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1. Introduction

This paper studies two scheduling problems in a two-machine flow shop, subject to the condition that the jobs are
processed in the same fixed sequence on both machines. A new block approach is proposed and deployed to determine
their solutions in polynomial time within the general dynamic programming framework.

1.1. State of the art

In machine scheduling, a schedule specifies job starting and completion times on the machines. In some cases, it is
completely characterized by the job sequence, and in the other cases, extra information is needed to fully specify it. A
complicated schedule structure is typical for two major types of scheduling: scheduling with inserted machine idle time [1]
and batch scheduling [2]. A commonly used approach to tackle NP-hard problems of these types is to derive an optimal
polynomial time algorithm for the problem in which jobs are processed in the same fixed sequence. Then this algorithm
can be used in a local search method to evaluate candidate job sequences for the general problem. There also exist studies,
in which a specific optimal job sequence is established analytically. In real-life applications, a job sequence can be given as
an input data of the problem. Shafransky and Strusevich [3] studied several open shop scheduling problems, subject to a
given sequence of jobs on one machine, and mentioned that a pre-assigned sequence of jobs could be retained on one of
the machines in the manufacturing process owing to technological or managerial decisions. A fixed job sequence can also
appear due to the application of the First-Come-First-Served principle, which is commonly regarded fair by customers.
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Algorithms with machine idle time insertion for a fixed job sequence, also called timing algorithms [4], were applied for
a single machine [5-11], parallel machines [12] and a flow shop [13,4]. The problem studied by Lin and Cheng [13] belongs
to the area of scheduling with time-dependent processing times, as the machine-2 processing time depends on job’s waiting
time between the machines. To avoid extra processing on machine 2, idle times can be inserted on machine 1. Scheduling
with time-dependent processing times was surveyed by Cheng et al. [ 14].

Batching decisions for a fixed job sequence were studied by Cheng et al. [15] and Ng and Kovalyov [ 16] for the makespan
minimization in a flow shop. Considering the fabrication and assembly of components in a two-machine flow shop, Cheng
and Wang [17] studied the problem of batching the jobs sequenced according to Johnson’s rule or the agreeable processing
time condition for makespan minimization. As for the assembly-type flowshop batching problem with a fixed job sequence,
Lin et al. [ 18] investigated the makespan minimization for the three-machine case. Later, Hwang and Lin [ 19] addressed the
four regular objective functions of total completion time, maximum lateness, total tardiness, and number of tardy jobs for
the general (m+ 1)-machine case. Lin and Cheng [20] also considered the objective of maximum lateness, weighted number
of tardy jobs or total weighted completion time for a fixed job sequence with centralized or decentralized batching decisions
in concurrent open shops.

In this paper, we consider two problems of total completion time minimization in a two-machine flow shop, subject to
a fixed job sequence. Though there exist results for the makespan (Cy.x) minimization in these settings, there is no result
for the minimization of total completion time, which is one of the most popular and practically relevant criteria in the
scheduling literature.

1.2. Formulation of problems and block approach

Denote the processing times of job j on machine 1 and machine 2 by py; and py;, respectively. The first problem includes
a step increasing job processing time on machine 2, which depends on the job waiting time between the machines. We call
this waiting time a time lag between the two operations of a job. For job j, it is denoted by ¢; and, given a schedule, it is
equal to the difference between the starting time of this job on machine 2 and its completion time on machine 1. A specified
time delay ¢; is also associated with each job j. If £; < ¢;, then py; = «;; otherwise py; = o; + ;. Besides the given job
sequence, a schedule should specify machine-1 idle times, which are used to avoid an increase of the job processing times
on machine 2, and the time lags between the two operations of each job. Similar to Lin and Cheng [13], who studied the
makespan minimization problem in the same setting, our first problem is denoted by F2|fixed_seq, p; € {o;j, o + Bi}| > G,
where F2 stands for a two-machine flow shop, fixed_seq for a fixed job sequence, and ) G; for the total completion time
minimization criterion. The problem is motivated by the manufacturing operations in which temperature regime plays a
role.

The second problem is to batch jobs in a predefined sequence. The batches are consistent in the sense that their formations
are the same on both machines. Job completion times are determined according to the batch availability model such that
jobs of the same batch complete on the same machine at the same time, when processing of the last job in this batch has
been finished. The processing time of a batch B on machine [ is equal to the sum of the machine setup time, s;, and job
processing times, ZjEB pjj- The setups are non-anticipatory, i.e., a setup on machine 2 can start only after the corresponding
batch is completed on machine 1 and machine 2 is unoccupied. Following Ng and Kovalyov [16], we denote this problem by
F2|fixed_seq, sum-batch, consi, 5| 3 C;, where sum-batch stands for the batch processing time calculation formula, consi for
consistent batches, and s; for non-anticipatory machine-dependent setup times. Motivation for this problem comes from
manufacturing environments in which items move between facilities in containers such as pallets, boxes or carts.

In the two problems under study, the difficulty in the design of a polynomial time dynamic programming algorithm stems
from the potential conflict between the makespan and the total completion time. A subschedule which minimizes the total
completion time for the first r jobs may retain a relatively large makespan which worsens the total completion time for the
remaining n — r jobs. To resolve the difficulty that hinders the principle of optimality, a mechanism for fixing the processing
lengths of subschedules is required. A common approach is to introduce temporal parameters into the dynamic programs.
This however gives rise to pseudo-polynomial running times. This study develops a two-phase dynamic programming
framework without including any temporal parameters as state variables. We present a concept that a feasible schedule
can be divided into several specific subschedules, each of which is characterized by its shape. On the Gantt chart, the shape
of a subschedule in a two-machine flow shop is determined by the positions of its end on machine 1, its start on machine 2
and its end on machine 2, relative to its start on machine 1. Fig. 1 demonstrates that the shape of a subschedule consisting
of jobs {i, ..., j} is settled by the three-tuple (L, L,, L3). A specific subschedule is called as a block and associated with a
state in the phase-1 dynamic program. A specific state could be associated with more than one block. These blocks in the
same state may have different sums of job completion times, while they must retain an identical shape. Based upon this
background idea, the concept of optimal (schedule) block is introduced. The phase-1 dynamic program produces for each
state an optimal block, which is a block attaining the minimum total completion time among all blocks associated with the
same state. Then an optimal schedule can be built by concatenating several optimal blocks in the phase-2 dynamic program,
which is formulated with backward recursion to establish the validity of the principle of optimality in the studied problems.

For the two studied problems, we utilize idle times to divide a feasible schedule into several blocks. Any two consecutive
blocks for problems F2|fixed_seq, p;; € {oj, o + B}l Y. G and F2|fixed_seq, sum-batch, consi, s;| Y C; are separated by
machine-1 and machine-2 idle times, respectively.



F.J. Hwang et al. / Discrete Optimization 9 (2012) 29-39 31

L

Machine 1 ) [eXeXe} J

L

Machine 2 i 000 000 o000 j

<

L

Fig. 1. Illustration for the shape of a subschedule in a two-machine flow shop.
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Fig. 2. Two example schedules.

In Sections 2 and 3, block structures are defined for each problem and then employed in the development of polynomial
time dynamic programming algorithms. Without the fixed sequence assumption, the two studied problems are both NP-
hard, as will be explained in the corresponding sections. Section 4 contains a summary of the results and suggestions for
future research.

In the sequel, we assume without loss of generality that the fixed job sequence is (1, 2, ..., n).

2. Problem F2|fixed_seq, p;; € {oj, otj + Bi}| Y G

In many manufacturing environments, it is realistic to consider jobs with time-dependent processing times rather than
static and fixed processing times. Lin and Cheng [13] proved the strong NP-hardness of the F2|p,; € {o}, o + Bi}|Cmax
problem, and designed an O(n?) time solution algorithm for the case with a given job sequence. Minimizing the total
completion time without the assumption of a fixed job sequence is strongly NP-hard because the classical F2 || ) C; problem
corresponds to the special case with §; = 0 or t; = oo for all jobs.

The challenge of problem F2|fixed_seq, ps; € {j, oj + Bj}| Y _ Gj is how to make an optimal decision about the machine-1
idle times to avoid extra processing penalty 8; on machine 2. Assigning jobs in the given sequence one by one at the earliest
times on the machines and inserting an idle time in front of job j on machine 1 if the time lag ¢; exceeds tj cannot guarantee
an optimal schedule. Consider the following instance with three jobs: (p11, t1, @1, 81) = (1, 1,4, 1), (P12, t2, 02, f2) =
(1,1,1, 1), and (p13, t3, a3, B3) = (5, 1, 1, 1). The total completion time of the schedule obtained by the above-mentioned
method is 21 (Fig. 2(a)) while the optimal objective value is 20 (Fig. 2(b)).

For this studied problem, we treat a subschedule in which no machine-1 idle time exists between any two consecutive
jobs as a block. An optimal schedule can be either a single block consisting of all jobs {1, . . ., n}, or a concatenation of several
blocks such that there is a machine-1 idle time immediately preceding each block except for the first one. A block is specified
as a maximal, by inclusion, subsequence of jobs which are consecutively processed without any idle time between them on
machine 1, and characterized by the time lag between the two operations of the first job of this subsequence. The remaining
jobs of a block start on machine 2 at the earliest possible times. It is clear that the time lag for job 1 of the first block in an
optimal schedule is equal to zero, i.e. £; = 0.

We associate a block consisting of jobs {i, ..., j} with the two-tuple (i, j), and denote its makespan by T (i, j). The first
block (1,j), 1 < j < n,isillustrated in Fig. 3(a). For each block (i, j) with 2 < i <j < n, the time lag ¢; has to be determined.

Lemma 1. Given that schedules comprise at least two blocks for problem F2|fixed_seq, pa; € {cy, ot + Bi}| Y G, there exists an
optimal schedule, in which the time lag £; between the two operations of job i in each block (i, j) is exactly t; for 2 <i <j <n.

Proof. Assume an optimal schedule where there are block(s) not satisfying the claimed property. Consider the block (i, j)
with the smallesti > 2. Let [; be the idle time preceding the block (i, j) on machine 1. If ¢; > t;, then py; = «; + B;. Shift job i
on machine 1 to the left such that the idle time I; on machine 1 is eliminated. The movement does not increase p,;, and the
optimality of the schedule remains. In the new schedule, block (i, j) vanishes. On the other hand, if ¢; < t;, then py; = «;.
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Fig. 3. Structure of (a) the first block (1, ) for 1 < j < n, and (b) block (i, j) for2 <i <j <n.

Shift job i on machine 1 to the left by min{l;, t; — ¢;} time units so that either the idle time [; is eliminated or the time lag
becomes t;. Similarly, the movement does not increase p,;, and the optimality of the schedule remains. In the new schedule,
either block (i, j) vanishes or £; = t; holds. Repeating the described shifting procedure, whenever necessary, can produce
an optimal schedule as specified in the lemma. O

By Lemma 1, we assume that £; = t; for any block (i, j), 2 < i < j < n. The structure of block (i,j) for2 <i <j < nis
shown in Fig. 3(b).

For problem F2|fixed_seq, py; € {c, o + Bj}| >_ G, there exists an optimal schedule which is a single block (1, n) or a
concatenation of r blocks, (1, j1), (j1 + 1,j2), ..., (jr—1 + 1, n). Note that each two-tuple (i, j) is associated with only one
block, i.e., each block itself is an optimal block. All blocks (i, j) and their corresponding makespan values T(i,j), 1 <i <j <
n, can be built by the following pre-processing procedure. To facilitate further presentation, denote py;;j; = Z’h:i p1n- We
haveT(1,1) = py1 +a,and T(i,i)) = pi+ ti+ o, 2 <i<nFor1<i<j<n,

’ max{T(i,j — 1), piijy} + @, otherwise.
In the second phase, we design a backward dynamic programming algorithm, denoted as DP-Idle-Time, in which a single
block is added as the prefix of a partial schedule of jobs {i, . . ., n}. Such a partial schedule is said to be in state i. Algorithm
DP-Idle-Time recursively calculates the value g (i), which is the minimum total completion time of the partial schedule(s)
in state i, 1 < i < n. Fig. 4 illustrates the recursion scenario of algorithm DP-Idle-Time. A dummy job n + 1 with
Din+1 = tht1 = @pt1 = Bny1 = 0is needed for the boundary condition in algorithm DP-Idle-Time. Denote inequality

T@i,i — 1) > pyiiy + ty (M

by condition A.
Algorithm DP-Idle-Time
Initialization:

~ 0, ifi=n+1;
gl) = {oo, otherwise.

Recursion: (Refer to Fig. 4)
For eachifromndownto 1do

i'—1
g()= min g+ -7+ DTGUT —=1) —pir —ty) + Z T(i, h), if condition A; 2)

i+1<i’<n+1 h=i .
00, otherwise.

Goal: Calculate g(1).

The optimal objective value is g(1) and the corresponding optimal schedule can be retrieved by backtracking.

The algorithm is justified as follows. For this problem, we aim to make an optimal decision about which machine-1
operations are to be deferred so that the total completion time is minimized. A crude enumeration requires evaluation of
2"=1 combinations of decisions on whether to defer each of the jobs {2, ..., n}. All candidate solutions can be constructed
by the proposed block concatenation. We avoid full enumeration by using algorithm DP-Idle-Time, which in each state i
eliminates n — i candidate partial schedules that are impossible to be extended to constitute an optimal complete schedule.
Since the backward recursion is performed, the processing length of the partial schedule in state i with value g(i) does
not affect the remaining unscheduled jobs {1, ...,i — 1} and the optimality of a partial schedule can be kept. In Eq. (2),
the optimal values of all possible ‘previous’ states i’ are examined and used to derive the solution of the current state i. As
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Fig. 5. Structure of block (i, i1, j, k).

illustrated in Fig. 4, condition A is employed to guarantee that a partial schedule in state i can be constructed by articulating
block (i, i — 1) with the partial schedule in state i’ which possesses value g(i'). The ‘min’ operation for i’ fromi+1upton+1
in Eq. (2) determines the value g (i), and a partial schedule in state i with value g (i) dominates all other partial schedules in the
same state. This claim can be proved by induction on i. Denote an arbitrary partial schedule in state i and its total completion
time by o; and v(o;), respectively. We obviously have the induction base g(n + 1) < v(o,41). The induction hypothesis is
that given j < n+ 1 the inequality g(h) < v(op) holds forallh € {j, ..., n+ 1}. Then we prove that g(j — 1) < v(oj_1). For
some j' withj < j’ < n+ 1, we assume that there exists a partial schedule o;_; with a leading block (j — 1, j — 1) such that
v(0j—1) < g({ —1). Then we have v(oj_1) = Zj,:;jz TG—1,h)+m—j+1D)(TG—1,j—1)—py —ty) + X, where X is the
total completion time of the partial schedule in state j' from which ¢j_ is built. From the induction hypothesis X > g(j’),
it follows that v(oj_1) > Z],.:;jll TG—1,h+m—j+1)TG—1,7—1) —pyy — ty) + g(") > g( — 1), where the last
inequality is due to Eq. (2). A contradiction arises. We establish g(h) < v(oy) for 1 < h < n by induction, and the claim is
proved. Hence, the principle of optimality holds and algorithm DP-Idle-Time can generate an optimal solution. An optimal
schedule is the schedule in state i = 1 with value g(1), which is either a concatenation of the first block (1, i — 1) and a
partial schedule in state i’ with value g(i") for 2 < i’ < n, or the single block (1, n).

As for the required running time, it is not hard to see that computing T (i, j) for 1 < i < j < n requires O(n?) time, and
computing the value g(i) requires O(n) time for each i. Hence, the running time of algorithm DP-Idle-Time is O(n?). Our
discussion is summarized in the following theorem. A numerical example is given in Appendix A for illustration.

Theorem 1. Problem F2|fixed_seq, ps; € {o;j, & + Bj}| >_ Cj can be solved in 0(n?) time.

3. Problem F2|fixed_seq, sum-batch, consi, s;| )

The F2|sum-batch, consi, ;| ) C; problem is also strongly NP-hard because it is equivalent to the classical problem
F2 || 3 G if setup times are equal to zero. The F2|sum-batch, consi, s;|Cnax problem was studied by Cheng et al. [15], Glass
et al. [21] and Kovalyov et al. [22]. NP-hardness proofs, polynomial time algorithms for special cases and heuristics were
presented in these studies. For the case of a fixed job sequence, Cheng et al. [15] developed an O(n®) algorithm, and Ng and
Kovalyov [16] designed an O(n°™~7) dynamic programming algorithm if there are m (m > 2) machines.

For problem F2|fixed_seq, sum-batch, consi, s;| ) Cj, we define a block as a subschedule associated with a state (i, iy, j, k),
where i and j are the first and the last jobs of the block, respectively, k is the number of batches in the block, and i; is the last
job of the first batch in the block. It is assumed that the first batch of the block is critical in the sense that, for this block, no
idle time exists on machine 2 between the completion of the first batch on machine 1 and the completion of the last batch
on machine 2. The structure of a block (i, i1, j, k) is shown in Fig. 5.
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Notice that a state can be associated with one or more blocks. Let f (i, i, j, k) denote the minimum total completion time
of jobs in a block among all blocks associated with the same state (i, iy, j, k). A block with value f(i, iy, j, k) is an optimal

block in state (i, i1, j, k). Denote pyj; = Z’,;:,. pi for I = 1, 2, and denote relation

(k — 1D)s1 + pijig+17 < (kK = 1)sy + poiyg (3)

by condition B. The phase-1 dynamic program calculates values f (i, i,j, k) for1 <i<i; <j<nand1 <k <j—i; +1
by forward recursion.

Forward recursion for f (i, i1, j, k)

Initialization:

cooo o )y =i+ D1+ paiiyg + S2 + Pogiigy)s. ifj=ij,and k = 1;
fa i g, k) = {oo, 1 " otherwise.

Recursion: (Refer to Fig. 6)
For eachfeasible i, iy, j, ksatisfying1 <i<i;<n—1,iij+1<j<n2<k<j—i;+1do

fG,iy,j, k) = min (4)

fa, i, i, k— 1)+ (G —j)(s1 4 pagiiy) + ks2 + pagiyp),  if condition B;
iy k-2 <j—1

00, otherwise.

In the second phase, we construct an optimal schedule by concatenating several optimal blocks. In the following
backward dynamic programming algorithm, named as DP-Batch, an optimal block is added as the prefix of a partial
schedule of jobs {i, ..., n} in state (i, i;), where i and i; are respectively the first and the last jobs of the first batch in the
partial schedule. The corresponding minimum total completion time is denoted by g (i, i1). Algorithm DP-Batch recursively
calculates values g(i, i1), 1 < i < i; < n. Adummy job n + 1 with p; ;11 = oo and p, n+1 = 0is used for the boundary
condition. Denote relations

. y vy i i1 + .
h+1<i<n+1,i<ii<n+|——1|,2— - <k<i-—i (5)
n+1 i’
by range C, and denote inequality
ks +p1[i1+1;,"1] > ks, + Do -1 (6)
by condition D.
Algorithm DP-Batch
Initialization:
(i,iy) = 0, ifi=ii=n+1;
W1 =150, otherwise.

Recursion: (Refer to Fig. 7)
For each feasible i, i; satisfying 1 <i <i; <ndo
YA o ce . .. .
2(i. i) = min {g(z Ji) + (=i 4+ Dksy + prz—n) +f (G, i1, — 1.k, if condition D; ™
¢ ]oo, otherwise.
Goal: Find min;<;, <, £(1, iy).
The optimal objective value is mini<j,<,£(1,i;) and the corresponding optimal schedule can be obtained by
backtracking.
The algorithm is justified as follows. In this problem, a crude enumeration needs to evaluate 2"~! combinations of
decisions on whether to have a machine-dependent setup time inserted in prior to each of the jobs {2, ..., n}. We can



F.J. Hwang et al. / Discrete Optimization 9 (2012) 29-39 35

1 Bl Bk !
Machine 1 |§{i 00O jl§ o000 |f000 i ~ls/i" 000 ils ooo s|ooon
_______ ‘ F:::él::{.::::::::::‘_____B_k___l‘
Machinezﬁ—o——b—é—a&a—é—“—j—ir—l——i )i 000 ils] o0oo [sfo00i'—1[si' 000 ils, 000 |5, /] coo |s| coon
| backwardDP | E- oo

Fig. 7. Illustration for algorithm DP-Batch.

generate all candidate solutions by the presented block concatenation. In the phase-1 dynamic program, Eq. (4) examines
all possible ‘previous’ states (i, i1, j, k — 1) confined within range i; + k — 2 < j/ < j — 1 to determine the solution of
the current state (i, i, j, k). As demonstrated in Fig. 6, condition B is used to guarantee that a block in state (i, iy, j, k) can
be built by merging an optimal block (i, iy, j/, k — 1) with the single batch consisting of jobs {j/ + 1, ..., j}. Note that all
blocks in the same state (i, iy, j, k) retain an identical shape. As defined in Eq. (4), the optimal block (i, i1, j, k), i.e. block
(i, i1, j, k) with value f (i, i1, j, k), dominates all other blocks in the same state in the sense that it has the minimum sum
of job completion times among those of all blocks in this state. In the second phase, we develop algorithm DP-Batch by
Eq. (7). With range C, all possible leading optimal blocks (i, i1, i’ — 1, k) and ‘previous’ states (i, ;) from which the current
state (i, i) can be derived are considered. As shown in Fig. 7, condition D guarantees that a partial schedule in state (i, i)
can be constructed by articulating the optimal block (i, i1, i — 1, k) with the partial schedule in state (i’, i}) which has
the value g (i, i}). The value g (i, i1) is obtained by performing the ‘min’ operation in Eq. (7), and a partial schedule in state
(i, iy) with value g(i, i;) dominates all other partial schedules in the same state. This claim can be proved by induction.
Denote an arbitrary partial schedule in state (i, i) and its total completion time by o; ;, and v(o; ;,), respectively. Obviously,
the induction base g(n + 1,n + 1) < v(0p+1.0+1) holds. Assume, as the induction hypothesis, that given j < n we have

g(h,hy) < v(opy,) forallhand hy withj < h < hy < n+ L#J. Then we prove that g(j — 1,j;) < v(oj_1,) for

j— 1 < ji < n.Suppose that for some j' and j; withj; +1 < j < j; < n+ L%J there exists a partial schedule
oj1,j, which is a concatenation of the optimal block (j — 1,j;,7 — 1, k) and a partial schedule in state (j', j;) such that
v(oj_1j,) < &( — 1,j1). Then we have v(oj_1j) = f(G — 1,j1,i/ — 1, k) + (n — j + 1)(ks1 + pyjji—17-1) + X, where X
is the total completion time of the partial schedule in state (j’, j;) from which oj_; j, is built. By the induction hypothesis
X > g(j', j;), we can obtain that v(oj—1,) > f(— 1,1, — 1, k) + (n — j' + 1) (ks1 + prjj—1y—1) + &0, 1) = 8G — 1,)1),
where the last inequality follows from Eq. (7). A contradiction arises. By induction, g(h, hy) < v(opp,) for1 <h <h; <n
is thus established. The principle of optimality holds and algorithm DP-Batch can produce an optimal schedule.

The two-phase dynamic programming algorithm consists of the construction of optimal blocks and the concatenation of
optimal blocks. Since there are O(n*) states (i, iy, j, k), each of which requires O(n) operations, all the optimal blocks can be
constructed in O(n”) time. Since there are O(n?) states (i, i;), each of which requires O(n®) operations, the values g (i, i;) for
1 < i < i; < ncan be obtained in O(n°) time, too. Finally, the calculation of ming <j, <p g(1, iy) requires O(n) time. Hence,
the running time of algorithm DP-Batch is O(n°) and the following theorem follows. A numerical example is provided in
Appendix B for illustration.

Theorem 2. Problem F2|fixed_seq, sum-batch, consi, s;| Y Cj can be solved in o(n°) time.

4. Concluding remarks

This paper studied two scheduling problems in two-machine flow shops, in which the jobs are processed in a
predetermined sequence on both machines and the objective is to minimize the total completion time. A new concept
of optimal block was suggested and utilized to develop polynomial time dynamic programming algorithms. Problems
F2|fixed_seq, pyj € {cj, oj + Bj}| D G and F2|fixed_seq, sum-batch, consi, s;| ) C; were solved in 0(n?) and O(n°) times,
respectively.

Possible extensions of our research include the minimization of due date related performance metric, i.e. the maximum
lateness, total tardiness or number of tardy jobs, and more general flow shop environments. For example, the general m-
machine flow shop model can be of further interest. Further research on the second studied problem could be conducted
by relaxing the restriction of consistent batches since there could exist an optimal schedule in which the batches are not
consistent on two machines. Consider an instance with the following processing times and setup times: p;; = p21 =
1,p12 = p22 = 2,51 = 5,and s; = 1. In the optimal schedule, jobs 1 and 2 are grouped into the same batch on machine 1
and then processed with individual batches on machine 2. The max-batch model, in which the processing time of a batch is
defined as the maximum processing time of the jobs contained in this batch, rather than the sum-batch model can also be
considered in the second problem.
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Appendix A. Example of algorithm DP-Idle-Time

Example 1. Consider the following instance withn = 3 : (p11, t1, o1, 1) = (1, 1,3, 1), (p12, t2, @2, f2) = (1, 1, 1, 2), and
(P13, t3, 3, B3) = (5, 1, 1, 1). The two-phase algorithm is demonstrated as follows.
Phase 1. (Calculation of T (i, j))
T(,)=14+3=4;
T(2,2)=1+1+1=3;
T(3,3)=54+14+1=7;
T(1,2)=44+1+2=7,
T(1,3) =max{7,7} +1=38;
T(2,3) =max{3,6}+1=7.
Phase 2. (Algorithm DP-Idle-Time)
Boundary condition: p1.4 =ty = a4 = B4 = 0.
Initialization: g(4) = 0; g(1) = g(2) = g(3) = o0.
Recursion:
i=3
=4
T(3,3) =7 > piza +ta=>5
z21=g4+0+T73,3) =7,
g(3) = min{z;} = 7.

i=2
=3
T(2,2) =3 <pip3 +t3=7
Z1 = 0Q;
=4
T(2,3) =7 > pipg+t4 =6
Z=g@) +0+Y,_, T2, h) =3+7=10;
g(2) = min{z;, z,} = 10.

i=1
=2
T, D) =4>pipny+tr=3
z21=2R2)+ @ —-2)(T(1,1) —p12—t)+T(A,1)=10+24—-1-1)+4=18;
=3
T(1,2) =7 <pipy+1t3=8
Zy = OQ;
i =4
T(1,3) =8 > pijrag +ta =7
23=84)+0+Y,_,T(1,h) =447 +8 =19;
g(1) = min{zy, 25, z3} = 18.

Goal: g(1) = 18.

The corresponding optimal schedule can be constructed by backtracking the recursion, as illustrated in Fig. A.1.

Appendix B. Example of algorithm DP-Batch

Example 2. Consider the following instance withn = 3 : (p11, p21) = (1, 3), (P12, P2) = (2, 1), (p13, p23) = (5, 1), and
(s1,52) = (1, 2). The two-phase dynamic programming algorithm is demonstrated as follows.
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Fig. A.1. Optimal schedule with g(1) = 18.

Phase 1. (Forward recursion for f (i, i1, j, k))

Initialization:
FAL,L, 1L, ) =0-14+1D(s1+pi1+s2+pa) =7,
f(1,2,2,1) = @2 — 14 1)(s1 + pip1:2) + S2 + P2p127) = 20;
F(1,3,3,1) = 3 — 14 1)(s1 + pip1:3) + S2 + Pa1:3) = 48;
f2,2,2,1) =2 -2+ 1)(s; +p12 +S2 + p22) =6;
f(2,3,3,1) = (3 =2+ 1)(s1 + pipz3) + S2 + Pap23) = 24
f3,3,3,D)=C—=3+1(s1+piz+s2+p23)=9;
For other values of i, i1, j, k, we denote f (i, i1, j, k) = o0.
Recursion:
(4,i1,j,k) =(1,1,2,2)

=1

2—-Dsi+pp=3<@—-Ds;+py=5
zZ1=fL, L, 1, D) +Q—-=D(1+pri+2+pp2)=7+1+1+4+4) =17.
f(1,1,2,2) = min{z;} = 17.

(,11,4,k) =(1,1,3,2)

=1
R—-=Ds1+pip3=8>2—1Ds; +p1 =5
Z1 = OQ.
=2
2—=1s1+pi2z =8> (2 —1sy; +por12 =6
Zy = OQ.

f(1,1,3,2) = min{z;, 2o} = oo.

(i,i1,j, k) = (1,1, 3,3)
=2
B—=Dsi+pip3z=9> G —Ds; +popiz =8
Z1 = OQ.
f(1,1,3,3) = min{z,} = o0.

(i,i1,j, k) =(1,2,3,2)
=2
2—-1Dsi+pi3=6=2—1sy +pop121 =6
z21=f(1,2,2,1) + (3 = 2)(s1 +pip1z) + 282 + pori:3) =20+ (1 +3+4+5) = 33.
f(@,2,3,2) = min{z;} = 33.

(,i1,4, k) = (2,2,3,2)
=2
2—Dsi+p3=6>2—Ds;+pp=3
Z1 = OQ.
f(2,2,3,2) = min{z;} = oo.

Phase 2. (Algorithm DP-Batch)
Boundary condition: p14 = 00; pag = 0.
Initialization:
g(4,4) =0;
For other values of i, iy, we denote g(i, i) = oo.
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Recursion:
(i,i1) =(3,3)
({, i, k) =(4,4,1)
S1+P1a=00> S+ px3=3
21=84,49+0+f3,3,3,1) =9.
g(3,3) = min{z;} = 9.

(i,i1) = (2,3)
@,i, k) =04,41)
S1+P1a =00 > Sy +pyp3 =4
z1=g4,49+0+f(2,3,3,1) =24
g2, 3) = min{z;} = 24.

@, .1'1).= (2,2)
({, i, k) = (4,4,2)
251 + Pi[3:4) = 00 > 283 + Po2:3) = 6
z1=g(4,4)+04+f(2,2,3,2) = .
@i,k =(@3,3,1
S1+p3=6>5+ppr=3
2=83,3)+ B =3+ D(s1 +p2) +f(2,2,2,1) =9+3+6 = 18.
g(2,2) = min{zq, z,} = 18.

(i,i1) = (1, 3)
(, i/l, k)= (@4,4,1)
S1+P1a =00 > S + o1z =7
z1=g(4,4)+04+f(1,3,3,1) =48.
g(1,3) = min{z;} = 48.

(i! ll)= (17 2)
(@, 1,k =(4,4,2)
251 + Pi[3:4) = 00 > 285 +por1:31 = 9
z1=g(4,4)+0+f(1,2,3,2) = 33.
@, i,k =(@3,3,1)
S1+Dpi3=6=5+po1:2) =6
Z7 = OQ.
g(1,2) = min{zq, z,} = 33.

i,i)=(@1,1)
(, i/1, k) =(4,4,3)
3s1 + P1p2:a) = 00 > 353 + popi:3) = 11
z21=8g4,49+0+f(1,1,3,3) =o0;
(@, i/1, k)= (4,4,2)
251 + P12 = 00 > 285 +por1:31 = 9
z,=g804,4)+04+f(1,1,3,2) = o0;
@, i/l, k)= (@3,3,2)
251 + pi2:3 = 9 > 283 + popi2) = 8
z3=83,3)+ B -3+ 1D2s1+pipn2) +f(1,1,2,2) =945+ 17 = 31;
(@, i/1, k=1(2,3,1)
S1+ P23 =8>S +pa1 =5
24=g2,3)+ B —=2+D(s1+pn) +f(1,1,1,1) =24+ 4+ 7 = 35;
(@, i/1, k=(2,2,1)
S1+pr=3<s+pr1=>5
Z5 = 00,
g(1, 1) = min{zy, 2, z3, 24, 25} = 31.

Goal: minj<j,<3g(1,41) = g(1,1) = 31.

The corresponding optimal schedule can be constructed by backtracking the recursion, as illustrated in Fig. B.1.
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Fig. B.1. Optimal schedule with g(1, 1) = 31.
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