSR  and non-
MSR were used for image preprocessing. The AR curve plots of
GM,  WM,  and CSF from SBMR images are shown in rows 1, 2, and
3 of Figs. 8 and 9. Brain tissue segmentation results using CART
with spatial features (G, x, y, r, �) and (S, x, y, r, �) are respectively
presented in the curve plots in Fig. 8. Brain tissue segmentation
results segmented by using BDT with spatial features (G, x, y, r, �)
and (S, x, y, r, �) are respectively shown in the curve plots in Fig. 9.
The BDT algorithm attained higher segmentation ARs than the CART
algorithm. ARs showed significant improvement when the MSRBDT
algorithm with spatial features (G, x, y, r, �) and (S, x, y, r, �) were uti-
lized. The highest ARs were achieved when the MSRBDT algorithm
with spatial feature (G, x, y, r, �) was applied.

Segmentation results from the MSRBDT algorithm, as evalu-
ated by accuracy rate and similar index, were also compared with
those obtained from expectation maximization (EM) algorithm
through adaptive segmentation [34]. For T1n3RF20, T1n5RF20,
T1n7RF20, and T1n9Rf20 SBMR images, ARs and similar indices
(SIs) of segmentation using the BDT combined with non-MSR, the
BDT combined with MSR, and the EM algorithm with spatial feature
(G, x, y, r, �) are presented in Table 2. The SIs of segmented GM were
respectively greater than 0.9572, 0.9805, and 0.7252. The SIs of seg-
mented WM were respectively greater than 0.9594, 0.9817, and
0.7570. The SIs of segmented CSF were respectively greater than
0.9759, 0.9871, and 0.5995. For T1n3RF40, T1n5RF40, T1n7RF40,
and T1n9Rf40 SBMR images, ARs and SIs of segmentation using the
BDT combined with non-MSR, the BDT combined with MSR, and the
EM algorithm with spatial feature (G, x, y, r, �) are shown in Table 3.
The SIs of segmented GM were respectively greater than 0.9528,
0.9809, and 0.7270. The SIs of segmented WM were respectively
greater than 0.9554, 0.9819, and 0.7699. The SIs of segmented CSF
were respectively greater than 0.9769, 0.9857, and 0.5927.

4. Discussion

For T1n9 SBMR images, the BDT algorithm with spatial fea-
ture (G, x, y, r, �) attained higher segmentation accuracy than that
with spatial feature (S, x, y, r, �) (see Fig. 4). Twenty boost trials
were adopted to construct the BDT segmentation algorithm with
spatial features (G, x, y, r, �) and (S, x, y, r, �) for a series test (boost
trial 0–40) from a T1n9 SBMR image (Fig. 3). As the number of
boost trials increased, the amount of time required for computation
increased. High image intensity distribution overlap is often caused
by increased noise levels or RF inhomogeneities in SBMR images,
affecting segmentation accuracy. The BDT decision tree combined
with MSR  algorithm was  hereby proposed as a solution. The con-
trasts of brain tissues were enhanced and RF inhomogeneities were
corrected with the MSR  algorithm (see Fig. 5). Boyes et al. [37] used
N3 algorithm to correct brain MR  images; an estimated Gaussian
distribution of image intensities was  used to obtain an estimate
of the non-uniformity field. The MSR  [22] algorithm uses a Gaus-
sian surround space to estimate the bias field of images. The MSR
algorithm is easy to be implemented when combined with three

SSRs. These two  correction algorithms used a similar function to fit
the intensity distribution. The brain tissues of images segmented by
BDT with spatial feature (G, x, y, r, �) from the MSR-corrected images
showed enhanced clarity as compared to the original images(see



W.-H. Chao et al. / Biomedical Signal Processing and Control 7 (2012) 129– 140 135

Fig. 5. The original SBMR with T1n3RF20 and T1n9RF40 images, corrected with MSR  and segmented with BDT.

Table 2
Accuracy rates (ARs) and similar indices (SIs) of segmentation using the BDT algorithm with spatial feature (G, x, y, r, �) from SBMR images with T1n3RF20, T1n5RF20,
T1n7RF20, and T1n9Rf20.

GM WM CSF

Non MSR  With MSR EM Non MSR  With MSR  EM Non MSR  With MSR  EM

T1n3RF20
AR 0.9839 0.9849 0.9329 0.9771 0.9883 0.8314 0.9907 0.9962 0.7972
SI  0.9797 0.9866 0.8654 0.9811 0.9875 0.8921 0.9879 0.9907 0.7863

T1n5RF20
AR  0.9822 0.9847 0.8986 0.9687 0.9870 0.8535 0.9888 0.9953 0.8000
SI  0.9742 0.9858 0.8585 0.9759 0.9867 0.8929 0.9852 0.9898 0.7721

T1n7RF20
AR  0.9775 0.9822 0.8178 0.9594 0.9826 0.8503 0.9879 0.9953 0.8222

0.9
0.9
0.9

F
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SI  0.9667 0.9820 0.8137 

T1n9RF20
AR  0.9746 0.9824 0.8182 

SI 0.9572 0.9805 0.7252 

ig. 5). Spatial features (G, x, y, r, �) and (S, x, y, r, �) were successfully
pplied as inputs of the BDT algorithm for SBMR images, improving
he accuracy of segmentation.

Across SBMR images with different noise levels and RF inhomo-
eneities, the segmentation accuracy rates of the BDT algorithm
ith spatial features (G, x, y, r, �) and (S, x, y, r, �) were higher than
hose of the CART algorithm with spatial features (G, x, y, r, �) and
S, x, y, r, �). Segmentation accuracy rates of the MSRBDT by spa-
ial features (G, x, y, r, �) and (S, x, y, r, �) were significantly higher

able 3
Rs and SIs of segmentation using the BDT algorithm with spatial feature (G, x, y, r, �) from

GM WM

Non MSR  With MSR EM Non

T1n3RF40
AR 0.9853 0.9844 0.9514 0.9
SI  0.9787 0.9861 0.8332 0.9

T1n5RF40
AR  0.9812 0.9841 0.8786 0.9
SI  0.9726 0.9852 0.8405 0.9

T1n7RF40
AR  0.9753 0.9845 0.8319 0.9
SI  0.9597 0.9850 0.7745 0.9

T1n9RF40
AR  0.9721 0.9826 0.8077 0.9
SI  0.9528 0.9809 0.7270 0.9
691 0.9834 0.8761 0.9834 0.9894 0.6815
443 0.9791 0.6364 0.9787 0.9953 0.8463
594 0.9817 0.7570 0.9759 0.9871 0.5995

than those of the CART combined with the MSR  algorithm. When
noise levels of brain MR images were increased, segmentation accu-
racy rates of the BDT algorithm with spatial features (G, x, y, r, �)
and (S, x, y, r, �) decreased. A decrease in accuracy rates was also
found when the noise levels were increased with 20% or 40% RF
inhomogeneities. Applying the BDT combined with MSR  algorithm,

the segmentation accuracy rates did not show significant differ-
ences between SBMR images with 20% and 40% inhomogeneities.
For SBMR images with noise and 20%/40% RF inhomogeneities,

 SBMR images with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9Rf40.

 CSF

 MSR  With MSR  EM Non MSR  With MSR  EM

743 0.9880 0.7438 0.9888 0.9962 0.7630
801 0.9871 0.8404 0.9879 0.9917 0.8000
671 0.9867 0.8374 0.9851 0.9953 0.8056
745 0.9863 0.8801 0.9847 0.9912 0.7721
486 0.9855 0.7433 0.9814 0.9925 0.8333
621 0.9857 0.8275 0.9787 0.9875 0.6329
386 0.9795 0.6591 0.9796 0.9944 0.8333
554 0.9819 0.7699 0.9769 0.9857 0.5927
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ig. 6. Accuracy rates of tissue segmentation using CART on SBMR images with T1n3
ates  of WM.  Row 2, accuracy rates of CSF. Column 1, segmentation using CART w
S,  x, y, r, �).

igher segmentation accuracy rates were attained by the BDT
ombined with MSR  algorithm, with spatial features (G, x, y, r, �)
nd (S, x, y, r, �). The maximum segmentation accuracy rate was
btained with the BDT combined with MSR  algorithm, with spa-
ial feature (G, x, y, r, �), on SBMR images with noise and 20%/40%
F inhomogeneities (see Figs. 6–9).

Accuracy rate (AR) and similar index (SI) were used to evalu-

te the segmentation results of SBMR images. Segmentation results
ere compared among the BDT only, BDT combined with the MSR

lgorithm, and the EM algorithm. The ARs and SIs of GM,  WM,
nd CSF segmentation using BDT algorithm with spatial feature
, T1n5RF20, T1n7RF20, and T1n9RF20. Row 1, accuracy rates of GM.  Row 2, accuracy
atial feature (G, x, y, r, �). Column 2, segmentation using CART with spatial feature

(G, x, y, r, �) were higher than those in which the EM algorithm was
applied. The SIs and ARs of GM,  WM,  and CSF segmentation using
BDT combined with MSR  algorithm, with spatial feature (G, x, y, r, �),
were significantly higher than those obtained with the EM algo-
rithm (see Tables 2 and 3). For SBMR images with noise and 20%/40%
RF inhomogeneities, ARs and SIs of GM,  WM,  and CSF segmenta-
tion using BDT combined with MSR  algorithm, with spatial feature

(G, x, y, r, �), were higher than 0.9791 and 0.9805, respectively (see
Tables 2 and 3). In light of the importance of brain tissue segmenta-
tion in MR  images, studies have explored measures to improve the
accuracy rates of MR  segmentation [9,10].  Shen et al. [9] used an
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ig. 7. Accuracy rates of tissue segmentation using a BDT algorithm on SBMR image
,  accuracy rates of WM.  Row 2, accuracy rates of CSF. Column 1, segmentation us
eature  (S, x, y, r, �).

ntelligent segmentation technique (IFCM) to classify GM,  WM,  and
SF of brain MR  images according to scores, 0.85 (GM), 0.92 (WM),
nd 0.88 (CSF). Vrooman et al. [10] proposed a fully automatic KNN
o segment brain tissues; the similar indices were 0.92 (GM), 0.92
WM),  and 0.93 (CSF). Li et al. [35] used the partial volume with
ombining a robust maximum a prior (PV-MAP) probability, the
uzzy C-mean (FCM), and the adaptive fuzzy C-mean (AFCM) to
egment T1 weighted and T2 weighted brain MR  images. The true

ositive fraction (TPF) of WM,  GM,  and CSF segmentation using
FCM was 76.58, 85.80, and 93.26, respectively. Vrooman et al. [10]
sed N3 algorithm to correct the RF inhomogeneity of brain MR

mages and then the simulated brain MR  images were segmented
 T1n3RF20, T1n5RF20, T1n7RF20, and T1n9RF20. Row 1, accuracy rates of GM.  Row
T with spatial feature (G, x, y, r, �). Column 2, segmentation using BDT with spatial

with KNN method. The SIs were 0.93, 0.92, and 0.92 for CSF, GM,
WM,  respectively. These studies showed the importance of improv-
ing brain tissue segmentation accuracy in MR  images. Scores of
brain tissue (GM, WM,  and CSF) segmentation with the present
algorithm, with spatial features (G, x, y, r, �) and (S, x, y, r, �), were
better than those in previous studies.

Other complicated MRI  data sets from the
Internet Brain Segmentation Repository (IBSR;

http://www.cma.mgh.harvard.edu/ibsr/) were also adopted.
The data consisted of 20 normal T1-weighted brains in an 8-bit
format. Three selected T1-weighted brain slices (slice number
100 23, 12 3, 13 3) were segmented utilizing the MSRBDT and

http://www.cma.mgh.harvard.edu/ibsr/
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Fig. 8. Accuracy rates of tissue segmentation using CART on SBMR images with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40. Row 1, accuracy rates of GM.  Row 2, accuracy
rates  of WM.  Row 3, accuracy rates of CSF. Column 1, segmentation using CART with spatial feature (G, x, y, r, �). Column 2, segmentation using CART with spatial feature
(
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S,  x, y, r, �).

M algorithms. The ARs and SIs of MRI  segmentation when using
SRBDT with spatial features (G, x, y, r, �) were more improved

5–15% and 6–26%, respectively) than those of segmentation when
sing EM with spatial features (G, x, y, r, �). Yu et al. [36] used the
ame IBSR data sets to demonstrate brain image segmentation
ith a hybrid model-based method. A comparison of the per-
ormance of brain segmentation between MSRBDT with spatial
eatures (G, x, y, r, �) and the hybrid model-based method was also
erformed, with our proposed method attaining higher SIs of
egmentation and achieving 1.3–3.8% in improvements for WM
and GM segmentations – results surpassing those of segmentation
by [36]. As such, better results were obtained with the MSRBDT
algorithm.

In conclusion, the MSRBDT algorithm successfully segmented
the SBMR images, and significantly improved the ARs and SIs of
brain tissue segmentation. A supervised approach for segmenta-

tion created clearer brain tissue MR images, in which structures
of interest were precisely identified by the BDT combined with
MSR  algorithm. In order to compare MR  image segmentation accu-
racy rates, spatial features (G, x, y, r, �) and (S, x, y, r, �) were applied
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Fig. 9. Accuracy rates of tissue segmentation using a BDT algorithm on SBMR images with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40. Row 1, accuracy rates of GM.  Row
2 ing BD
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w
w
a
r
b

,  accuracy rates of WM.  Row 3, accuracy rates of CSF. Column 1, segmentation us
eature  (S, x, y, r, �).

mong the general gray level and spatial gray level, combined with
uclidean coordinates (x, y) or polar coordinates (r, �) for image
reprocessing. Results of segmentation evaluation indicated that
he RF inhomogeneities of MR  images were successfully corrected
ith the MSR  algorithm. The optimum accuracy rates of brain tissue

egmentation were obtained when the spatial feature (G, x, y, r, �)
as used to classify the SBMR images. Accuracy on SBMR images

as improved when the BDT combined with MSR  algorithm was

pplied. Therefore, the proposed BDT combined with MSR  algo-
ithm was feasible for tissue (GM, WM,  and CSF) segmentation of
rain MR  images.
T with spatial feature (G, x, y, r, �). Column 2, segmentation using BDT with spatial
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