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The reconstruction of phylogenetic trees is one of the most important and interesting problems of the
evolutionary study. There are many methods proposed in the literature for constructing phylogenetic trees.
Each approach is based on different criteria and evolutionary models. However, the topologies of trees
constructed from different methods may be quite different. The topological errors may be due to unsuitable
criterions or evolutionary models. Since there are many tree construction approaches, we are interested in
selecting a better tree to fit the true model. In this study, we propose an adjusted k-means approach and a
misclassification error score criterion to solve the problem. The simulation study shows this method can
select better trees among the potential candidates, which can provide a useful way in phylogenetic tree
selection.

Keywords: phylogenetic tree; misclassification error; k-means; adjusted k-means

1. Introduction

The reconstruction of phylogenetic trees is one of the most important and interesting problems of
evolutionary study [4]. There are many existing methods for constructing phylogenetic trees
from molecular data: unweighted pair-group method using arithmetic averages (UPGMA),
neighbor-joining, minimum evolution and maximum parsimony methods [4,11,17]. In addition,
the maximum likelihood approach, Markov chain Monte Carlo-based Bayesian inference and
other approaches are proposed for tree constructions [26]. Beside phylogenetic applications, the
classification tree methods are useful in other applications [2,14,18–20,25].

The patterns of phylogenetic trees built from various methods may be substantially different.
Selecting better trees to fit real data is an essential problem in the investigation of evolutionary
processes. There are two types of errors for phylogenetic trees: the topological error and the
branch-length error [22]. The former error is the differences in the branching pattern between
an inferred tree and the true tree, and the latter are deviations of estimated branch lengths from
the true branch lengths. Topological errors are more serious than branch-length errors. Thus, we
mainly focus on topological error in the study.
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644 H. Wang and S.-L. Hung

To examine the reliability of a tree, although bootstrap methods can be used to test the reliability
of a tree, they are unsuitable for tree selection. In this study, we focus on the comparison of different
trees and propose a statistical method, the adjusted k-means approach, to examine the accuracy
of the topology of trees and use it as a criterion to select a better tree. The trees considered in
this study are based on maximum likelihood and Bayesian inference, UPGMA, neighbor-joining,
minimum evolution and the maximum parsimony approaches which can be obtained by molecular
evolutionary genetics analysis (MEGA) 4.1 software [12,21].

The adjusted k-means method is established by clustering multiple sequences into several
groups. We then assign the sequences with the same index number in the same group and cal-
culate the misclassification error scores for the trees. We recommend the tree with a smaller
misclassification error. This approach is basically associated with a statistical method to guide the
selection of better trees. The inferences for the existing approaches are usually based on an evolu-
tionary model. From the statistical viewpoint, we can classify the sequences into several clusters
by exploring the features of the sequences without assuming any evolutionary model. Since the
existing estimated evolutionary models may not be close to the true evolutionary model [24], tree
construction based on an evolutionary model may lead to an unsatisfactory result if the assumption
of the evolutionary model is inappropriate. The method proposed in this study which does not
rely on an evolutionary model is robust in selecting trees.

2. Real data example

We use the avian family Aegothelidae discussed in [3] (commonly known as owlet-nightjars) to
illustrate the aim of this study. Owlet-nightjars are small nocturnal birds related to nightjars and
frogmouths. Most are native to New Guinea, but some species extend to Australia, Moluccas, and
New Caledonia. There is a single monotypic family Aegothelidae with the genus, Aegotheles. The
Aegothelidae family comprises only nine extant species, all in a single genus, Aegotheles.

Based on mitochondrial DNA sequence, Dumbacher et al. [3] constructed a phylogeny of
the owlet-nightjars. They analyzed mtDNA sequences cytochrome b and ATPase subunit 8 and
suggested that there are nine living species of owlet-nightjars, plus one that went extinct early in
the second millennium AD. They performed the maximum likelihood analyses, using likelihood
heuristic searches with a 2-rate class (transitions and transversions) model of sequence evolution
with gamma correction, which is identical to the HKY85 model evolution [5,6] with the addition
of a gamma rate parameter [26]. The taxon used by Dumbacher et al. [3] includes albertisi
albertisi, wallacii wallacii, wallacii gigas, etc., as shown in Table 1. The Genbank numbers for the
sequences are AY090664-AY090698 (for cytochrome b) and AY090699-AY090736 (for ATPase
8). A simple form of the tree based on the results in [3] is available in tree of life web project
website at http://tolweb.org/tree/, and is shown in Figure 1.

Table 1. The cluster results of the nine sequences for different k0.

k0 2 3 4 5 6 7

A. wallacii 1 3 2 5 4 5
A. archboldi 1 3 2 5 3 4
A. albertisi 1 3 2 5 3 4
A. albertisi salvadori 1 3 2 1 5 6
A. bennettii 1 1 1 3 2 7
A. cristatus 1 1 1 3 2 7
A. crinifrons 1 3 3 2 1 3
A. tatei 2 2 4 4 6 2
A. insignis 2 2 4 4 6 1
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Aegotheles archboldi (Archbold's Owlet-Nightjar)

Aegotheles albertisi albertisi(Mountain Owlet-Nightjar)

Aegotheles bennettii(Barred Owlet-Nightjar)

Aegotheles cristatus(Australian Owlet-Nightjar)

Aegotheles tatei (Spangled Owlet-Nightjar)

Aegotheles insignis (Feline Owlet-Nightjar)

Aegotheles novaezealan diae *

Aegotheles savesi (Enigmatic Owlet-Nightjar)

Aegotheles wallaciii (Wallace's Owlet-Nightjar)

Aegotheles albertisi salvadorii

Aegotheles crinifrons(Moluccan Owlet-Nightjar)

Figure 1. A simple form of the tree for the avian family Aegothelidae constructed by Dumbacher et al. [3]
* extinct species.

Aegotheles novaezealandiae in Figure 1 is the extinct one. According to Dumbacher et al. [3]
the Aegotheles savesi may also be extinct. In this study, we exclude the two extinct species A.
novaezealandiae and A. savesi, and consider the phylogenetic trees for the other nine species.

Dumbacher’s tree is based on the maximum likelihood and Bayesian inference. The four phylo-
genetic trees based on UPGMA, neighbor-joining, minimum evolution and maximum parsimony
methods for cytochrome b plotted by MEGA software are shown in Figure 2. A study related to
the substitution number estimation for the example in [3] is given in [23].

Note that only UPGMA is a rooted tree. The others are unrooted trees. In a rooted tree there
exists a particular node, called the root, from which a unique path leads to any other node. An
unrooted tree may not have a root node. In this case, we place the root of the neighbor-joining,

Neighbor-Joining Minimum Evolution 

Maximum Parsimony UPGMA 

Figure 2. The neighbor-joining, minimum evolution, maximum parsimony and UPGMA trees for the avian
family plotted by MEGA using nine living species.
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646 H. Wang and S.-L. Hung

minimum evolution and maximum parsimony trees of Figure 2 in the left-hand side as the UPGMA
tree and viewed the three trees as rooted trees. In fact, the UPGMA method is a hierarchical cluster
analysis which is the simplest method for tree reconstruction.

From Figure 2, it is evident that the topologies of these trees are not exactly the same. The
aim of this study is to establish a reliable criterion from a statistical perspective to distinguish the
inappropriate trees and select better trees. The proposed procedure for this purpose, the adjusted
k-means approach, is introduced in the next section.

3. Adjusted k-means approach for categorical data

The clustering method is a useful approach for classifying the data [8–10]. The k-means clustering
method proposed by MacQueen [15] and [1] is a popular clustering method to partition a set
of objects into clusters such that objects in the same cluster are more similar to each other than
objects in different clusters according to some defined criteria. However, the conventional k-means
algorithm only works on numerical data, i.e. the variables are measured on a ratio scale [9]. This
prohibits it from being used in applications where categorical data are involved. The nucleotide
bases of a DNA sequence are A, T, C and G, which are categorical data as well as the bases in
a protein sequence. The conventional k-means approach cannot be directly used to cluster the
sequences.

Huang [7] proposed an extension of the k-means algorithm, the k-modes algorithm, to
categorical domains. However, the k-modes algorithm may not converge. Ng et al. [16] provide
a modified k-modes algorithm to overcome the convergence problem of the original k-modes
algorithm. Although the modified algorithm may be more stable than the original k-modes
algorithm, according to our computing results, it still cannot converge when it is applied to
cluster the multiple nucleotide or protein sequences. Therefore, in this study, we propose an
adjusted k-means algorithm to cluster the multiple sequences. The algorithm is introduced later
as Procedure 1.

Before describing the approach, we first introduce some notations. First, we define the
dissimilarity measure between a nucleotide or a protein sequence X and a cluster of n sequences
Gn, where X = {x1x2 . . . .xm} is a nucleotide or protein sequence with length m, and Gn =
(Gn

1, Gn
2, . . . , Gn

n) is a set of n nucleotide or protein sequences with Gn
i = {gi1gi2 . . . gim}. Note

that xj represents the nucleotide in the jth site of the sequence X and gij represents the nucleotide
in the jth site of the ith gene sequence, Gn

i , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then the dissimilarity measure
between gene sequence X and cluster Gn is defined as follows:

d(X , Gn) =
∑m

j=1

∑n
i=1 φ(xj, gij)

nm
, (1)

where φ(xj, gij) = I(gij �= xj) and I(·) denotes the indicator function.
Suppose that Gn 1 , Gn 2 , . . . , Gn k are k sets and Gnl has nl sequences, l = 1, . . . , k. We define the

within-group measure (WGM) and the between-group measure (BGM) for {Gn 1 , Gn 2 , . . . , Gn k }
as follows:

WGM for Gn l ≡
n l∑

i=1

d
(
Gn l

i , Gn l \Gn l
i

)
for 1 ≤ l ≤ k, (2)

BGM for {Gn l 1 , Gn l 2 } ≡
n l 1∑
i=1

d(G
n l 1
i , Gn l 2 ) +

n l 2∑
i=1

d(G
n l 2
i , Gn l 1 ) l 1 �= l 2 and 1 ≤ l 1, l 2 ≤ k,

(3)

where A\b denotes that set A excludes the element b.
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Note that in the calculation of (1), after aligning the sequences [13], some missing sites may
exist for some sequences in Gn. For a specified site, it can be classified into three cases. The first
one is that a sequence, say X is missing at this site. The second case is that all sequences in Gn

are missing at this site. And the third one is that some of the sequences in Gn are missing at this
site, but not all sequences. In the first or the second case, the function I(·) in (1) for this site is
defined as 0.

For the third case, we exclude the sequences with missing value at this site. Assume that the
number of the sequences left is r. Then we view the group Gn as a new set Gr with r sequences and
calculate the dissimilarity measure at this site. In this case, formula (1) needs to be modified to

1

n

n∑
i=1

⎛
⎝ mi∑

j=1

φ(xj, gij)

mi

⎞
⎠,

where mi denotes the number of sequences left excluding the sequences with the ith site missing.

3.1 Algorithm

Since our goal is to partition a set of objects into clusters such that objects in the same cluster are
more similar to each other than objects in different clusters according to some defined criteria, we
prefer that the BGM is large and the WGM is small. In this case, we set up a criterion to select the
clusters such that M = BGM∗ − WGM∗ is maximum, where BGM∗ denotes all BGMs of each
two clusters and WGM∗ denotes all WGMs described as Equations (4) and (5), that is,

WGM for {Gn 1 , Gn 2 , . . . , Gn k } ≡
k∑

l=1

n l∑
i=1

d
(
Gn l

i , Gn l \Gn l
i

)
, (4)

BGM for {Gn 1 , Gn 2 , . . . , Gn k } ≡
k∑

l 1=1

k∑
l 2 �=l 1

n l 1∑
i=1

d(G
n l 1
i , Gn l 2 ). (5)

In this study, based on the criterion of selecting clusters with the largest Mvalue, we provide a
calculation procedure as follows.

Procedure 1

Step 1. Align the n sequences, X1, ........, Xn, and select a k value.
Step 2. Allocate every sequence to k clusters randomly.
Step 3. Allocate a sequence to the cluster with the smallest dissimilarity measure.
Step 4. Repeat Step 3 until no sequence has changed cluster after a full cycle test of the whole

data set.
Step 5. Repeat Steps 2–4 s times and find the clusters in the s times with the largest M value,

which are the required clusters.

Note that the results of Steps 2–4 may depend on the initial cluster selected in Step 2. The
algorithm may not converge to the true clusters with maximum M value. Thus, Step 5 is provided
to select the best cluster in the s trials. In our example with nine species, we have tried different s
values and found that s can select around 10. The result for s being 15 or 20 is almost the same as
that for s being 10 in our simulation studies. Since there are only nine species, the s value in Step
5 need not be very large. When the number of species increases, to obtain a more accurate result,
we need to select a larger s value. If s is not selected to be large for large species number, the
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648 H. Wang and S.-L. Hung

initial cluster may seriously affect the result in Step 5. In this case, we suggest an initial partition
clustered according to phylogenetic trees.

A data example is provided in the Appendix to illustrate WGM and BGM calculations.

4. Misclassification error score

In this section, we propose a method to calculate the misclassification error. Since the goal of the
approach is to evaluate the performances of different tree construction methods, we can evaluate
the trees under the different cluster number k and then select the tree such that it has better
performance in most situations. After applying the adjusted k-means approach to cluster the n
sequences to k0 clusters, we define a misclassification error score to evaluate a tree.

We take the tree constructed by Dumbacher et al. [3] as an example to describe the misclassifi-
cation error score calculation. Table 1 lists the cluster results by the adjusted k-means approach for
k0 = 2, . . . , 7. For example, the second column in Table 1 is the clustering result of k0 = 3. In this
case, the sequences (Aegotheles wallacii, Aegotheles archboldi, Aegotheles albertisi, Aegotheles
albertisi salvadori, Aegotheles crinifrons) corresponding to index 3 are clustered together in the
third group; the sequences (Aegotheles tatei, Aegotheles insignis) corresponding to index 2 are
clustered to the second group and so on.

We use Figure 3 to illustrate the misclassification error score calculation. The left panel of
Figure 3 shows the score calculation for k0 = 5. First, the sequence names in Figure 1 are replaced
by the corresponding group indexes for k0 = 5 in Table 1.

Define the misclassification error score as the sum of the score at each node. The score at
each node is the absolute value of the difference of the group index numbers of its branches. For
example, in the left panel of Figure 3, there are five nodes, A, B, C, D and E, for which we need
to count the scores. Note that we do not count the score at node F because all branches are spread
out from this node. Thus, it is not necessary to require a score at this node. The score value at
each node is the absolute value of the difference of the index numbers from the branches spread
from this node. Thus, the misclassification error score is the sum of the five scores at these five
nodes, which is calculated by 0 + 0 + 0 + 8 + 1 = 9.

The score calculation algorithm for different situations is described as follows. Note that for a
node with only two branches, the score at this node is the absolute value of the difference of the

5

5

3

3

4

4

5

1

B=0

2

E=1

C=0

F

D=8 A=0 4

4

7

7

2

1

5

6

0

3

3.25

1

F

4 0

k
0
 = 5 score=9 k

0
 = 7 score=8.25

Figure 3. The tree proposed by Dumbacher et al. [3], excluding the two extinct species, with the index
numbers replacing taxa for k0 = 5 and k0 = 7.
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Journal of Applied Statistics 649

two assigned group indexes, such that node B has a score value of 0 with two branches whose
assigned group indexes are 3 and 3. When a node has more than two branches and includes another
node, such that node D has four branches and includes one node A, we need to calculate the score
value at the node A first, and then view the two branches spread from node A as one single branch
with assigned number 5 because the two branches both have assigned index 5. If the two branches
do not have the same index, then we take the average of the indexes to be the assigned number.
Thus, after viewing the two branches spread from node A as a single branch, node D has three
branches, say branches 1–3. And we calculate the sum of the absolute values of the difference of
the indexes number for any two of three branches indexes as this node’s score (see Figure 4).

Finally, when a node has included more than one node and one single branch such as node E, we
first calculate the average number of the branches of node D and node B, and then take the absolute
value of the difference of the average number ((5 + 1)/2 + (3 + 3)/2)/2 and the index number 2
of the signal branch as the score at node E. Here, the average number ((5 + 1)/2 + (3 + 3)/2)/2
views the two branches at node B as a single branch and the two branches (taxon 1 and taxon 4 in
Figure 4) as a single branch. We do not need to consider taxons 2 and 3 here because their score
has been considered at node A.

Besides the above proposed scoring method, other scoring methods can be adopted. In this
study, we do not focus on comparing different scoring methods; and exploring an optimal scoring
algorithm is an interesting future research topic.

With the definition of the misclassification error score, we can calculate the scores for the five
trees constructed in Section 2 for different cluster number k0 (see Table 3). Except for the case
of k0 = 5, the Dumbacher’s tree has the smallest misclassification error score. The trees with
the next smallest score are the neighbor-joining tree and the minimum evolution tree. Since in
most cases, the tree constructed by Dumbacher et al. is better than the other trees, we concluded
that it is the optimal tree under the criterion, followed by the neighbor-joining tree and minimum
evolution trees.

Note that although we use the index number for each cluster derived by the adjusted k-means
approach to calculate the misclassification error scores, the magnitudes of these index numbers
do not represent any meaning. They may be rearranged by the adjusted k-means approach. For

5 (taxon 2)

5 (taxon 3)

5 (taxon 1)

1 (taxon 4)

D

5 (taxon 1)

1 (taxon 4)

D1

5 (taxon 2)

5 (taxon 3)

5 (taxon 1)
D2

5 (taxon 2)

5 (taxon 3)

1 (taxon 4)

D3

(a) (b) (c)

1D =  5 - 1 =4
2

 5 + 5 
D =  5 -  =0

2 3

 5 + 5 
D =  1 -  =4

2

1 2 3D = D  + D  + D  = 4 + 0 + 4 = 8  

Figure 4. Decomposition of the score at node D.
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650 H. Wang and S.-L. Hung

Table 2. A rearrangement index numbers from Table 1.

k0 2 3 4 5 6 7

A. wallacii 2 1 3 1 3 3
A. archboldi 2 1 3 1 4 4
A. albertisi 2 1 3 1 4 4
A. albertisi salvadori 2 1 3 5 2 2
A. bennettii 2 3 4 3 5 1
A. cristatus 2 3 4 3 5 1
A. crinifrons 2 1 2 4 6 5
A. tatei 1 2 1 2 1 6
A. insignis 1 2 1 2 1 7

Table 3. The misclassification error scores of the five trees for k0 = 2, 3, 4, 5, 6 and 7.

k0Score
(excluding the both) 2 3 4 5 6 7

Dumbacher 0 1 1.5 9 6.25 8.25
Neighbor-joining 0 2 3 6 7 10
Minimum evolution 0 2 3 6 7 10
Maximum parsimony 1 3 4.5 10.5 9.5 9
UPGMA 0 2 3 6 8.5 11.5

example, in the case of k0 = 5 in Table 1, the index number is (5,5,5,1,3,3,2,4,4) can be rearranged
as (1,1,1,5,4,4,2,3,3). This may lead to a different misclassification error score for the tree.

However, in spite of the fact that different index number arrangements lead to different score
value, by comparing several different arrangements, we found that the results are not significantly
affected by index number selection. Table 2 provides a set of rearrangement index numbers from
Table 1. These two sets of index numbers lead to the same misclassification error scores shown
in Table 3. Thus, we believe that the arrangement of the adjusted k-means approach will not
significantly affect the score calculation.

5. Simulation result

In addition to using the owlet-nightjar real data example, we conducted a simulation study to
investigate the feasibility of the adjusted k-means approach in selecting the valid tree. We use the

13
12 Lineage 1

23
22 Lineage 2

33

32 Lineage 3

43
42 Lineage 4

11

21

31

41

Ancestor

Figure 5. The generation pattern for 12 descendent sequences generated from an ancestor sequence with the
Juke and Cantor model.
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Journal of Applied Statistics 651

Juke and Cantor model [24] to generate 12 descendent sequences with a length of 100 from an
ancestor sequence using the pattern in Figure 5 for different substitution rates [24].

To generate a descendant sequence from an ancestral sequence, we first set a substitution rate α,
and then generate a descendant sequence with probability 1/4 + 3/4 e(−4α)/3 that the nucleotide
at a site in a descendant sequence is the same as that in an ancestral sequence and with probability
1/4 + 1/4 e(−4α)/3 that the nucleotide at a site in a descendant sequence is equal to one of the
three other bases from the ancestral sequence.

There are many different kinds of models. We select one of the models as an example for the
simulation study. Although we do not provide the simulation study for other models, we believe
the phylogenetic tree with a symmetric topology shown in Figure 5 is a good example to examine
the method. However, since we do not conduct simulation studies for all models and the topology
of different models is different, we may not guarantee the feasibility of the proposed method to
other models. This is the limitation of the simulation study.

1 (31)

1 (33)

3 (12)

3 (13)

4 (41)

4 (42)

2 (22)

2 (23)

1 (32)

3 (11)

4 (43)

1 (21)

1 (31)

1 (33)

3 (12)

3 (13)

4 (41)

4 (42)

2 (22)

2 (23)

1 (32)

3 (11)

4 (43)

1 (21)

Maximum Parsimony

3 (12)

3 (13)

3 (11)

1 (21)

2 (22)

2 (23)

1 (32)

1 (33)

1 (31)

4 (42)

4 (41)

4 (43)

UPGMA

1 (31)

1 (32)

3 (12)

3 (13)

4 (41)

4 (43)

1 (33)

3 (11)

4 (42)

2 (22)

1 (21)

2 (23)

Neighbor-Joining Minimum Evolution 

Figure 6. The four trees for the 12 descendent sequences for rate 0.01.
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2 (22)

2 (23)

4 (32)

4 (33)

1 (12)

1 (13)

3 (42)

3 (43)

2 (21)

4 (31)

1 (11)

3 (41)

2 (22)

2 (23)

4 (32)

4 (33)

1 (12)

1 (13)

3 (42)

3 (43)

2 (21)

4 (31)

1 (11)

3 (41)

Maximum Parsimony

2 (22)

2 (23)

4 (32)

4 (33)

1 (12)

1 (13)

2 (21)

4 (31)

1 (11)

3 (41)

3 (42)

3 (43)

UPGMA

2 (21)

2 (22)

4 (32)

4 (33)

1 (12)

1 (13)

3 (41)

3 (43)

2 (23)

4 (31)

1 (11)

3 (42)

Neighbor-Joining Minimum Evolution 

Figure 7. The four trees for the 12 descendent sequences for rate 0.1.

Table 4. The misclassification error scores of four trees for different rates of 12 sequences generated
from the model in Figure 5.

Substitution rate

Score 0.01 0.02 0.03 0.04 0.05 0.10 0.20

Neighbor-joining 4 3.5 6 4 3.5 4 2
Minimum evolution 4 3.5 6 4 3.5 4 4
Maximum parsimony 6.67 5.67 6.5 4.33 4 6 4.5
UPGMA 6.5 7 5.17 3.5 3.5 4 4
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The misclassification error scores for the four trees under k0 = 4 for different substitution rates
derived by the adjusted k-means approach are shown in Table 3.

We show the phylogeny trees for rate 0.01 and 0.1 in Figures 6 and 7. The number in the bracket
of a tree in Figure 6 denotes the sequence number in Figure 5. The notations are the same for
Figure 7. Table 4 shows that in the case of the rate being 0.01, the maximum parsimony and
UPGMA trees have higher misclassification error score than the other two trees. From Figure 6,
we can see that maximum parsimony and UPGMA trees have more dissimilar topologies from
the topology of the tree in Figure 5 than the other two trees. For the case of rate 0.1, the maximum
parsimony tree has a significantly higher misclassification error score than the other three trees.
From Figure 7, among the four trees, the maximum parsimony tree has a topology most dissimilar
from the tree in Figure 5. The simulation results show that the misclassification error score derived
from the adjusted k-means approach can provide a good method to select a valid tree.

6. Conclusion

There are several well-known approaches for reconstructing phylogenetic trees. Since the topolo-
gies of trees constructed from different methods may be quite different, we develop a methodology
to evaluate the performance of the tree from a statistical data analysis viewpoint, which is the
k-means clustering approach for the categorical data associated with a misclassification error scor-
ing algorithm. Based on this method, we can calculate the score of a tree, and then recommend
trees with a smaller misclassification error score. The simulation study shows the feasibility of this
method. We provide a scoring algorithm in this study, however, more than one scoring algorithm
can be adopted. Discussion about the selection of a scoring algorithm is a future research topic.
Since this method is to examine trees from a statistical viewpoint, it can provide an objective
criterion for phylogenetic tree selection.
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Appendix

In this section, we use five sequences which are from site 1 to site 20 of five species to illustrate
the WGM and BGM calculations. The codes and calculation details are given in Tables A1–A4.

Table A1. Five sequence codes.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A. wallacii C T T T G G A T C C C T T C
A. archboldi C T T T G G A T C C C T T C
A. albertisi C T T T G G A T C C C T T C
A. bennettii – – T C G G A T C T C T C C
A. cristatus C T T C G G A T C T C T C C

–, missing site.

Table A2. Calculation of WGM of a sequence X and a set G4 = (G4
1, G4

2, G4
3, G4

4).

Site 1 2 3 4 5 6 7 8 9 10 11 12

X T T G G A T C C C T T C
G4 G4

1 T T G G A T C C C T T C

G4
2 T T G G A T C C C T T C

G4
3 T C G G A T C T C T C C

G4
4 T C G G A T C T C T C C∑4

i=1 φ(xj , gij) 0 2 0 0 0 0 0 2 0 0 2 0
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Table A3. Calculation for G3.

Site 1 2 3 4 5 6 7 8 9 10 11 12

G3 G3
1 T C G G A T C T C T C C

G3\G3
1 G3

2 T C G G A T C T C T C C

G3
3 T T G G A T C C C T T C∑3

i=2 φ(G3
1j , G3

ij) 0 1 0 0 0 0 0 1 0 0 1 0

Table A4. BGM calculation for {G2, G3}.

Site 1 2 3 4 5 6 7 8 9 10 11 12

n1 = 2, G2 G2
1 T T G G A T C C C T T C

G2
2 T T G G A T C C C T T C

n2 = 3, G3 G3
1 T C G G A T C T C T C C

G3
2 T C G G A T C T C T C C

G3
3 T T G G A T C C C T T C

There are two sites with missing value in the fourth sequence. By our method, we consider the
sequences removing these two sites. Therefore, the sequence length is 12.

We have

d(X , G4) =
∑12

j=1

∑4
i=1 φ(xj, gij)

4 × 12
= 2 + 2 + 2

4 × 12
= 0.125.

Then we have

d
(
G3

1, G3\G3
1

) = 1 + 1 + 1

2 × 12
= 0.125,

d
(
G3

2, G3\G3
2

) = 1 + 1 + 1

2 × 12
= 0.125

and

d
(
G3

3, G3\G3
3

) = 2 + 2 + 2

2 × 12
= 0.25.

(i) Thus, WGM for G3 ≡ {G3
1, G3

2, G3
3}

= d
(
G3

1, G3\G3
1

) + d
(
G3

2, G3\G3
2

) + d
(
G3

3, G3\G3
3

)
= 0.125 + 0.125 + 0.25 = 0.5.

(ii) BGM calculation
BGM for {G2, G3}

= [d(G2
1, G3) + d(G2

2, G3)] + [d(G3
1, G2) + d(G3

2, G2) + d(G3
3, G2)]

=
[

6

3 × 12
+ 6

3 × 12

]
+

[
6

2 × 12
+ 6

2 × 12
+ 0

2 × 12

]
= 0.833
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