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ON A NONLINEAR MATRIX EQUATION ARISING IN NANO
RESEARCH∗
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Abstract. The matrix equation X + A�X−1A = Q arises in Green’s function calculations
in nano research, where A is a real square matrix and Q is a real symmetric matrix dependent on
a parameter and is usually indefinite. In practice one is mainly interested in those values of the
parameter for which the matrix equation has no stabilizing solutions. The solution of interest in this
case is a special weakly stabilizing complex symmetric solution X∗, which is the limit of the unique
stabilizing solution Xη of the perturbed equation X +A�X−1A = Q+ iηI, as η → 0+. It has been
shown that a doubling algorithm can be used to compute Xη efficiently even for very small values
of η, thus providing good approximations to X∗. It has been observed by nano scientists that a
modified fixed-point method can sometimes be quite useful, particularly for computing Xη for many
different values of the parameter. We provide a rigorous analysis of this modified fixed-point method
and its variant and of their generalizations. We also show that the imaginary part XI of the matrix
X∗ is positive semidefinite and we determine the rank of XI in terms of the number of unimodular
eigenvalues of the quadratic pencil λ2A� − λQ + A. Finally we present a new structure-preserving
algorithm that is applied directly on the equation X + A�X−1A = Q. In doing so, we work with
real arithmetic most of the time.
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fixed-point iteration, structure-preserving algorithm, Green’s function

AMS subject classifications. 15A24, 65F30

DOI. 10.1137/100814706

1. Introduction. The nonlinear matrix equation X + A�X−1A = Q, where A
is real and Q is real symmetric positive definite, arises in several applications and has
been studied in [3, 7, 11, 21, 22, 27], for example.

In this paper we further study the nonlinear matrix equation

X +A�X−1A = Q+ iηI,

where A ∈ Rn×n, Q = Q� ∈ Rn×n, and η ≥ 0, but Q is usually not positive definite.
The equation arises from the nonequilibrium Green’s function approach for treating
quantum transport in nanodevices, where the system Hamiltonian is a semi-infinite
or bi-infinite real symmetric matrix with special structures [1, 5, 17, 18, 25]. A first
systematic mathematical study of the equation has already been undertaken in [12].
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236 CHUN-HUA GUO, YUEH-CHENG KUO, AND WEN-WEI LIN

For the bi-infinite case, the Green’s function corresponding to the scattering region
GS ∈ Cns×ns , in which the nano scientists are interested, satisfies the relation [4, 17]

GS =
(
(E + i0+)I −HS − C�

L,SGL,SCL,S −DS,RGS,RD
�
S,R

)−1
,

where E is energy, a real number that may be negative, HS ∈ R
ns×ns is the Hamil-

tonian for the scattering region, CL,S ∈ Rn�×ns and DS,R ∈ Rns×nr represent the
coupling with the scattering region for the left lead and the right lead, respectively,
and GL,S ∈ Cn�×n� and GS,R ∈ Cnr×nr are special solutions of the matrix equations

GL,S =
(
(E + i0+)I −BL −A�

LGL,SAL

)−1
(1.1)

and

GS,R =
(
(E + i0+)I −BR −ARGS,RA

�
R

)−1
(1.2)

with AL, BL = B�
L ∈ Rn�×n� , and AR, BR = B�

R ∈ Rnr×nr . Since (1.1) and (1.2)
have the same type, we only need to study (1.1). We simplify the notation n� to n.
In nano research, one is mainly interested in the values of E for which GL,S in (1.1)
has a nonzero imaginary part [18].

For each fixed E , we replace 0+ in (1.1) by a sufficiently small positive number η
and consider the matrix equation

X =
(
(E + iη)I −BL −A�

LXAL

)−1
.(1.3)

It is shown in [12] that the required special solution GL,S of (1.1) is given by GL,S =
limη→0+ GL,S(η) with X = GL,S(η) being the unique complex symmetric solution
of (1.3) such that ρ (GL,S(η)AL) < 1, where ρ(·) denotes the spectral radius. Thus

GL,S is a special complex symmetric solution of X =
(
EI −BL −A�

LXAL

)−1
with

ρ (GL,SAL) ≤ 1.
The question as to when GL,S has a nonzero imaginary part is answered in the

following result from [12], where T denotes the unit circle.
Theorem 1.1. For λ ∈ T, let the eigenvalues of ψL(λ) = BL + λAL +λ−1A�

L be
μL,1(λ) ≤ · · · ≤ μL,n(λ). Let

ΔL,i =

[
min
|λ|=1

μL,i(λ), max
|λ|=1

μL,i(λ)

]
and ΔL =

⋃n
i=1 ΔL,i. Then GL,S is a real symmetric matrix if E /∈ ΔL. When

E ∈ ΔL, the quadratic pencil λ2A�
L − λ(EI − BL) + AL has eigenvalues on T. If all

these eigenvalues on T are simple (they must then be nonreal, as explained in the proof
of Theorem 3.3), then GL,S has a nonzero imaginary part.

By replacing X in (1.3) with X−1, we get the equation

(1.4) X +A�X−1A = Qη,

where A = AL and Qη = Q + iηI with Q = EI − BL. So Q is a real symmetric
matrix dependent on the parameter E and is usually indefinite. For η > 0, we need
the stabilizing solution X of (1.4), which is the solution with ρ(X−1A) < 1, and then
GL,S(η) = X−1. The existence of the stabilizing solution was proved in [12] using
advanced tools; an elementary proof has been given recently in [10]. When η = 0 and
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A NONLINEAR MATRIX EQUATION 237

E ∈ ΔL, it follows from Theorem 1.1 that the required solution X = G−1
L,S of (1.4) is

only weakly stabilizing, in the sense that ρ(X−1A) = 1.
The size of the matrices in (1.4) can be very small or very large, depending on

how the system Hamiltonian is obtained. If the Hamitonian is obtained from layer-
based models, as in [18] and [25], then the size of the matrices is just the number of
principal layers. In [18] considerable attention is paid to single-layer models and the
more realistic double-layer models, which correspond to n = 1 and n = 2 in (1.4). We
can say that (1.4) with n ≤ 10 is already of significant practical interest. On the other
hand, if the Hamiltonian is obtained from the discretization of a differential operator,
as in [1], then the size of the matrices in (1.4) can be very large if a fine mesh grid is
used.

One way to approximate GL,S is to take a very small η > 0 and compute GL,S(η).
It is proved in [12] that the sequence {Xk} from the basic fixed-point iteration (FPI)

Xk+1 = Qη −A�X−1
k A,(1.5)

with X0 = Qη, converges to GL,S(η)
−1. And it follows that the sequence {Yk} from

the basic FPI

Yk+1 = (Qη −A�YkA)−1,(1.6)

with Y0 = Q−1
η , converges to GL,S(η). However, the convergence is very slow for

E ∈ ΔL since ρ(GL,S(η)A) ≈ 1 for η close to 0. It is also shown in [12] that a
doubling algorithm (DA) can be used to compute the desired solution X = GL,S(η)

−1

of the equation (1.4) efficiently for each fixed value of E . However, in practice the
desired solution needs to be computed for many different E values. Since the DA is
not a correction method, it cannot use the solution obtained for one E value as an
initial approximation for the exact solution at a nearby E value. To compute the
solutions corresponding to many E values, it may be more efficient to use a modified
FPI together with the DA. Indeed, it is suggested in [25] that the following modified
FPI be used to approximate GL,S(η):

Yk+1 =
1

2
Yk +

1

2
(Qη −A�YkA)−1.(1.7)

A variant of this FPI is given in [12] to approximate GL,S(η)
−1,

Xk+1 =
1

2
Xk +

1

2
(Qη −A�X−1

k A),(1.8)

which requires less computational work each iteration. However, the convergence
analysis of these two modified FPIs has been an open problem even for the special
initial matrices Y0 = Q−1

η and X0 = Qη, respectively.
Our first contribution in this paper is a proof of convergence (to the desired

solutions) of these two modified FPIs and their generalizations for many choices of
initial matrices. These methods can be used as correction methods. In this process we
will show that the unique stabilizing solutionX = GL,S(η)

−1 of (1.4) is also the unique
solution of (1.4) with a positive definite imaginary part. It follows that the imaginary
part XI of the matrix G−1

L,S is positive semidefinite. Our second contribution in this
paper is a determination of the rank of XI in terms of the number of eigenvalues
on T of the quadratic pencil λ2A� − λQ + A. Our third contribution is a structure-
preserving algorithm (SA) that is applied directly on (1.4) with η = 0. In doing so,
we work with real arithmetic most of the time.
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238 CHUN-HUA GUO, YUEH-CHENG KUO, AND WEN-WEI LIN

2. Convergence analysis of FPIs. In this section we perform convergence
analysis for some FPIs, including the modified FPIs (1.7) and (1.8). The main tool we
need is the following important result due to Earle and Hamilton [6]. The presentation
here follows [14, Theorem 3.1] and its proof.

Theorem 2.1 (Earle–Hamilton theorem). Let D be a nonempty domain in a
complex Banach space Z and let h : D → D be a bounded holomorphic function.
If h(D) lies strictly inside D, then h has a unique fixed point in D. Moreover, the
sequence {zk} defined by the fixed point iteration zk+1 = h(zk) converges to this fixed
point for any z0 ∈ D.

Now let Z be the complex Banach space Cn×n equipped with the spectral norm.
For any K ∈ Cn×n, its imaginary part is the Hermitian matrix

ImK =
1

2i
(K −K∗).

For any Hermitian matrices X and Y , X > Y (X ≥ Y ) means that X − Y is positive
definite (semidefinite). Let D+ = {X ∈ Cn×n : ImX > 0}, D− = {X ∈ Cn×n :
ImX < 0}.

We start with a proof of convergence for the basic FPI (1.5) for many different
choices of X0, not just for X0 = Qη.

Theorem 2.2. For any X0 ∈ D+, the sequence {Xk} produced by the FPI (1.5)
converges to the unique fixed point Xη in D+.

Proof. Let D = {X ∈ C
n×n : ImX > η

2I}. For each X ∈ D, X is invertible
by Bendixson’s theorem (see [26], for example) and we also have ‖X−1‖ < 2

η (see [2,

Corollary 4] or [13, Lemma 3.1]). Now let

f(X) = Qη −A�X−1A.

Then for X ∈ D

Imf(X) = ImQη −
1

2i

(
A�X−1A− (A�X−1A)∗

)
= ηI +A�X−1(ImX)(A�X−1)∗ ≥ ηI.

It follows that f : D → D is a bounded holomorphic function and f(D) lies strictly
inside D. By the Earle–Hamilton theorem, f has a unique fixed point Xη in D and
Xk converges to Xη for any X0 ∈ D. The theorem is proved by noting that X1 ∈ D
for any X0 ∈ D+ and that any fixed point X∗ in D+ must be in D by X∗ = Qη −A�

X−1
∗ A.
Remark 2.1. Since {Xk} converges to GL,S(η)

−1 for X0 = Qη ∈ D+, we know
that Xη = GL,S(η)

−1 in Theorem 2.2. Thus Xη is the unique solution of (1.4)
such that ρ(X−1

η A) < 1, and it is also the unique solution of (1.4) in D+. If we
have obtained a particular solution of (1.4) by some method and would like to know
whether it is the required solution, the latter condition is easier to check.

The matrix GL,S(η) can also be computed directly by using (1.6) for many dif-

ferent choices of Y0. Note that the FPI (1.6) is Yk+1 = f̂(Yk) with

f̂(Y ) = (Qη −A�Y A)−1.

Corollary 2.3. For any Y0 ∈ D−, the sequence {Yk} produced by the FPI (1.6)
converges to the unique fixed point Yη = GL,S(η) in D−.
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Proof. For any Y0 ∈ D−, Y0 is invertible by Bendixson’s theorem. We now take
X0 = Y −1

0 in (1.5). Then X0 ∈ D+ since ImX0 = −Y −1
0 (ImY0)Y

−∗
0 . It follows that

the sequence {Yk} is well defined and related to the sequence {Xk} from (1.5) by
Yk = X−1

k . Thus {Yk} converges to Yη = X−1
η ∈ D−. Since Xη is the unique fixed

point of f in D+, Yη is the unique fixed point of f̂ in D−.
For faster convergence, we consider the modified FPI for (1.4)

(2.1) Xk+1 = (1− c)Xk + c(Qη −A�X−1
k A), 0 < c < 1,

or Xk+1 = g(Xk) with the function g defined by

(2.2) g(X) = (1− c)X + cf(X).

Note that f(X) = X if and only if g(X) = X . So f and g have the same fixed
points. Note also that the FPI (1.8) is a special case of the FPI (2.1) with c = 1

2 . We
can now prove the following general result.

Theorem 2.4. For any X0 ∈ D+, the FPI Xk+1 = g(Xk) converges to the unique
fixed point Xη in D+.

Proof. For any X0 ∈ D+, X1 is well defined and ImX1 > cηI. Let b be any
number such that b > ‖X1‖ and b > 2(‖Qη‖ + 1

cη‖A‖2). Let D = {X ∈ C
n×n :

ImX > cηI, ‖X‖ < b}. Thus X1 ∈ D. For each X ∈ D, X is invertible and
‖X−1‖ < 1

cη , as before. Then for X ∈ D

Img(X) = (1− c)ImX + cImf(X) > (1− c)cηI + cηI = (2− c)cηI

and

‖g(X)‖ ≤ (1− c)‖X‖+ c

(
‖Qη‖+

1

cη
‖A‖2

)
< (1− c)b+ c

b

2
=
(
1− c

2

)
b.

It follows that g : D → D is a bounded holomorphic function and g(D) lies strictly
inside D. By the Earle–Hamilton theorem, Xk converges to the unique fixed point of
g in D, which must be Xη.

Similarly, we consider the modified FPI

(2.3) Yk+1 = (1 − c)Yk + c(Qη −A�YkA)−1, 0 < c < 1,

or Yk+1 = ĝ(Yk) with the function ĝ defined by

(2.4) ĝ(Y ) = (1− c)Y + cf̂(Y ).

The FPI (2.3) includes (1.7) as a special case. Note that f̂(Y ) = Y if and only

if ĝ(Y ) = Y . So f̂ and ĝ have the same fixed points. However, there are no simple
relations between Xk from (2.1) and Yk from (2.3).

Theorem 2.5. For any Y0 ∈ D−, the FPI Yk+1 = ĝ(Yk) converges to the unique
fixed point Yη in D−.

Proof. Take b > 2/η, and let D = {Y ∈ Cn×n : ImY < 0, ‖Y ‖ < b}. For any
Y ∈ D, Im(Qη −A�Y A) ≥ ηI. So ĝ(Y ) is well defined and ‖(Qη − A�Y A)−1‖ ≤ 1

η .
Thus

‖ĝ(Y )‖ < (1− c)b + c
1

η
<

(
1− 1

2
c

)
b.
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Moreover,

Im(ĝ(Y )) < cIm(Qη −A�Y A)−1

= −c(Qη − A�Y A)−1Im(Qη −A�Y A)(Qη −A�Y A)−∗

≤ −cη
(
(Qη −A�Y A)∗(Qη −A�Y A)

)−1

≤ −cη‖Qη −A�Y A‖−2I

≤ − cη

(‖Qη‖+ b‖A‖2)2 I.

It follows that ĝ : D → D is a bounded holomorphic function and ĝ(D) lies strictly
inside D. By the Earle–Hamilton theorem, Yk converges to Yη for any Y0 ∈ D and
hence for any Y0 ∈ D− since we can take b > ‖Y0‖.

We remark that the modified FPI (2.1) is slightly less expensive than the modified
FPI (2.3) for each iteration. These two methods make improvements over the basic
FPIs (1.5) and (1.6) in the same way, as explained below.

The rate of convergence of each FPI can be determined by computing the Fréchet
derivative of the fixed-point mapping, as in [11]. For (1.5) and (1.6), we have

lim sup
k→∞

k

√
‖Xk −Xη‖ ≤ (ρ(X−1

η A))2, lim sup
k→∞

k

√
‖Yk − Yη‖ ≤ (ρ(YηA))

2,

where equality typically holds. Recall that Yη = X−1
η . Note also that if Y0 = X−1

0

(with X0 ∈ D+), then

lim sup
k→∞

k

√
‖Yk − Yη‖ = lim sup

k→∞
k

√
‖Xk −Xη‖.

The Fréchet derivative at Xη of the function g in (2.2) is given by

g′(Xη)E = (1− c)E + cA�X−1
η EX−1

η A.

It follows that for FPI (2.1)

lim sup
k→∞

k

√
‖Xk −Xη‖ ≤ ρ

(
(1− c)I + c(A�X−1

η )⊗ (A�X−1
η )

)
.

Similarly, the Fréchet derivative at Yη of the function ĝ in (2.4) is given by

ĝ′(Yη)E = (1 − c)E + cYηA
�EAYη.

It follows that for FPI (2.3)

lim sup
k→∞

k

√
‖Yk − Yη‖ ≤ ρ

(
(1− c)I + c(YηA

�)⊗ (YηA
�)
)
.

The rate of convergence of both modified FPIs is then determined by

rη = max
i,j

∣∣1− c+ cλi(X
−1
η A)λj(X

−1
η A)

∣∣ .
The convergence of the modified FPIs is often much faster because rη may be much
smaller than 1 for a proper choice of c. An extreme example is the following.
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Example 2.1. Consider the scalar equation (1.4) with A = 1 and Qη = ηi. It is
easy to find that

Xη =
1

2
(η +

√
4 + η2)i.

Thus ρ(X−1
η A)→ 1 as η → 0+, while for c = 1

2 we have rη → 0 as η → 0+.
Note that for i, j = 1, . . . , n, the n2 numbers λi(X

−1
η A)λj(X

−1
η A) are inside T for

each η > 0. In the limit η → 0+, at least one of them is on T if E ∈ ΔL. So each of
these numbers has the form reiθ with 0 ≤ r ≤ 1 and 0 ≤ θ < 2π. We may allow c = 1
in (2.1) and (2.3). In this case, the basic FPIs (1.5) and (1.6) are recovered. To get
some insight, we first consider choosing c ∈ (0, 1] such that for fixed (r, θ)

p(c) =
∣∣1− c+ creiθ

∣∣
is minimized. If (r, θ) = (1, 0), then p(c) = 1 for all c ∈ (0, 1]. So assume (r, θ) 	= (1, 0).
In this case,

p(c) =
∣∣1− reiθ∣∣ ∣∣∣∣ 1

1− reiθ − c
∣∣∣∣

is minimized on (0, 1] when

c = min

{
1,Re

1

1− reiθ

}
= min

{
1,

1− r cos θ
1 + r2 − 2r cos θ

}
≥ 1

2
,

where we have used 1− r cos θ − 1
2 (1 + r2 − 2r cos θ) = 1

2 (1− r2) ≥ 0. It follows that

c = 1 is the best choice when 1−r cos θ
1+r2−2r cos θ ≥ 1 or, in other words, when z = reiθ is in

the disk {z ∈ C : |z − 1
2 | ≤

1
2}. Note that p(1) = r. It also follows that c = 1

2 is the

best choice when r = 1. Note that p(12 ) =
1
2

√
1 + r2 + 2r cos θ = 1

2

√
2(1 + cos θ) for

r = 1.
We know from [12] that the eigenvalues of X−1

η A are precisely the n eigenvalues

inside T of the quadratic pencil λ2A� − λQη + A. We also know from Theorem 1.1
that the quadratic pencil P (λ) = λ2A� − λQ + A has some eigenvalues on T when
E ∈ ΔL. We can then make the following conclusions.

Remark 2.2. If P (λ) has some eigenvalues near 1 or −1, the convergence of the
FPI (2.1) is expected to be very slow for any choice of the parameter c. The DA is
recommended for this case. If all eigenvalues of P (λ) are clustered around ±i, then
the FPI (2.1) with c = 1

2 is expected to be very efficient. In the general case, the
optimal c is somewhere between 1

2 and 1. If all eigenvalues of X−1
η A are available,

we can determine the optimal c to minimize rη using the bisection procedure in [9,
section 6] with [ 12 , 1] as the initial interval. In practice we would not compute these
eigenvalues for every E value. But we may use DA to compute Xη for one E value,
determine the optimal c value for this E , and use it as a suboptimal c for many nearby
E values. If one does not want to compute any eigenvalues when using the FPI (2.1),
then c = 1

2 is recommended since this c value is best in handling the eigenvalues of
X−1

η A that are extremely close to T, which are the eigenvalues responsible for the
extreme slow convergence of the basic FPIs (1.5) and (1.6).

We note that the approximate solution from the DA or the FPI for any E value is
in D+ and can be used as an initial guess for the exact solution when using the FPI
for other E values, with guaranteed convergence. However, even for small problems
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the convergence of the FPI (2.1), with c = 1
2 , for example, can still be very slow when

P (λ) has some eigenvalues near 1 or −1. Moreover, the latter situation will happen
for some energy values since P (λ) is palindromic and thus, as E varies, eigenvalues
of P (λ) leave or enter the unit circle typically through the points ±1. When n is
large, there may be some eigenvalues of P (λ) near ±1 for almost all energy values of
interest, and thus the convergence of the FPI may be very slow and other methods
should be used.

3. Rank of Im(GL,S). The equation (1.4) has a unique stabilizing solution
Xη = GL,S(η)

−1 for any η > 0. Thus

Xη +A�X−1
η A = Qη(3.1)

with ρ(X−1
η A) < 1. We also know that Xη is complex symmetric. Write Xη =

Xη,R + iXη,I with X�
η,R = Xη,R, X

�
η,I = Xη,I ∈ Rn×n. We know from the previous

section that Im(Xη) = Xη,I > 0. Let

ϕη(λ) = λA� + λ−1A−Qη.(3.2)

By (3.1) the rational matrix-valued function ϕη(λ) has the factorization

ϕη(λ) =
(
λ−1I − S�

η

)
Xη (−λI + Sη) ,

where Sη = X−1
η A. Let X = limη→0+ Xη = G−1

L,S . Then

X +A�X−1A = Q(3.3)

with ρ(X−1A) ≤ 1 and Im(X) ≥ 0. Note that ϕ0(λ) = λA� + λ−1A − Q has the
factorization

ϕ0(λ) =
(
λ−1I − S�)X (−λI + S) ,(3.4)

where S = X−1A. In particular, ϕ0(λ) is regular, i.e., its determinant is not indenti-
cally zero. In this section we will determine the rank of Im(X), which is the same as
the rank of Im(GL,S) since Im(GL,S) = Im(X−1) = −X−1Im(X)X−∗.

Let

M =

[
A 0
Q −I

]
, L =

[
0 I
A� 0

]
.(3.5)

Then the pencilM− λL, also denoted by (M,L), is a linearization of the quadratic
matrix polynomial

P (λ) = λϕ0(λ) = λ2A� − λQ+A.(3.6)

It is easy to check that y and z are the right and left eigenvectors, respectively,
corresponding to an eigenvalue λ of P (λ) if and only if[

y
Qy − λA�y

]
,

[
z

−λz

]
(3.7)

are the right and left eigenvectors of (M,L), respectively.
Theorem 3.1. Suppose that λ0 is a semisimple eigenvalue of ϕ0(λ) on T with

multiplicity m0 and Y ∈ Cn×m0 forms an orthonormal basis of right eigenvectors
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corresponding to λ0. Then iY
∗(2λ0A�−Q)Y is a nonsingular Hermitian matrix. Let

dj, j = 1, . . . , 	, be the distinct eigenvalues of iY ∗(2λ0A� − Q)Y with multiplicities

mj
0, and let ξj ∈ C

m0×mj
0 form an orthonormal basis of the eigenspace corresponding

to dj. Then for η > 0 sufficiently small and j = 1, . . . 	

λ
(k)
j,η = λ0 −

λ0
dj
η +O(η2), k = 1, . . . ,mj

0, and yj,η = Y ξj +O(η)(3.8)

are perturbed eigenvalues and a basis of the corresponding invariant subspace of ϕη(λ),
respectively.

Proof. Since P (λ0)Y = λ0ϕ0(λ0)Y = 0 with Y ∗Y = Im0 and |λ0| = 1, we have

0∗ = (P (λ0)Y )∗ =
1

λ20
Y ∗(λ20A

� − λ0Q+A).

It follows that Y forms an orthonormal basis for left eigenvectors of P (λ) correspond-
ing to λ0. From (3.7), we obtain that the column vectors of

YR =

[
Y

QY − λ0A�Y

]
and YL =

[
Y

−λ0Y

]
form a basis of left and right eigenspaces ofM−λL corresponding to λ0, respectively.
Since λ0 is semisimple, the matrix

[Y ∗,−λ0Y ∗]L
[

Y
QY − λ0A�Y

]
= −Y ∗(2λ0A� −Q)Y = −Y ∗P ′(λ0)Y

is nonsingular. Let

ỸR = −YR(Y ∗P ′(λ0)Y )−1, ỸL = YL.

Then we have

Ỹ∗
LLỸR = Im0 and Ỹ∗

LMỸR = λ0Im0 .(3.9)

For η > 0, sufficiently small, we consider the perturbed equation of P (λ) by

P (λ)− λiηI = λ2A� − λ(Q+ iηI) +A = λϕη(λ).

Let Mη =
[ A 0
Q + iηI −I

]
. Then Mη − λL is a linearization of λϕη(λ). By (3.9) and

[24, Chapter VI, Theorem 2.12] there are ŶR and ŶL such that [ỸR ŶR] and [ỸL ŶL]
are nonsingular and[

Ỹ∗
L

Ŷ∗
L

]
M

[
ỸR ŶR

]
=

[
λ0Im0 0

0 M̂

]
,

[
Ỹ∗
L

Ŷ∗
L

]
L
[
ỸR ŶR

]
=

[
Im0 0

0 L̂

]
.

Then, by [24, Chapter VI, Theorem 2.15] there exist matrices Δ1(η) = O(η) and

Δ2(η) = O(η2) such that the column vectors of ỸR +Δ1(η) span the right eigenspace
of (Mη,L) corresponding to (λ0Im0 + ηE11 +Δ2(η), Im0 ), where

E11 = Ỹ∗
L

[
0 0
iI 0

]
ỸR = λ0Y

∗(iI)Y (Y ∗P ′(λ0)Y )−1

= −λ0(iY ∗(2λ0A� −Q)Y )−1.(3.10)
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The matrix iY ∗(2λ0A� −Q)Y in (3.10) is Hermitian since

iY ∗(2λ0A� −Q)Y = iY ∗ϕ0(λ0)Y + iλ0Y
∗A�Y − iλ0Y ∗AY

= iλ0Y
∗A�Y + (iλ0Y

∗A�Y )∗.(3.11)

Let dj for j = 1, . . . , 	 be the distinct eigenvalues of iY ∗(2λ0A� − Q)Y with mul-

tiplicities mj
0, and let ξj ∈ Cm0×mj

0 form an orthonormal basis of the eigenspace
corresponding to dj . Then we have

Φ∗E11Φ = diag

(
−λ0
d1

Im1
0
, . . . ,

−λ0
d�

Im�
0

)
,

where Φ = [ξ1, . . . , ξ�] ∈ Cm0×m0 . It follows that λ0Im0 + ηE11 +Δ2(η) is similar to

λ0Im0 + diag

(
−λ0
d1

ηIm1
0
, . . . ,

−λ0
d�

ηIm�
0

)
+Δ3(η)

for some Δ3(η) = O(η2). Then for each j ∈ {1, 2, . . . , 	}, the perturbed eigenvalues

λ
(k)
j,η , k = 1, . . . ,mj

0, and a basis of the corresponding invariant subspace ofMη − λL
with λ

(k)
j,η |η=0 = λ0 can be expressed by

λ
(k)
j,η = λ0 −

λ0
dj
η +O(η2), k = 1, . . . ,mj

0,(3.12a)

and

ζj,η = YRξj +O(η).(3.12b)

The second equation in (3.8) follows from (3.12b).
Lemma 3.2. Let Zη be the solution of the equation

Zη −R∗
ηZηRη = ηWη for η > 0,(3.13)

where Wη ∈ Cm×m is positive definite, Rη = eiθIm + ηEη with θ ∈ [0, 2π] fixed, and
Eη ∈ Cm×m is uniformly bounded such that ρ(Rη) < 1. Then Zη is positive definite.
Furthermore, if Zη converges to Z0 and Wη converges to a positive definite matrix W0

as η → 0+, then Z0 is also positive definite.
Proof. Since ρ(Rη) < 1 and ηWη is positive definite, it is well known that Zη is

uniquely determined by (3.13) and is positive definite.
Since Eη is bounded, we have from (3.13) that

ηWη = Zη −
(
e−iθIm + ηE∗

η

)
Zη

(
eiθIm + ηEη

)
= −ηeiθE∗

ηZη − ηe−iθZηEη +O(η2).

This implies that

Wη = −eiθE∗
ηZη − e−iθZηEη +O(η).(3.14)

If Zη converges to Z0 as η → 0+, then Z0 is positive semidefinite. To prove that Z0

is positive definite, it suffices to show that Z0 is nonsingular. Suppose that x ∈ Cm
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such that Z0x = 0. Then we have Zηx → 0 and x∗Zη → 0 as η → 0+. Multiplying
(3.14) by x∗ and x from the left and right, respectively, we have

x∗Wηx = −eiθx∗E∗
ηZηx− e−iθx∗ZηEηx+O(η)→ 0 as η → 0+.

Thus x = 0 because Wη converges to W0 and W0 is positive definite. It follows that
Z0 is positive definite.

Theorem 3.3. The number of eigenvalues (counting multiplicities) of ϕ0(λ) on
T must be even, say, 2m. Let X = limη→0+ Xη be invertible and write X = XR+ iXI

with XR = X�
R , XI = X�

I ∈ Rn×n. Then
(i) rank (XI) ≤ m;
(ii) rank (XI) = m if all eigenvalues of ϕ0(λ) on T are semisimple and ‖Sη −

S‖2 = O(η) for η > 0 sufficiently small, where Sη = X−1
η A and S = X−1A;

(iii) rank (XI) = m if all eigenvalues of ϕ0(λ) on T are semisimple and each
unimodular eigenvalue of multiplicity mj is perturbed to mj eigenvalues (of
ϕη(λ)) inside the unit circle or to mj eigenvalues outside the unit circle.

Proof. Consider the real quadratic pencil P (λ) = λϕ0(λ) = λ2A� − λQ + A. So
P (λ) and ϕ0(λ) have the same eigenvalues on T. If λ0 	= ±1 is an eigenvalue of P (λ)
on T with multiplicity m0, then so is λ0. Thus the total number of nonreal eigenvalues
of P (λ) on T must be even. Now the quadratic pencil Pη(λ) = λ2A�−λ(Q+ iηI)+A
is �-palindromic, and it has no eigenvalues on T for any η 	= 0 [12]. If 1 (or −1)
is an eigenvalue of P (λ) with multiplicity r and Q in P (λ) is perturbed to Q + iηI,
then half of these r eigenvalues are perturbed to the inside of T and the other half
are perturbed to the outside of T. This means that r must be even. Thus the total
number of eigenvalues of ϕ0(λ) on T is also even and is denoted by 2m.

(i) By Xη +A�X−1
η A = Qη we have

i(Q∗
η −Qη) = i(X∗

η −Xη)− iA�(X−1
η −X−∗

η )A

= i(X∗
η −Xη)− (X−1

η A)∗i(X∗
η −Xη)(X

−1
η A).

Thus

Kη − S∗
ηKηSη = 2ηI,(3.15)

where Kη = i
(
X∗

η −Xη

)
= 2Xη,I . Note that the eigenvalues of Sη = X−1

η A are
the eigenvalues of Pη(λ) inside T. Since X = limη→0+ Xη is invertible, we have
S = X−1A = limη→0+ Sη. Let

S = V0

[
R0,1 0
0 R0,2

]
V −1
0(3.16)

be a spectral resolution of S, where R0,1 ∈ Cm×m and R0,2 ∈ C(n−m)×(n−m) are upper
triangular with σ(R0,1) ⊆ T and σ(R0,2) ⊆ D ≡ {λ ∈ C| |λ| < 1}, and V0 = [V0,1, V0,2]
with V0,1 ∈ Cn×m and V0,2 ∈ Cn×(n−m) having unit column vectors. It follows from
[24, Chapter V, Theorem 2.8] that there is a nonsingular matrix Vη = [Vη,1, Vη,2] with
Vη,1 ∈ Cn×m and Vη,2 ∈ Cn×(n−m) such that

Sη = Vη

[
Rη,1 0
0 Rη,2

]
V −1
η(3.17)

and Rη,1 → R0,1, Rη,2 → R0,2, and Vη → V0, as η → 0+.
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From (3.15) and (3.17) we have

V ∗
η KηVη −

[
R∗

η,1 0
0 R∗

η,2

]
V ∗
η KηVη

[
Rη,1 0
0 Rη,2

]
= 2ηV ∗

η Vη.(3.18)

Let

Hη = V ∗
η KηVη =

[
Hη,1 Hη,3

H∗
η,3 Hη,2

]
, V ∗

η Vη =

[
Wη,1 Wη,3

W ∗
η,3 Wη,2

]
.(3.19)

Then (3.18) becomes

Hη,1 −R∗
η,1Hη,1Rη,1 = 2ηWη,1,(3.20a)

Hη,2 −R∗
η,2Hη,2Rη,2 = 2ηWη,2,(3.20b)

Hη,3 −R∗
η,1Hη,3Rη,2 = 2ηWη,3.(3.20c)

As η → 0+, Rη,1 → R0,1 with ρ(R0,1) = 1, Rη,2 → R0,2 with ρ(R0,2) < 1, and Wη,2

andWη,3 are bounded. So we have Hη,2 → 0 from (3.20b) and Hη,3 → 0 from (3.20c).
It follows from (3.19) that Kη = 2Xη,I converges to K0 = 2XI with rank(XI) ≤ m.

(ii) Suppose that eigenvalues of ϕ0(λ) on T are semisimple and ‖Sη−S‖2 = O(η)
for η > 0 sufficiently small. Then we will show that Hη,1 in (3.20a) converges to H0,1

with rank(H0,1) = m. Let λ1, . . . , λr ∈ T be the distinct semisimple eigenvalues of S
with multiplicities m1, . . . ,mr, respectively. Then (3.16) can be written as

S = V0

[
D0,1 0
0 R0,2

]
V −1
0 ,

whereD0,1 = diag{λ1Im1 , . . . , λrImr}, V0 = [V0,λ1 , . . . , V0,λr , V0,2], and
∑r

i=1mi = m.
Now Sη = S+(Sη−S) with ‖Sη−S‖2 = O(η). By repeated application of [24, Chapter
V, Theorem 2.8] there is a nonsingular matrix Vη = [Vη,λ1 , . . . , Vη,λr , Vη,2] ∈ Cn×n

such that

Sη = Vη

[
D0,1 + ηEη,1 0

0 R0,2 + ηEη,2

]
V −1
η

and Vη → V0 as η → 0+, where Eη,1 = diag{E1
m1,η, . . . , E

1
mr,η} with E1

mj ,η ∈ Cmj×mj

and Eη,2 ∈ C(n−m)×(n−m) are such that ‖E1
mj ,η‖2 = O(1) for j = 1, . . . , r and

‖Eη,2‖2 = O(1).
The equation (3.20a) can then be written as

Hη,1 − (D0,1 + ηEη,1)
∗Hη,1(D0,1 + ηEη,1) = 2ηWη,1.(3.21)

Since D0,1 + ηEη,1 is a block diagonal matrix and all eigenvalues of its jth diagonal
block converge to λj , with λj ’s distinct numbers on T, we have

Hη,1 = diag{H1
m1,η, . . . , H

1
mr,η}+O(η),

where diag{H1
m1,η, . . . , H

1
mr,η} is the block diagonal of Hη,1. Then (3.21) gives

H1
mj ,η − (λjImj + ηE1

mj ,η)
∗H1

mj ,η(λjImj + ηE1
mj ,η) = 2ηW 1

mj ,η for j = 1, . . . , r,

where W 1
mj ,η is the jth diagonal block of Wη,1. Since Wη,1 is positive definite and

converges to a positive definite matrix, W 1
mj ,η, j = 1, . . . , r, are also positive definite
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and converge to positive definite matrices. For η > 0, we have ρ(λjImj + ηE1
mj ,η) < 1

for j = 1, . . . , r since ρ(Sη) < 1. By the assumption that Xη converges to X , we
have that H1

mj ,η converges to H1
mj ,0 for j = 1, . . . , r. From Lemma 3.2, we obtain

that H1
mj,0 is positive definite for j = 1, . . . , r. Hence, Hη,1 converges to H0,1 with

rank(H0,1) = m. It follows from (3.19) that Kη = 2Xη,I converges to K0 = 2XI with
rank(XI) = m.

(iii) It suffices to show that ‖Sη − S‖2 = O(η) for η > 0 sufficiently small. Since
X is a solution of X +A�X−1A = Q, we have

M
[
I
X

]
= L

[
I
X

]
S,

where the pencil (M,L) is defined in (3.5) . Under the condition in (iii), the column
space of

[
I
X

]
is a simple eigenspace of (M,L), in the terminology of [24]. It follows

from [24, Chapter VI, Theorems 2.12 and 2.15] that[
A 0

Q+ iηI −I

] [
I + ηFη,1

X + ηFη,2

]
=

[
0 I
A� 0

] [
I + ηFη,1

X + ηFη,2

]
(S + ηEη),

where Fη,1, Fη,2, Eη ∈ Cn×n with max{‖Fη,1‖2, ‖Fη,2‖2, ‖Eη‖2} ≤ c for η > 0 suffi-
ciently small and c > 0. It is easily seen that

Xη = (X + ηFη,2)(I + ηFη,1)
−1,

Sη = X−1
η A = (I + ηFη,1)(S + ηEη)(I + ηFη,1)

−1.

It follows that ‖Sη − S‖2 = O(η) for η > 0 sufficiently small.
Remark 3.1. Without the additional conditions in Theorem 3.3(ii) or (iii),

rank (XI) could be much smaller than m. Consider the example with A = In
and Q = 2In. Then ϕ0(λ) has all 2n eigenvalues at 1 with partial multiplicities
2. Thus m = n, but it is easy to see that rank (XI) = 0. For this example, we
have ‖Sη − S‖2 = O(η1/2) for η > 0 sufficiently small. We also know that the 2n
eigenvalues of ϕ0(λ) at 1 are perturbed to n eigenvalues inside the unit circle and n
eigenvalues outside the unit circle.

Corollary 3.4. If ϕ0(λ) has no eigenvalues on T, then X is real symmetric.
Furthermore, In(X) = In (−ϕ0(1)). Here In(W ) denotes the inertia of a matrix W .

Proof. From Theorem 3.3, it is easy to see that X is a real symmetric matrix.
Since X is real, S = X−1A is a real matrix. By setting λ = 1 in (3.4) we get
ϕ0(1) = −(I − S�)X(I − S). Hence, In(X) = In(−ϕ0(1)).

Corollary 3.5. If all eigenvalues of ϕ0(λ) are on T and are simple, then XI is
positive definite.

Proof. The proof is by Theorem 3.3(iii) immediately.

4. An SA. As explained in [12] and also in this paper, the required solution
X = G−1

L,S is a particular weakly stabilizing solution of (3.3) and is given by X =
limη→0+ Xη, where Xη is the unique stabilizing solution of (1.4). We will call this
particular solution the weakly stabilizing solution of (3.3). It can be approximated by
Xη for a small η. For a fixed η > 0, Xη can be computed efficiently by the DA studied
in [12] for all energy values.

In this section we will develop an SA that for most cases can find the weakly
stabilizing solution of (3.3) more efficiently and more accurately than the DA by
working on the equation (3.3) directly.
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Consider the pencil (M,L) given by (3.5). The simple relationM
[
I
X

]
= L

[
I
X

]
X−1A

shows that the weakly stabilizing solution of (3.3) is obtained by X = X2X
−1
1 , where[

X1

X2

]
forms (or, more precisely, the columns of

[
X1

X2

]
form) a basis for the invariant

subspace of (M,L) corresponding to its eigenvalues inside T and its eigenvalues on T

that would be perturbed to the inside of T when Q is replaced by Qη with η > 0.
We now assume that all unimodular eigenvalues λ 	= ±1 of (M,L) are semisimple

and the eigenvalues ±1 (if they exist) have partial multiplicities 2. This assumption
seems to hold generically. Under this assumption, for computing the weakly stabiliz-
ing solution we need to include all linearly independent eigenvectors associated with
the eigenvalues ±1 and use Theorem 3.1 to determine which half of the unimodular
eigenvalues λ 	= ±1 should be included to compute the required invariant subspace.

We may use the QZ algorithm to determine this invariant subspace, but it would
be better to exploit the structure of the pencil (M,L). We will use the same approach
as in [15] to develop an SA to find a basis for the desired invariant subspace of (M,L)
and then compute the weakly stabilizing solution of (3.3). The algorithm is still based
on the (S+S−1)-transform in [19] and Patel’s algorithm in [23], but some new issues
need to be addressed here.

It is well known that (M,L) is a symplectic pair, i.e., (M,L) satisfiesMJM� =

LJL�, where J =
[ 0 I
−I 0

]
. Furthermore, the eigenvalues of (M,L) form reciprocal

pairs (ν, 1/ν), where we allow ν = 0,∞. We define the (S + S−1)-transform [19] of
(M,L) by

K :=MJL�J + LJM�J =

[
Q A−A�

A� −A Q

]
,(4.1a)

N := LJL�J =

[
A 0
0 A�

]
.(4.1b)

Then K and N are both skew-Hamiltonian, i.e., KJ = JK� and NJ = JN�. The
relationship between eigenvalues of (M,L) and (K,N ) and their Kronecker structures
has been studied in [19, Theorem 3.2]. We will first extend that result to allow
unimodular eigenvalues for (M,L). The following preliminary result is needed.

Lemma 4.1. Let Nr(λ) := λIr + Nr, where Nr is the nilpotent matrix with

Nr(i, i + 1) = 1, i = 1, . . . , r − 1, and zeros elsewhere. Let
eq.
∼ denote the equivalence

between two matrix pairs. (Two matrix pairs (Y1, Y2) and (Z1, Z2) are called equivalent
if there are nonsingular matrices U and V such that UY1V = Z1 and UY2V = Z2.)
Then

(i) for λ 	= 0,±1, (Nr(λ) +Nr(λ)
−1, Ir)

eq.
∼ (Nr(λ+ 1/λ), Ir);

(ii) (N2
r + Ir, Nr)

eq.
∼ (I,Nr).

Proof. (i) Since λ 	= 0, one can show thatNr(λ)
−1 ≡ [tj−i] andNr(λ)+Nr(λ)

−1 ≡
[sj−i] are Toeplitz upper triangular with tk = (−1)kλ−(k+1) for k = 0, 1, . . . , r− 1, as
well as s0 = λ + 1/λ, s1 = 1 − λ−2, and sk = tk for k = 2, . . . , r − 1. Since λ 	= ±1,
s1 = 1− λ−2 is nonzero. It follows that (Nr(λ) +Nr(λ)

−1, Ir)
eq.
∼ (Nr(λ + 1/λ), Ir).

(ii) (I + N2
r , Nr)

eq.
∼ (Ir , Nr(I + N2

r )
−1)

eq.
∼ (Ir , Nr − N3

r + N5
r − · · · )

eq.
∼

(Ir , Nr).
Theorem 4.2. Suppose that (M,L) has eigenvalues {±1} with partial multiplic-

ities 2. Let γ = λ + 1/λ (λ = 0,∞ permitted). Then λ and 1/λ are eigenvalues of
(M,L) if and only if γ is a double eigenvalue of (K,N ). Furthermore, for λ 	= ±1
(i.e., γ 	= ±2) γ, λ and 1/λ have the same size Jordan blocks, i.e., they have the same
partial multiplicities; for λ = ±1, γ = ±2 are semisimple eigenvalues of (K,N ).
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Proof. By the results on Kronecker canonical form for a symplectic pencil (see
[20]) and by our assumption, there are nonsingular matrices X and Y such that

YMX =

[
J D
0 In

]
, YLX =

[
In 0
0 J

]
,(4.2)

where J = J1 ⊕ Js ⊕ J0, J1 = Ip ⊕ (−Iq), Js is the direct sum of Jordan blocks
corresponding to nonzero eigenvalues λj of (M,L), where |λj | < 1 or λj = eiθj

with Im(λj) > 0, and J0 is the direct sum of nilpotent blocks corresponding to zero
eigenvalues, and D = Ip ⊕ Iq ⊕ 0n−r with r = p+ q.

Let X−1JX−� =
[ X1 X2

−X�
2 X3

]
, where Xi ∈ Cn×n, i = 1, 2, 3. Thus X�

1 = −X1

and X�
3 = −X3. Using (4.2) inMJM� = LJL� we get

JX1J
� −DX�

2 J
� + JX2D +DX3D = X1,(4.3a)

JX2 +DX3 = X2J
�,(4.3b)

JX3J
� = X3.(4.3c)

Let Js,0 = Js ⊕ J0. We partition X3 and X2 by X3 =
[ X3,1 X3,2

−X�
3,2 X3,3

]
and X2 =[X2,1 X2,2

X2,3 X2,4

]
, respectively, where X2,1, X3,1 ∈ Cr×r. Comparing the diagonal blocks

in (4.3b) we get

J1X2,1 +X3,1 = X2,1J
�
1 ,(4.4a)

Js,0X2,4 = X2,4J
�
s,0.(4.4b)

From (4.4a) we see that X3,1 has the form X3,1 =
[ 0p ω

−ω� 0q

]
. From (4.3c) we have

[Ip ⊕ (−Iq)]X3,1[Ip ⊕ (−Iq)] = X3,1. It follows that ω = 0 and thus X3,1 = 0. From
(4.3c) we also have J1X3,2J

�
s,0 = X3,2 and Js,0X3,3J

�
s,0 = X3,3, from which we get

X3,2 = 0 and X3,3 = 0. So we have X3 = 0. Then (4.3b) becomes JX2 = X2J
�,

from which we get

X2,1 = ηp ⊕ ηq, X2,2 = X�
2,3 = 0,(4.5)

where ηp ∈ Cp×p and ηq ∈ Cq×q. Moreover, X2,1 and X2,4 are nonsingular by the
nonsingularity of X−1JX−�. Substituting (4.3b) into (4.3a) we get

X1 = JX1J
� −DJX�

2 +X2J
�D ≡ JX1J

� + V,(4.6)

where V = X2J
�D − DJX�

2 =
[V1 0
0 0

]
with V1 = (ηp − η�p ) ⊕ (η�q − ηq) by (4.5).

Partition X1 =
[ X1,1 X1,2

−X�
1,2 X1,3

]
with X1,1 ∈ Cr×r. From the equations for the (1, 2) and

(2, 2) blocks of (4.6) we get X1,2 = 0 and X1,3 = 0, respectively. Furthermore, from
the equation for the (1, 1) block in (4.6) we get X1,1 = ξp ⊕ ξq with ξp ∈ Cp×p and
ξq ∈ Cq×q, and we also get ηp = η�p and ηq = η�q , i.e., X

�
2,1 = X2,1.
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From (4.2), (4.4), and Lemma 4.1(ii) we now have

(K,N )
eq.
∼ (MJL� + LJM�,LJL�)

eq.
∼

([
(J1X1,1 +X1,1J1)⊕0n−r

(
(J2

1 + Ir)X2,1

)
⊕
(
(J2

s,0 + In−r)X2,4

)(
X2,1(J

2
1 + Ir)

)
⊕ (X�

2,4((J
2
s,0)

� + In−r)) 0n

]
,[

X1,1 ⊕ 0n−r J1X2,1 ⊕ Js,0X2,4

X2,1J1 ⊕X�
2,4J

�
s,0 0n

])
eq.
∼

([
2ξp ⊕ (−2ξq) 2Ir

2Ir 0r

]
⊕ (Js + J−1

s )⊕ I ⊕ (Js + J−1
s )⊕ I,[

ξp ⊕ ξq Ip ⊕ (−Iq)
Ip ⊕ (−Iq) 0r

]
⊕ I ⊕ J0 ⊕ I ⊕ J0

)
eq.
∼
(
2I2p ⊕ (−2I2q)⊕ (Js + J−1

s )⊕ I ⊕ (Js + J−1
s )⊕ I, I2p ⊕ I2q ⊕ I ⊕ J0 ⊕ I ⊕ J0

)
.

The proof is completed by using Lemma 4.1(i).

4.1. Development of SA. It is helpful to keep in mind that the transform
λ→ γ achieves the following:

{0,∞} →∞, T→ [−2, 2], R \ {±1, 0} → R \ [−2, 2], C \ (R ∪ T)→ C \ R.

By Theorem 4.2 and our assumption on the unimodular eigenvalues of (M,L), all
eigenvalues of (K,N ) in [−2, 2] are semisimple.

Based on the Patel approach [23] we first reduce (K,N ) to a block triangular
matrix pair of the form

U�KZ =

[
K1 K2

0 K�
1

]
, U�NZ =

[
N1 N2

0 N�
1

]
,(4.7)

whereK1 andN1 ∈ Rn×n are upper Hessenberg and upper triangular, respectively,K2

andN2 are skew symmetric, U and Z ∈ R2n×2n are orthogonal satisfying U�JZ = J .
By the QZ algorithm, we have orthogonal matrices Q1 and Z1 such that

Q1K1Z1 = K11, Q1N1Z1 = N11,(4.8)

where K11 and N11 are quasi-upper and upper triangular, respectively.
From (4.7) and (4.8) we see that the pair (K11, N11) contains half the eigenvalues

of (K,N ). We now reduce (K11, N11) to the quasi-upper and upper block triangular
matrix pair

Ũ�K11Z̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
Im0 K̂01 K̂02 · · · K̂0r

Γ1 K̂12 · · · K̂1r

Γ2
. . .

...
. . . K̂r−1r

Γr

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ũ�N11Z̃ = diag{Γ0, Im1 , Im2 , . . . , Imr},

where m0+m1+ · · ·+mr = n, Γ0 is strictly upper triangular, Γ1 = diag{g1, . . . , gm1}
with gi ∈ [−2, 2], and σ(Γj) = {γj} ⊆ R \ [−2, 2] or σ(Γj) = {γj , γj} ⊆ C \ R with
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σ(Γj) ∩ σ(Γi) = ∅, i 	= j, i, j = 2, . . . , r. Let

K̂i = [K̂ii+1, . . . , K̂ir], i = 0, . . . , r − 1,

Γ̂j =

[
Γj K̂j

0 Γ̂j+1

]
, Γ̂r = Γr, j = 1, . . . , r − 1.

By solving some Sylvester equations

Γ0ZΓ̂1 − Z = K̂0,

ZΓ̂i+1 − ΓiZ = K̂i, i = 1 . . . , r − 1,
(4.9)

we can reduce (K11, N11) to the quasi-upper and upper block diagonal matrix pair

Û�K11Ẑ = diag{Im0 ,Γ1,Γ2, . . . ,Γr},
Û�N11Ẑ = diag{Γ0, Im1 , Im2 , . . . , Imr}.

(4.10)

The procedure here is very much like the block diagonalization described in sec-
tion 7.6.3 of [8]. Partition Ẑ = [Ẑ0, Ẑ1, . . . , Ẑr] with Ẑi ∈ Rn×mi according to the
block sizes of (4.10). It holds that

K11Ẑ0Γ0 = N11Ẑ0, K11Ẑj = N11ẐjΓj , j = 1, . . . , r.(4.11)

It follows that for Z1 from (4.8), Z(:, 1 : n)(Z1Ẑj) forms a basis for an invariant

subspace of (K,N ) for j = 0, 1, . . . , r. In particular, the columns of Z(:, 1 : n)(Z1Ẑ1)
are real eigenvectors of (K,N ) corresponding to real eigenvalues in [−2, 2]. We then
need to get a suitable invariant subspace of (M,L) from each of these invariant
subspaces for (K,N ).

We start with two lemmas about solving the quadratic equation γ = λ + 1/λ in
the matrix form.

Lemma 4.3. Given a real quasi-upper triangular matrix

Γs =

⎡⎢⎣ γ11 · · · γ1m
. . .

...
0 γmm

⎤⎥⎦ ,(4.12)

where γii is 1× 1 or 2× 2 block with σ(γii) ⊆ C \ [−2, 2], i = 1, . . . ,m, the quadratic
matrix equation

Λ2
s − ΓsΛs + I = 0(4.13)

of Λs is uniquely solvable with Λs being real quasi-upper triangular with the same block
form as Γs in (4.12) and σ(Λs) ⊆ D ≡ {λ ∈ C| |λ| < 1}.

Proof. Let

Λs =

⎡⎢⎣ λ11 · · · λ1m
. . .

...
0 λmm

⎤⎥⎦
have the same block form as Γs. We first solve the diagonal blocks {λii}mi=1 of Λs

from the quadratic equation λ2−γiiλ+ I[i] = 0, where [i] denotes the size of γii. Note
that the scalar equation

λ2 − γλ+ 1 = 0(4.14)

has no solutions on T for γ ∈ C \ [−2, 2]. It always has one solution inside T and the
other outside T.
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For i = 1, . . . ,m, if γii ∈ R \ [−2, 2], then λii ∈ (−1, 1) is uniquely solved from
(4.14) with γ = γii. If γii ∈ R2×2 with γiiz = γz for z 	= 0 and γ ∈ C \ R, then γii =
[z, z]diag {γ, γ} [z, z]−1 and the required solution is λii = [z, z]diag

{
λ, λ

}
[z, z]−1 ∈

R2×2, where λ ∈ D is uniquely solved from (4.14).
For j > i, comparing the (i, j) block on both sides of (4.13) and using λii − γii =

−λ−1
ii , we get

λijλjj − λ−1
ii λij = γijλjj +

j−1∑
�=i+1

(γi� − λi�)λ�j .

Since σ(λ−1
ii ) ∩ σ(λjj) = ∅, i, j = 1, . . . ,m, the strictly upper triangular part of Λs

can be determined by the following recursive formula:
For d = 1, . . . ,m− 1,

For i = 1, . . . ,m− d, j = i+ d,
A := λ�jj ⊗ I[i] − I[j] ⊗ λ−1

ii ,

b := γijλjj +
∑j−1

�=i+1(γi� − λi�)λ�j ,
λij = vec−1(A−1vec(b)),

end i,
end d.

Here ⊗ denotes the Kronecker product, vec is the operation of stacking the columns
of a matrix into a vector, and vec−1 is its inverse operation.

We note that (4.13) is a special case of the palindromic matrix equation studied
recently in [16]. The desired solution Λs could also be obtained by applying the
general formula in [16, Theorem 5], which involves the computation of (Γ−1

s )2 and
a matrix square root. However, for our special equation, the procedure given in the
proof of Lemma 4.3 is more direct and numerically advantageous.

Lemma 4.4. Given a strictly upper triangular matrix Γ0 = [γij ] ∈ Re×e, the
quadratic matrix equation

Γ0Λ
2
0 − Λ0 + Γ0 = 0 in Λ0 = [λij ] ∈ R

e×e(4.15)

with Λ0 being strictly upper triangular is uniquely solvable.
Proof. From (4.15) the matrix Λ0 is uniquely determined by λi,i+j = γi,i+j ,

i = 1, . . . , e− 2, j = 1, 2, λe−1,e = γe−1,e, and
For j = 3, . . . , e,

For i = 1, . . . , e− j + 1,
λ̂i,i+j−1 =

∑i+j−2
�=i+1 λi,�λ�,i+j−1,

end i,
For i = 1, . . . , e− j,

λi,i+j = γi,i+j +
∑i+j−2

�=i+1 γi,�λ̂�,i+j ,
end i,

end j.
Theorem 4.5. Let Zs form a basis for an invariant subspace of (K,N ) cor-

responding to Γs with σ(Γs) ⊆ C \ [−2, 2], i.e., KZs = NZsΓs. Suppose that Λs

solves Γs = Λs + Λ−1
s as in Lemma 4.3 with σ(Λs) ⊆ D \ {0}. If the columns of

J (L�JZsΛs−M�JZs) are linearly independent, then they form a basis for a stable
invariant subspace of (M,L) corresponding to Λs.

Proof. Since

KZs −NZsΓs = (MJL� + LJM�)JZs − LJL�JZs(Λs + Λ−1
s ) = 0,

we haveMJ
(
L�JZsΛs −M�JZs

)
= LJ

(
L�JZsΛs −M�JZs

)
Λs.
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Remark 4.1. Let

Zs =

[
Z1

Z2

]
,

[
X1

X2

]
= J (L�JZsΛs −M�JZs),

where each of X1, X2, Z1, and Z2 has n rows. Then direct computation gives X1 =
Z2Λs−Z1. However, it is more convenient to getX2 = QX1−A�X1Λs fromM

[
X1

X2

]
=

L
[
X1

X2

]
Λs.

We now explain how we can get eigenvectors of (M,L) from eigenvectors of (K,N )
corresponding to eigenvalues in [−2, 2].

Theorem 4.6. Let v =
[
v1
v2

]
be a real eigenvector of (K,N ) corresponding to

eigenvalue γ ∈ [−2, 2]. Let λ be a solution of (4.14) and let u1 = λv2 − v1, u2 =
Qv1−λA�v1. Then u =

[
u1

u2

]
is an eigenvector of (M,L) corresponding to eigenvalue

λ if u 	= 0. Moreover, we indeed have u 	= 0 for each γ ∈ (−2, 2).
Proof. The first part is proved by direct computation as in the proof of Theo-

rem 4.5. For the second part, we simply note that λ is not real when γ ∈ (−2, 2), and
then u1 	= 0 since v is a nonzero real vector.

Remark 4.2. When γ ∈ (−2, 2) is an eigenvalue of (K,N ) with multiplicity 2k
(or an eigenvalue of (K11, N11) with multiplicity k), we can use Theorem 4.6 to get k
eigenvectors of (M,L) corresponding to eigenvalue λ from the k linearly independent
eigenvectors of (K,N ) we have already obtained. However, there is no guarantee that
the k eigenvectors of (K,N ) so obtained are also linearly independent.

When A is singular, (M,L) has eigenvalues at 0 and∞. The following result will
then be needed.

Theorem 4.7. Let Z∞ ∈ R2n×m span an infinite invariant subspace of (K,N )
corresponding to (I,Γ0), where Γ0 is strictly upper triangular, i.e., NZ∞ = KZ∞Γ0.
Suppose that Λ0 solves Γ0Λ

2
0−Λ0+Γ0 = 0 as in Lemma 4.4 with Λ0 being strictly upper

triangular. If the columns of J (L�JZ∞Λ0−M�JZ∞) are linearly independent, then
they form a basis for a zero invariant subpace of (M,L) corresponding to (Λ0, I).

Proof. Since Γ0 = Λ0(I + Λ2
0)

−1, we have

NZ∞(I + Λ2
0) =MJM�JZ∞ + LJL�JZ∞Λ2

0 = KZ∞Λ0

= LJM�JZ∞Λ0 +MJL�JZ∞Λ0,

and thenMJ (L�JZ∞Λ0 −M�JZ∞) = LJ (L�JZ∞Λ0 −M�JZ∞)Λ0.
We can now present an SA for the computation of the weakly stabilizing solution

of (3.3).
SA.

Input: A ∈ Rn×n, Q = Q� ∈ Rn×n.
Output: The weakly stabilizing solution X of X +A�X−1A = Q.

Step 1: Form the matrix pair (K,N ) as in (4.1);

Step 2: Reduce (K,N ) as in (4.7): K ← U�KZ =
[K1 K2

0 K�
1

]
, N ← U�NZ =[N1 N2

0 N�
1

]
, where K1 and N1 ∈ Rn×n are upper Hessenberg and upper tri-

angular, respectively, U and Z are orthogonal satisfying U�JZ = J (see a
pseudo code in the appendix of [15]); Apply QZ algorithm to get (4.8);

Step 3: Compute eigenmatrix pairs K11Ẑ0Γ0 = N11Ẑ0, K11Ẑj = N11ẐjΓj of
(K11, N11), j = 1, . . . , r, as in (4.11) by solving the Sylvester equations in

(4.9) to get (4.10); [Ẑ0, Ẑ1, . . . , Ẑr] ← Z1[Ẑ0, Ẑ1, . . . , Ẑr], where Z1 is from
(4.8);
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Table 4.1

Total number of flops for SA.

Flops

Step 2 170
3

n3(Patel algorithm) + 39n3(QZ algorithm)

Step 3 2n3(assume m0 = 0, mi = 2, i = 1, . . . , r.)

Step 4 4n3

Step 5 Between 4n3(no eigenvalues are on T) and 8n3(all eigenvalues are on T)

Step 6 32
3
n3

Total ≈ 120n3

Step 4: Z∞ = Z(:, 1 : n)Ẑ0 ≡
[
Z∞,1

Z∞,2

]
, Zj = Z(:, 1 : n)Ẑj ≡

[
Zj,1

Zj,2

]
, j = 1, . . . , r;

Step 5-1: Use Lemma 4.4 to solve the strictly upper triangular Λ0 for Γ0Λ
2
0 −

Λ0 + Γ0 = 0;
Compute X∞,1 = Z∞,2Λ0 − Z∞,1, X∞,2 = QX∞,1 −A�X∞,1Λ0;
Set X1 ← X∞,1, X2 ← X∞,2 (by Theorem 4.7);

Step 5-2: For k = 1, . . . ,m1,
Solve λ = eiθ with Im(λ) ≥ 0 from (4.14) with γ = gk;
Compute x1 = z2e

iθ − z1, x2 = Qx1 − eiθA�x1, where z1 = Z1,1ek,
z2 = Z1,2ek (ek is the kth column of the identity matrix);
If Im(eiθx∗1A

�x1) > 0, then x1 ← x1, x2 ← x2;
Set X1 ← [X1|x1], X2 ← [X2|x2] (by Theorem 4.6 and Theorem 3.1);

end k;
Step 5-3: For j = 2, . . . , r,

Use Lemma 4.3 to solve Λj = Λs for (4.13) with Γs = Γj ;
Compute Xj,1 = Zj,2Λj − Zj,1, Xj,2 = QXj,1 −A�Xj,1Λj;
Set X1 ← [X1|Xj,1], X2 ← [X2|Xj,2] (by Theorem 4.5);

end j;
Step 6: Compute X = X2X

−1
1 .

In Step 5-2 of SA we have assumed that the nonsingular Hermitian matrix
iY ∗(2λ0A� − Q)Y in Theorem 3.1 (which is the matrix in (3.11)) is definite. This
assumption is the same as the assumption in Theorem 3.3(iii). Under this assumption
we do not need to form the matrix Y but only need to check the sign of its diagonal el-
ement determined by any (normalized) eigenvector. We could have used Theorem 3.1
to choose the right eigenvectors whether the Hermitian matrix is definite or not, but
this would increase computational work. We have thus chosen to use the simpler Step
5-2. We can always check in the end whether the imaginary part of the computed
X is (nearly) positive semidefinite. If not, we can use a more complicated Step 5-2
according to Theorem 3.1 to recompute X .

To find the weakly stabilizing solution of (3.3), the total number of flops for SA is
roughly 120n3, where a flop denotes a multiplication or an addition in real arithmetic.
A more detailed counting is given in Table 4.1.

4.2. Comparison of SA with other methods. The required solution in the
nano application is X = limη→0+ Xη. By now, we have available five methods in
two categories. In the first category, we have three methods that compute Xη for
a small η as an approximation to X . They are FPI, Newton’s method (NM), and
the DA. These methods are discussed in [12]. In the second category, we have two
methods that compute X directly. They are QZ and SA. In this paper we have
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further studied FPI. We now know when and why it works well. It has been shown
by numerical experiments in [12] that NM often converges to an undesired solution
or even diverges. We now also have a better understanding of this. Basically, Xη

is the unique solution of (3.1) with a positive definite imaginary part and, starting
with an initial guess with a positive definite imaginary part, the iterates produced by
NM often do not have a positive definite imaginary part (while the iterates from FPI
always do). So NM is really not a contender for solving our specific problem and could
be dropped from the first category. We also mentioned earlier that the convergence
of FPI (say, (2.1) with c = 1

2 ) is usually very slow for at least some of the energy
values of interest. Therefore we only need to compare SA with DA and QZ, as general
purpose methods.

Strictly speaking, SA and QZ are applicable only under some generic assumptions
since they rely on our Theorem 3.1 to pick the right nonreal unimodular eigenvalues
of ϕ0(λ) to get the desired weakly stabilizing solution. The difficulty associated with
nongeneric eigenstructure of ϕ0(λ) is avoided in DA by the introduction of η > 0. More
precisely, this difficulty is only concealed since the relation between ‖Xη −X‖ and η
is not clear in nongeneric cases. In the generic case, we often have ‖Xη−X‖ = O(η),
but the constant hidden in the big O notation could still be big. The smallest η that
we have seen in the nano literature is 10−6, although we have also experimented with
η = 10−10 for DA in [12]. In the experiments there, DA typically requires 26 iterations
for η = 10−6 , and nearly 40 iterations for η = 10−10. Note that DA requires 104

3 n3

real flops each iteration. So in terms of flop counts, four DA iterations is already
more expensive than SA. Moreover, since we take η = 0 directly in SA, the accuracy
achieved by SA is usually much better than that achieved by DA with η = 10−6. But
we also note that DA is much easier to use. If we take η to be very small in DA,
then DA could also have stability problems since the matrices to be inverted in DA
iterations may also be very ill-conditioned in that case.

One potential problem with SA is that we cannot rule out the possibility that the
column vectors generated in Steps 5-1, 5-2, and 5-3 of SA are linearly dependent (in
exact arithmetic). In that case, SA fails. Note that QZ does not have this problem,
but it requires about 440n3 flops, much more than the 120n3 flops required for SA.
The accuracy achieved by QZ is not necessarily better than that from SA since QZ
does not exploit the structure of the problem. Moreover, for QZ we may encounter
the uncomfortable situation where the number of computed eigenvalues inside T does
not match the number of computed eigenvalues outside T.

Finally, we explain why X1 is unlikely to be singular (in exact arithmetic) in
Step 6 of SA. For this we need to explain why the column vectors generated in Steps
5-1, 5-2, and 5-3 of SA are unlikely to be linearly dependent. Take Step 5-3, for
example, which is based on Theorem 4.5. Take Zs = Zj and Γs = Γj (j = 2, . . . , r);
we need to examine whether the matrix L�JZsΛs −M�JZs in Theorem 4.5 is of
full column rank. We start with the following result.

Theorem 4.8. Let Xs, Xu ∈ C2n×m (m ≤ n) form bases for stable and unstable
invariant subspaces of (L�,M�), respectively, corresponding to Λs and Λ−1

s , where
σ(Λs) ⊆ D \ {0}, i.e.,

L�Xs =M�XsΛs, L�Xu =M�XuΛ
−1
s .(4.16)

Then J �Xs and J �Xu span two linearly independent eigenspaces of (K,N ) corre-
sponding to Λs + Λ−1

s .
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Proof. From LJL� =MJM� and (4.16) we have

KJ �Xs =MJL�Xs + LJM�Xs =MJM�XsΛs + LJL�XsΛ
−1
s

= LJL�Xs(Λs + Λ−1
s ) = NJ �Xs(Λs + Λ−1

s ).

Similarly, KJ �Xu = NJ �Xu(Λs + Λ−1
s ).

Now we can write Zs = J �XsCs + J�XuCu, where Cs and Cu are coefficient
matrices. From (4.16) we have

L�JZsΛs −M�JZs = L�(XsCs +XuCu)Λs −M�(XsCs +XuCu)

=
[
L�Xs, L�Xu

] [ CsΛs − Λ−1
s Cs

CuΛs − ΛsCu

]
.(4.17)

Since σ(Λs) ⊆ D \ {0}, the linear mapping T defined by T (W ) = WΛs − Λ−1
s W

is a bijection on Cm×m. Thus, the matrix CsΛs − Λ−1
s Cs = T (Cs) is generically

nonsingular. When T (Cs) is nonsingular, L�JZsΛs−M�JZs is also of full column
rank since the columns of

[
L�Xs, L�Xu

]
are linear independent. The latter assertion

is clear when A is nonsingular in (3.5) but can also be shown by using the Kronecker
form of (L�,M�) when A is singular.

From the above discussions, we have the following practical strategy for computing
the required solution X with reasonable accuracy. We first use SA. In the unlikely
event that SA fails, we use QZ. If QZ also fails, then we use DA with a small η > 0
and might have to accept an approximation with lower accuracy.

5. Numerical results. All numerical experiments are carried out using
MATLAB R2008b with IEEE double-precision floating-point arithmetic (eps ≈ 2.22×
10−16) on the Linux system. We first illustrate the positivity of Xη,I for η > 0, where
Xη,I is the imaginary part of the stabilizing solution Xη of (3.1), as well as the rank of
XI = limη→0+ Xη,I . To measure the accuracy of the computed Xη we use the relative
residual

RResη =
‖Xη +A�X−1

η A−Qη‖
‖Xη‖+ ‖A‖2‖X−1

η ‖+ ‖Qη‖
,(5.1)

where ‖ · ‖ is the spectral norm.
Example 5.1. We randomly generate a real matrix A and a real symmetric matrix

Q of dimension 6. Then we use the invariant subspace method (the QZ algorithm)
to compute the complex symmetric stabilizing solution Xη of (3.1) with η = 10−4,
10−8, 10−12, respectively. When η = 0, ϕ0(λ) has 2m = 6 eigenvalues on T, given by

Λ = {−0.80913± 0.58763i, 0.64993± 0.76000i, −0.13000± 0.99151i}.

By Theorem 3.1 we determine that

Λs = {−0.80913+ 0.58763i, 0.64993 + 0.76000i, −0.13000− 0.99151i}

is such that the perturbed eigenvalues of ϕη(λ) (η > 0) associated with each λs ∈ Λs

are inside the unit circle. Then we compute the weakly stabilizing solution X of (3.3)
by using the invariant subspace corresponding to stable eigenvalues and eigenvalues
in Λs. The numerical results are shown in Table 5.1, where X0 = X .

We know from section 2 that Xη,I is positive definite and we know from Theo-
rem 3.3(iii) that rank(XI) = m = 3. These are confirmed by the numerical results
shown in Table 5.2, where X0,I = XI .
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Table 5.1

Relative residuals and ‖Xη −X�
η ‖/‖Xη‖.

η 10−4 10−8 10−12 0

RResη 1.17 × 10−15 1.51× 10−15 1.69× 10−15 1.59× 10−15

‖Xη −X�
η ‖/‖Xη‖ 9.88 × 10−15 7.47× 10−15 1.12× 10−14 1.14× 10−14

Table 5.2

The eigenvalues of Xη,I .

η The eigenvalues of Xη,I

10−4 33.938, 6.4240, 9.5171, 6.98× 10−4, 1.00× 10−4, 1.34× 10−4

10−8 33.937, 6.4232, 9.5134, 6.98× 10−8, 1.00× 10−8, 1.34× 10−8

10−12 33.937, 6.4232, 9.5134, 7.01× 10−12, 1.01× 10−12, 1.36 × 10−12

0 33.937, 6.4232, 9.5134, 2.54× 10−16, −1.94× 10−15, −3.71× 10−17

We now present some numerical comparison of SA and QZ for the computation
of the weakly stabilizing solution of (3.3). To measure the accuracy of a computed
solution X of (3.3) we use the relative residual RRes defined as in (5.1) with Xη and
Qη replaced by X and Q, respectively.

Example 5.2. As in [12], we consider a semi-infinite Hamiltonian operator for a
heterostructured semiconductor of the form

H(ψ, �x) = −∇ �

2ε(�x)
∇ψ + V (�x)ψ, �x ≡

[
x1
x2

]
∈ Ω,(5.2)

where Ω ≡ Ω1 ∪ Ω2 with{
Ω1 = ([−9,−1] ∪ [1, 9])× (−∞, 0],
Ω2 = [−1, 1]× (−∞, 0],

� is the reduced Planck constant, ψ is the associated wave function, ε(�x) is the electron
effective mass with

ε(�x) =

{
ε1, �x ∈ Ω1,
ε2, �x ∈ Ω2,

and V (�x) = ωx21 is the potential energy.
Let Tr = Trid(−1, 4,−1) be the tridiagonal matrix of dimension r. We use the

classical five-point central finite difference method to discretize the Hamiltonian op-
erator (5.2) on uniform grid points in Ω with mesh size h. Then the corresponding
matrices A and Q in (3.3) are of the forms

A = −
[
δ1I� ⊕

(
δ1 + δ2

2

)
⊕ δ2Im ⊕

(
δ1 + δ2

2

)
⊕ δ1I�

]
and Q = EI −B with

B = δ1T� ⊕ (2(δ1 + δ2))⊕ δ2Tm ⊕ (2(δ1 + δ2))⊕ δ1T�
− δ1

(
e�+1e

�
� + e�e

�
�+1

)
− δ2

(
e�+2e

�
�+1 + e�+1e

�
�+2

)
− δ2

(
et+1e

�
t + ete

�
t+1

)
− δ1

(
et+2e

�
t+1 + et+1e

�
t+2

)
+ ωh2diag

(
(1− c)2, (2− c)2, . . . , (n− c)2

)
,
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Fig. 1. Relative residuals of SA, condition numbers of X1, and numbers of eigenvalues of
(M,L) on T that are used in the computation of X (so they are halves of the total numbers).

where δi = �/2h2εi (i = 1, 2), ej denotes the jth column vector of the identity
matrix, 	 and m are the numbers of grid points on the x1-axis in (−9,−1) and (−1, 1),
respectively, t = 	 +m+ 1, n = 2	+m+ 2, c = (n+ 1)/2, and ⊕ denotes the direct
sum of two matrices.

In our test we take 	 = 79, m = 19, δ1 = 1, δ2 = 0.1, and ω = 5 × 10−4, then
the matrix size of A is n = 2	+m+ 2 = 179. Let Δ = [−0.5, 8.5]. We divide Δ into
p subintervals using p + 1 equally spaced nodes Ei, i = 0, 1, . . . , p. We now choose
p = 1000 and run SA and QZ for each Ei. Recall that for both algorithms X is
computed from X = X2X

−1
1 in the end. In Figure 1, we plot the relative residual and

the condition number of X1 (with each column of X1 normalized, here and elsewhere)
for SA. We also plot the number of eigenvalues of (M,L) on T that are used in the
computation of X (so it is half of the total number). In Figure 2, we plot the relative
residual and the condition number of X1 for QZ. From the figures we can see that the
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Fig. 2. Relative residuals of QZ and condition numbers of X1.

condition numbers are not very large and the accuracy of the computed X is high for
both methods, with that from SA slightly better.

In Example 5.2 the matrix A is nonsingular and so Step 5-1 in SA is never used.
We now construct an example with a singular A.

Example 5.3. We construct 10 × 10 matrices A and Q for (3.3) as follows. A =
rand(10, 10) ∗ diag(a1, . . . , a5, 0, 0, 0, 0, 0) ∗ rand(10, 10), where ai = 10 ∗ rand(1), for
i = 1, . . . , 5, and Q = EI10 −B with B = (B0 +B�

0 )/2 and B0 = 10 ∗ (rand(10, 10)−
0.5 ∗ ones(10, 10)). We run SA and QZ for E = 0.01i for i = 0, . . . , 1000. The results
are shown in Figures 3 and 4. We see that SA and QZ have roughly the same accuracy
for this example.

6. Conclusions. In this paper we have further studied a nonlinear matrix equa-
tion arising in nano research. We have proved general convergence results on fixed-
point iterations for (1.4). It is also shown that the required solution of (1.4) is the
unique solution with a positive definite imaginary part. Our analysis has also shown
that the convergence of these methods is usually very slow when the size of matrices
in (1.4) is large. So the use of these simple methods is recommended only when the
matrix size is small, which is the case when the equation is obtained from layer-based
models. We have also studied (3.3) directly, which is the equation we obtain by let-
ting η = 0 in (1.4). We have shown which half of the unimodular eigenvalues of P (λ)
in (3.6) should be included for computing the required weakly stabilizing solution of
(3.3) using subspace methods, and we have also determined the rank of the imaginary
part of this solution in terms of the number of unimodular eigenvalues of P (λ). We
have presented a structure-preserving algorithm for (3.3) that is nearly four times
more efficient than the QZ algorithm. The SA and the QZ algorithm often provide
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Fig. 3. Relative residuals of SA, condition numbers of X1, and numbers of eigenvalues of
(M,L) on T.

very good accuracy. But the accuracy would suffer if the matrix X1 used at the end of
the algorithms happens to be very ill-conditioned. Newton’s method cannot be used
as a correction method since the Fréchet derivative at the solution is always singular
when P (λ) has unimodular eigenvalues. When SA and QZ fail we may use DA on
(1.4) with a small η > 0 but may need to increase η if DA also runs into numerical
difficulties. It is possible to improve the accuracy of an approximation from DA by
using the FPI (2.1) with c = 1

2 , although at a high computational cost when the
matrix size is large.

While SA is based on some theoretical analysis and is usually much more efficient
than existing methods, we do not have a stability analysis of the algorithm. In fact, we
are unable to rule out the possibility of breakdown, although we have explained that
breakdown is very unlikely. Further work is needed to design an efficient algorithm
with guaranteed stability for this special nonlinear matrix equation.
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Fig. 4. Relative residuals of QZ and condition numbers of X1.
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