
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 28 April 2014, At: 15:25
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Engineering Optimization
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/geno20

Robust optimization for engineering
design
Jin-Su Kang a , Tai-Yong Lee b & Dong-Yup Lee c d
a Institute of Business and Management , National Chiao Tung
University , 118 Chung-Hsiao West Road, Section 1, Taipei City ,
100 , Taiwan
b Department of Chemical Engineering , Hongik University , 72-1
Sangsu-Dong, Mapo-gu, Seoul , 121-791 , Korea
c Department of Chemical and Biomolecular Engineering ,
National University of Singapore , 4 Engineering Drive 4,
Singapore , 117576
d Bioprocessing Technology Institute, Agency for Science,
Technology and Research (A*STAR) , 20 Biopolis Way, #06-01
Centros, Singapore , 138668
Published online: 28 Jun 2011.

To cite this article: Jin-Su Kang , Tai-Yong Lee & Dong-Yup Lee (2012) Robust optimization for
engineering design, Engineering Optimization, 44:2, 175-194, DOI: 10.1080/0305215X.2011.573852

To link to this article:  http://dx.doi.org/10.1080/0305215X.2011.573852

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/geno20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/0305215X.2011.573852
http://dx.doi.org/10.1080/0305215X.2011.573852


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
25

 2
8 

A
pr

il 
20

14
 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Engineering Optimization
Vol. 44, No. 2, February 2012, 175–194

Robust optimization for engineering design

Jin-Su Kanga*, Tai-Yong Leeb and Dong-Yup Leec

aInstitute of Business and Management, National Chiao Tung University, 118 Chung-Hsiao West Road,
Section 1, Taipei City 100, Taiwan; bDepartment of Chemical Engineering, Hongik University, 72-1

Sangsu-Dong, Mapo-gu, Seoul 121-791, Korea; cDepartment of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4, Singapore 117576 and Bioprocessing

Technology Institute, Agency for Science, Technology and Research (A∗STAR), 20 Biopolis Way, #06-01
Centros, Singapore 138668

(Received 30 December 2009; final version received 3 March 2011 )

This study proposes a robust optimization model to handle uncertainty during the process design stage,
together with a decision-making procedure. Different robustness concepts are presented to describe the
characteristic, either economic or technical, of a given variable in the model. Among economic robustness
measures, partial mean of costs is analysed to address its intrinsic problem of excessive variability of
performance with respect to the change of values in its parameters. To resolve it, a novel formulation of
robust economic optimization is derived, providing a conceptual framework for suggesting a proper range
of parameter values. Then, the model is further extended to consider technical robustness as well. Lastly,
the decision-making procedure is presented using the proposed nadir vector which is computationally
inexpensive and also useful in selecting a final solution. The applicability of the model was successfully
demonstrated by applying it to process design examples.

Keywords: economic robustness; partial mean of costs; lower bound; technical robustness;
decision-making

Nomenclature

A Heat transfer area of the heat exchanger, m2.
bi Annualized fixed cost, $/MW.
C Cost vector {C1, · · · · · · , CN}.
c1 Best-case cost by solving stochastic problem.
c2 Possible smallest worst-case cost.
c3 Worst-case cost by solving stochastic problem.
CA0 Concentration of reactant in the product, kmol/m3.
CA1 Concentration of reactant in the product, kmol/m3.
CLB Lower bound of objectives.
cmin Minimum of expected cost.
Cp Heat capacity of the reaction mixture, kJ/kmol · K .
Cs Cost of scenario s
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176 J.-S. Kang et al.

Cw Heat capacity of cooling water, kJ/kg · K .
dj Energy demand, MW.
djs Energy demand of scenario s, MW.
E∗ Optimum expected cost.
(E/R) Ratio of activation energy to gas constant, K .
f Objective vector.
F0s Feed flow rate, kmol/h.
f ∗

s Minimum value of an objective function, fs .
fs (x, ys) Objective function which expresses a cost under scenario s.
F ls Flow rate of recycle, kmol/h.
Fws Flow rate of cooling water, kg/h.
gi Operating cost, $/MW.
i 1, I , Plant.
I Number of plant types.
j 1, J , Operation mode.
J Number of operation mode.
k0 Arrehenius rate constant of reaction, h−1.
n0 Integer where x ∈ Rn0 .
n1 Integer where ys ∈ Rn1 .
N Number of scenarios.
ps Probability of the scenario s.
QHEs Heat exchanger load, kJ/h.
s 1, N , scenario.
t Target value.
T0 Temperature of feed, K .
T 1 Calculated technical robustness measure by solving Case I.
T 2 Calculated technical robustness measure by solving Case II.
T1s Reactor temperature, K .
T2s Recycle temperature, K .
Tw1 Inlet temperature of cooling water, K .
Tw2 Outlet temperature of cooling water, K .
UE (C) Utility function of expected cost.
UPM (C, t) Utility function of partial mean of cost with target value, t .
UT (y) Utility function of technical robustness
UWC (C) Utility function of worst-case cost.
Vs Reaction volume, m3.
Vd Volume of reactor (design capacity), m3.
w Any number between 0 and 1.
W ∗ Worst case cost.
x Scenario independent design variables.
xi Total capacity assigned to plant i ∈ I .
y Vector of operating variables.
yij Allocation of capacity to operation mode j from plant type i.
yijs Allocation of capacity to operation mode j from plant type iof scenario s.
ys Operating variables corresponding to scenario s.

Greek Letters

θj Duration of operation mode j , h.
� Set of feasible vectors of corresponding multi-scenario optimization problem.
�∗ Set of Pareto-optimal vectors of corresponding multi-scenario optimization problem.
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Engineering Optimization 177

1. Introduction

One of the major issues in engineering design is how to handle process uncertainty such as the
quality of feed streams, estimates of product demand, and values of various physical properties
and parameters, which may lead to undesirable variations in process performance (Georgiadis and
Pistikopoulos 1999, Bertsimas and Pachamanova 2008). Thus, it is highly necessary to study and
develop a robust optimization model that can take such uncertainty into account during the process
design stage. In the simplest model, one accounts for possible uncertainties using a number of
scenarios. The challenge of this problem is to optimize several objectives (e.g. minimize the costs
of the scenarios) leading to a multi-objective problem. The most common way of dealing with
several objectives is to optimize the expected value of objectives, usually using a cost vector.
This approach is known as the stochastic model (Dempster 1980) and given by the following
Problem (P1):

min
x,y1.··· ,yN

UE(C)

s.t. UE(C) =
∑

s

psCs

Cs = f (x, ys)

x, y1, · · · , yN ∈ �,

where ps is the probability of scenario s; UE(C) is the expected cost of scenarios; Cs , the cost
of the scenario s estimated using a certain function f (x, ys); and �, the set of feasible vectors.
Practically, the set of feasible vectors is often restricted to the Pareto optimal set �∗. Each
scenario s is constructed using different sets of control and design variables, denoted as ys ∈ Rn1

and x ∈ Rn0 respectively, which correspond to a certain practical realization of the operational
process. The stochastic model (P1) is constructed based on the assumption that the decision maker
is risk-neutral because the optimal decision depends only on the expected cost. This approach
only guarantees minimizing the expected cost, the probability-weighted average of scenario costs.
However, it does not guarantee that the process will perform to a certain level over all the uncertain
parameters. It is thus necessary to consider some additional ‘robustness measures’, which are used
to probe the robustness variability.

Robustness can be inferred as risk aversion from the economic and technical points of view.
The nature of each variable is different, so it is important to distinguish between different robust-
ness concepts being applied. Therefore, the current study classifies variables into three groups:
(i) scenario-independent variables, (ii) scenario-dependent technical variables (e.g., tempera-
ture, pressure, flow rate, and liquid holdup), and (iii) scenario-dependent monetary or economic
variables (e.g., cost, profit, and production yield). In the case of scenario-dependent economic
variables, the robustness concept should focus on reducing comparatively high scenario costs
(i.e., higher than the target cost), while keeping overall average cost as low as possible. On the
other hand, the robustness measures for the scenario-dependent technical variables should be
considered on the basis of the requirement that the operating conditions must be insensitive to
variations within certain ranges as defined by the scenarios. The robustness measures for the
scenario-dependent economic variables will be referred to in this study as ‘economic robustness
measures’ and the robustness measures for the scenario-dependent technical variables, as ‘techni-
cal robustness measures’. Although the robust optimization problem considering uncertainty has
been widely studied in various areas of engineering (Eppen et al. 1989, Wellons and Reklaitis
1989, Straub and Grossmann 1990, Shah and Pantelides 1992, Malcolm and Zenios 1994, Ruppen
et al. 1995, Samsatli et al. 1998, Suh and Lee 2001, Kang et al. 2004, Takriti and Ahmed 2004, Li
and Ierapetritou 2008) and economics (Fishburn 1977, Eppen et al. 1989, Wellons and Reklaitis
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178 J.-S. Kang et al.

1989, Straub and Grossmann 1990, Ruppen et al. 1995, Samsatli et al. 1998, Suh and Lee 2001,
Kang et al. 2004, Takriti and Ahmed 2004, Li and Ierapetritou 2008), the difference between the
economic and technical variables and the associated robustness measures still remains unclear
(Rao 2009). Thus, the objective of this study is to propose appropriate economic and technical
robustness measures applicable to robust optimization, which are both theoretically sound and
practically implementable.

The development of economic and technical robustness measures is a vigorous field of research.
It has been proven that economic robust measures should be monotonic (Fishburn 1977, Eppen
et al. 1989, Ruppen et al. 1995, Samsatli et al. 1998, Suh and Lee 2001, Kang et al. 2004,Takriti and
Ahmed 2004, Li and Ierapetritou 2008). It has also been shown that using symmetric measures as
economic robustness measures (Malcolm and Zenios 1994, Rao 2009) yields suboptimal solutions
as it is directly related to reducing the variability from the mean, which itself cannot be an objective
of robust optimization. In addition, Pareto optimality, one of the important criteria for solutions
of multi-objective optimization, is guaranteed only for monotonic robustness measures (Suh and
Lee, 2001, Kang et al. 2004). Unlike economic robustness, technical robustness measures have
been well understood to use even functions to reduce the variation among scenarios (Eppen
et al. 1989, Wellons and Reklaitis 1989, Straub and Grossmann 1990, Shah and Pantelides 1992,
Ruppen et al. 1995, Samsatli et al. 1998, Georgiadis and Pistikopoulos 1999, Suh and Lee 2001,
Takriti and Ahmed 2004, Li and Ierapetritou 2008) while economic robustness has not yet been
understood clearly (Rao 2009).

A variety of economic robustness measures have been proposed for the variability control,
as reviewed elsewhere (Kang et al. 2004, Ben-Tal and Nemirovski 2008). Suh and Lee (2001)
developed the Pareto-optimal subset condition, such that worst-case cost and partial mean of
costs were recommended for robust economic optimization, guaranteeing the Pareto optimality
of multi-scenario problems. Worst-case cost and partial mean of costs are defined as follows.

Worst-case cost:

UWC(C) = max{Cs |s = 1, · · · , N} (1)

Partial mean of costs:

UPM(C, t) =
N∑

s=1

ps max{Cs − t, 0} (2)

where t is a target value to be a criterion for penalizing exceedingly high scenario costs. Although
both measures have been proven to be effective for robust economic optimization, model param-
eters such as the tolerance of a robustness measure and a target value remain to be determined for
practical application. Kang et al. (2004) proposed a systematic method to determine the model
parameters for partial mean of costs by investigating the parameter ranges. The theoretical con-
cepts presented in the study were illustrated with a clear graphical representation of the parameter
space.

However, partial mean of costs, despite to its popular application, is difficult to use as a robust-
ness measure in practical applications. First, it is not guaranteed that the actual expected cost of the
process will be minimized, because only the mean of scenario costs above a certain target value
is optimized. Second, evaluating the actual scenario probabilities and envisaging all permissible
scenarios at the design stage are challenging tasks. The design of the probabilities is often based
on the preference of the decision-maker and the perceived relative importance of some scenarios,
which can be subjective. It probably does not require many arguments to convince one that both
factors are highly uncertain. The next issue is related to the instability of the model in terms of
possible variations of the probabilities; it may happen that small changes in a probability can
result in significant differences in the solutions. Lastly, the choice of a proper target value can
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Engineering Optimization 179

introduce some issues. For example, if the target value chosen is too large or too small, the robust
partial mean problem reduces to the stochastic problem (P1) and the resulting performance varies
significantly depending on the scenario actually realized without controlling variation. There-
fore, one of the aims of the current study is to propose a novel formulation of robust economic
optimization, which can resolve the problems associated with using partial mean of costs.

The rest of the paper is structured as follows: In Section 2, a motivating example is introduced
to illustrate in detail the intrinsic problems of using partial mean of costs as a robustness measure,
followed in Section 3 by the modified formulation for the theoretical investigation concerning
the meaningful ranges of target values. The motivating example is then revisited in order to
discuss the performance of the proposed range of target values. Subsequently, a multi-objective
optimization problem is defined taking into account both economic and technical robustness and
solved to generate a number of robust solutions within proposed ranges of objectives. Finally,
engineering design examples are evaluated to propose a decision-making procedure for selecting
a final solution amongst many different robust solutions.

2. Motivating example

Figure 1 shows the network structure of the power system capacity expansion model (Malcolm
and Zenios 1994). The design capacities over a given set of plants can be selected by minimizing
the capital and operating costs of the system, satisfying customer demand and physical constraints.

The mathematical formulation is given by:

min
x,y

∑
i∈I

bixi +
∑
j∈J

θj

∑
i∈I

giyij (3)

subject to

xi −
∑
j∈J

yij ≥ 0 for all i ∈ I (4)

∑
i∈I

yij = dj for all j ∈ J (5)

xi ≥ 0, yij ≥ 0 for all i ∈ I, j ∈ J (6)

Figure 1. Network representation of a power system.
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180 J.-S. Kang et al.

Table 1. Supply options and associated costs.

Plant types Capital cost Operating cost

Plant 1 200 30
Plant 2 500 10
Plant 3 380 20
Plant 4 0 200

where I denotes the set of plant types (e.g. hydro, coal, etc), and J is the set of operation modes
(namely base and peak), bi and gi are the annualized fixed cost ($/MW) and operating cost
($/MW), respectively for plant i ∈ I . θj and dj are the duration (h) and energy demand (MW),
respectively at operation mode j ∈ J . Energy demand dj (MW) is defined for operation mode
j ∈ J . The variable xi denotes the total capacity assigned to plant i ∈ I while yij is the allocation
of capacity to operation mode j from plant type i.

Four different plant types {Plant 1, Plant 2, Plant 3, Plant 4} are considered in this example.
Table 1 shows annualized fixed cost (bi) and operating cost (gi) for each plant. Plant 1 has low
capital cost but high operating cost. Plant 2 has high capital cost but low operating cost, while
Plant 3 has medium capital cost and medium operating cost. Lastly Plant 4 describes external
supply only used whenever necessary to meet demand in excess of the existing capacity; therefore
it has zero capital cost but very high operating cost. Plant 4 implies that unmet demand is zero
because demand is always satisfied, possibly via use of external supply option, if necessary.

This model is extended to consider uncertainties in demand, expressed as four scenarios over
base and peak as shown in Figure 2. Then, the robust partial mean model by Suh and Lee (2001)
is applied as follows:

min
x,y

(UE(C), UPM(C, t)) (7)

where

Cs =
∑
i∈I

bixi +
∑
j∈J

θj

∑
i∈I

giyijs (8)

8
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Figure 2. Cumulative load duration curves for four scenarios.
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Engineering Optimization 181

subject to

xi −
∑
j∈J

yijs ≥ 0 for all i ∈ I and s ∈ N (9)

∑
i∈I

yijs = djs for all j ∈ J and s ∈ N (10)

xi ≥ 0, yijs ≥ 0 for all i ∈ I, j ∈ J, and s ∈ N (11)

This problem can be solved by constructing an objective of weighted sum of two objective
functions as

min
x,y

wUE(C) + (1 − w)UPM(C, t) (7′)

where w varies from 0 to 1. In general, a target value, t , in Equation (7′) is determined by an
expert or a system condition. In this model, the minimum of the expected cost was used as the
target value, t , which is a system condition.

Figure 3 illustrates the results for the model defined by Equations (7′) and (8) to (11). In this
figure, each scenario cost is plotted against expected cost as w changes from 0 to 1. The left-most
points are obtained with only expected cost (w = 0) as an objective, resulting in stochastic problem
(P1). The right-most points represent the solutions with only partial mean of costs (w = 1) as
an objective. In other words, the left-most points are least robust solutions while the right-most
points are most robust solutions.

According to Pareto optimality, scenario costs above a target value are expected to decrease
with increasing expected costs as the weighting of partial mean of costs increases. It can be
paraphrased that robust solutions which have small variability among scenario costs are obtained
by sacrificing (i.e. increasing) expected cost. However, in Figure 3, the worst-case cost (scenario
3) above the target value increases from $7695 to $7740 with increasing expected cost from $7395
to $7422. Even the most robust solutions (w = 1) show larger variability among scenario costs
than the least robust solutions (w = 0). This means that the partial mean of costs does not work as
a robustness measure without controlling comparatively higher costs. Furthermore, in the case of
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Figure 3. Individual scenario cost vs. expected costs with p = (0.3, 0.25, 0.15, 0.3).

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
25

 2
8 

A
pr

il 
20

14
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Figure 4. Individual scenario cost vs. expected costs with p = (0.2, 0.25, 0.25, 0.3).
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Figure 5. Pareto curves between expected cost and partial mean of cost.

a small change in the probability set to (0.2, 0.25, 0.25, 0.3), the optimization results in completely
different solutions as described in Figure 4. A comparison between Figure 3 and 4 demonstrates
that even the most robust solutions can be quite different in the same system with respect to a
change in the set of probability although they are expected to be similar. This difference can be
also observed from Pareto curves between expected cost and partial mean of costs in Figure 5.
These results clearly illustrate the problems associated with using the partial mean of costs as an
economic robustness measure. There can be a couple of reasons for this excessive performance
variability. One is the fact that the partial mean of costs is not a Lipschitzian function of probability
(Miettinen 1999). The other is that using uncertain information such as a target value or probability
contributes to this variability.
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Engineering Optimization 183

Therefore, this study proposes a modified formulation of robust partial mean model, to resolve
the issues with partial mean of costs and provide a theoretical ground for selecting a desirable
target value.

3. Modified formulation

In this section, a novel formulation for robust economic optimization is proposed. The objectives
of robust partial mean model (Equation (7)) can be reformulated as follows:

min
x,y1,··· ,yN

(max{C1 − t, 0}, · · · , max{CN − t, 0}, UE(C)) (12)

This formulation with N + 1 objectives guarantees Pareto optimality (Kang et al. 2004). The
first N objectives are robustness measures to penalize scenario costs above a target value, t . It
should be noted that these robustness measures are independent of probabilities, implying that
the potential issues originating from using probability can be avoided. Since the first N objectives
have the same characteristic, they are investigated separately as an initial step, and only then
expected cost, UE(C), is considered. For the feasible treatment of these first N objectives, an
appropriate ordering is introduced below.

3.1. Ordering objectives

To deal with multiple objectives in Equation (12), an ordering relation applicable to comparing
the order of objective vectors is defined as follows:

Definition 1 Two N -vectors C(1) and C(2) have an order denoted by ≤t

C(1) ≤t C(2) (13)

if

max
{
C(1)

s − t, 0
} ≤ max

{
C(2)

s − t, 0
}

(14)

for all s = 1, . . . , N .

The ordering relation ≤t is monotonic in the sense that in general, C(1) ≤ C(2) implies C(1) ≤t

C(2). As a consequence, ≤t is a pre-order – it is reflexive and transitive, but not necessarily anti-
symmetric (Just and Weese 1995). In this relation ≤t , if C(1)

s and C(2)
s are less than the given

target value, C(1) and C(2) pairs may be treated as if they are indifferent to each other although
one is strictly larger than the other. To avoid this undesirable insensitivity, UE(C), the last entry
in Equation (12), is included in the objectives. Note that UE(C) is strictly monotonic with respect
to t leading to the following definition.

Definition 2 Two N -vectors C(1) and C(2) have an order C(1) ≤(t,UE) C(2) if C(1) ≤t C(2) and
UE(C(1)) ≤ UE(C(2)).

The ordering relation ≤(t,UE) is still a pre-order, but it is strictly monotonic (Kang et al. 2004)
so that C1 is strictly preferred to C2 if C1 < C2.

Now, the definitions mentioned above define a lower bound among the first N objectives in
Equation (12).
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184 J.-S. Kang et al.

Definition 3

CLB = Lower bound if CLB ≤t C for all C ∈ (�∗, t) (15)

It is observed that a lower bound is not unique because every Pareto optimal solution can be a
lower bound of a certain target value. However, another objective, expected cost, is a strictly mono-
tonic function of a target value which can be effective in ordering multiple solutions. Depending
on a target value, the existence or multiplicity of lower bounds is decided, affecting robust solu-
tions. If t is chosen too small so that it is not larger than any entries of C(1) and C(2), Equation (13)
reduces to C1 ≤ C2. This means there is no lower bound and the robust optimization formulation
becomes the original multi-objective problem. On the other hand, if t is chosen too large so that
it is not less than any entries of C(1) and C(2), Equation (13) reduces to C(1) = C(2). Since all the
robustness measures in Equation (12) become zero, the robust optimization formulation reduces
to the stochastic problem (P1). Only with proper target values, the robustness measures can be
effective for robust optimization. In the following section, the meaningful ranges of target values
are discussed in detail.

3.2. Range of target values

Target values play an important role in deciding the existence or multiplicity of lower bounds.
Since the modified formulation in the previous section is derived based on the definition of partial
mean of costs, the meaningful ranges of partial mean of costs with target values proposed by Kang
et al. (2004) are employed to decide a proper target value (Figure 6). ABC curve in Figure 6 is
generated by solving the robust partial mean model and changing either a target value or tolerance
of partial mean of costs within the range of partial mean of costs. Kang, et al. (2004) proved that
target values and tolerance of partial mean of costs inside ABC curve guarantee Pareto optimality.
In this curve, c1 and c3 are the smallest and largest scenario costs, respectively, obtained by solving
the stochastic problem (P1). The smallest possible value of worst-case cost, c2, can be obtained
by minimizing worst-case cost (Equation (1)) as an objective; cmin is the minimum expected cost
obtained by solving the stochastic problem (P1). If the target value is greater than c3, a lower
bound exists for every t , indicating that a lower bound does not act as a robustness measure. In
this case, all of the first N objectives in Equation (12) are always equal to zero resulting in the
stochastic problem (P1). On the contrary, if t is smaller than c1, there is no lower bound. If t

is smaller than c2 but, greater than c1, neither worst-case cost nor expected cost is better than
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n

Target value

c1 c2 c3

0

cmin

A

B C

D

Figure 6. Meaningful ranges of target values.
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Engineering Optimization 185

solutions obtained with t between c2 and c3. Therefore, values of t between c2 and c3 could be
appropriate candidates to offer effective lower bounds among first N objectives in Equation (12).

Then, robust solutions could be attained in two ways: (i) BC direction—increasing t from c2 to c3

with zero tolerance of robustness measures; and (ii) BD direction—fixing t at c2 with changing the
tolerance of robustness measures. Either changing t or tolerance has the same effect as changing
the weight of robustness measures among objectives. It is not easy to conclude which direction
would be more desirable for obtaining robust solutions. This issue will be further discussed in the
next section with an example.

3.3. Revisiting the motivating example

The power system capacity expansion model (Malcolm and Zenios 1994) is revisited to verify the
meaningful range of a target value proposed in the previous section. Figure 7 shows the robust
optimization results obtained with two different probability sets with changing a target value from
c2 to c3. In both cases, the expected cost increases from $7440 to $7476 and from $7480.5 to
$7500, respectively, while the worst-case cost (scenario 3) decreases from $7695 to $7590. A
comparison between Figure 3 and 7 indicates that the proposed range of a target value is very
effective to achieve economic robustness; Figure 7 shows smaller variability among scenario costs
as the expected cost increases. With a target value between c2 and c3, the same scenario costs are
obtained regardless of the difference in the set of probabilities. In addition, increasing expected
cost does not greatly affect the robustness of solutions within this range of a target value. The
sensitivity of expected cost to the change in a target value is 34% (p = 0.3, 0.25, 0.15, 0.3) and
18.6% (p = 0.25, 0.15, 0.3, 0.3), respectively.

As mentioned in Section 3.2, two possible directions (BC and BD) can be considered between
c2 and c3 (Figure 6) to attain robust solutions. When the model is extended to technical robustness,
these two directions should be evaluated to decide which direction is more desirable for economic
robustness. In the BC direction, the robustness measures are always zero, so the optimization
problem reduces to the robust worst-case model (Kang et al. 2004). That is, the comparison
between two directions presents the comparison between worst-case cost and partial mean of costs.
Between them, worst-case cost may be more suitably applied together with technical robustness
measures for the following reasons. Firstly, since partial mean of costs only penalizes the mean
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Figure 7. Robust solutions with target values.
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186 J.-S. Kang et al.

of scenario costs above a target value, the worst-case cost may increase in some range although
robustness increases (i.e., the expected cost increases). Secondly, partial mean of costs is not
a Lipschitzian function of probability (Miettinen 1999), even with the proposed target values.
This may cause a difficulty in controlling variability among scenarios. Lastly, when considering
technical robustness, there can be many technical robustness measures depending on the number of
scenario-dependent technical variables. Therefore, using a simpler economic robustness measure,
worst-case cost, may give more allowance to consider technical robustness than partial mean of
costs. If partial mean of costs is used, two probability-based objectives, partial mean of costs and
expected cost, would leave little chance for technical robustness measures to control variability
among scenario-dependent technical variables.

In the next section, a comprehensive robust optimization model is addressed whose objec-
tives consist of expected cost, worst-case cost as an economic robustness measure, and technical
robustness measures.

4. Robust optimization model for process design problems

4.1. Robust optimization formulation

The robust process design model is formulated with three kinds of objectives, expected cost, an
economic robustness measure, and technical robustness measures as follows:

min
x,y1,··· ,yN

(UE(C), UWC(C), UT (y))

subject to

x, y1, · · · , yN ∈ �.

The feasible region of solutions using three objectives can be described as Figure 8. The number of
technical robustness measures depends on the number of scenario-dependent technical variables
considered. As discussed in the previous section, worst-case cost is utilized as an economic
robustness measure. In this context, it appears to be desirable to use the half interval as a technical
robustness measure for the following reasons:

(i) it is an even function (a requirement for technical robustness);
(ii) its concept is consistent with worst-case cost, because it controls worst cases in both

directions; and
(iii) linearity is maintained. The half interval is defined as follows:

UT (y) = 1

2
(max

s
y − min

s
y) (16)

Feasible

(UE, UWC, UT)

(UE, UWC)

(UE, UT)

Figure 8. Feasible regions of robust solutions using robustness measures.
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Engineering Optimization 187

4.2. Generating robust alternatives

A number of methods for solving multi-objective linear problems have been suggested based on
finding Pareto optimal extreme points (Evans and Steuer 1973, Yu and Zeleny 1975, Gal 1977,
Isermann and Steuer 1988, Ecker et al. 1980, Solanki et al. 1993). However, the number of
extreme points increases exponentially as the number of variables and constraints increases. This
also means that the number of Pareto optimal extreme points, which is the subset of the set of
extreme points, increases exponentially resulting in heavy computational load. From the viewpoint
of decision-making, generating a large number of solutions does not appear to be attractive in any
practical sense. Therefore, one of the aims of the present study is to determine the range of the
Pareto optimal set in an efficient manner while avoiding heavy computations.

The lower bounds of the Pareto optimal set, the components of an ideal objective vector (Miet-
tinen 1999), are obtained easily by minimizing each objective, such as expected cost, an economic
robustness measure, and technical robustness measures, individually subject to the constraints.
The ideal objective vector is used as the reference points to scale the objective vector, together
with the upper bound of Pareto optimal set. This is the application of the method of global cri-
terion (Miettinen 1999), which is commonly utilized for making decisions. The upper bounds
of the Pareto optimal set, the components of a nadir objective vector, are much more difficult
to obtain (Miettinen 1999). As the size of a problem increases, obtaining an exact nadir vector
increases computational load significantly. In the current study, the efficient formulation origi-
nates from using a rough estimate of the nadir vector rather than the exact nadir vector itself.
The proposed nadir vector is attained by solving a bi-objective problem with expected cost and
an economic robustness measure in a lexicographic method (Miettinen 1999). The expected cost
and the economic robustness measure are chosen because they use the same monetary unit. In the
lexicographic method, the decision-maker must arrange the objective functions according to their
absolute importance described in Figure 9. The detailed procedure in this study is as follows:

Case I. When the expected cost has priority

Solve min
x,y1,··· ,yN

UE(C)

Subject to x, y1, · · · , yN ∈ �

Let the optimum objective value of the above problem be denoted by E∗. Then,

Solve min
x,y

UWC(C)

Subject to UE(C) ≤ E∗, x, y1, · · · , yN ∈ �

The technical robustness measure, T 1, is calculated.

Case II. When the economic robustness has priority

Solve min
x,y1,··· ,yN

UWC(C)

Subject to x, y1, · · · , yN ∈ �

Let the optimum objective value of the above problem be denoted by W ∗. Then,

Solve min
x,y1,··· ,yN

UE(C)

Subject to UWC(C) ≤ W ∗, x, y1, · · · , yN ∈ �
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188 J.-S. Kang et al.

Then, a technical robustness measure, T 2, is calculated.

The larger of the values, T 1 and T 2, is taken as the nadir objective value of the technical robust-
ness measure because, in most cases, the value of technical robustness increases or decreases
monotonically between T 1 and T 2. The nadir objective value of the economic robustness mea-
sure is decided from solving Case I, while the one for expected cost is obtained from solving
Case II. In this way, one needs four single-objective optimizations to find the proposed approxi-
mate nadir vector, while the determination of the exact nadir vector requires six single-objective
optimizations. If there are n technical robustness measures, then, the exact nadir vector will be
achievable after 2n + 4 consecutive solutions of single objective sub-problems given in Figure 9.
In contrast to it, the proposed nadir vector is obtained only after four solutions of single objective
sub-problems given in Case I and Case II (Section 4.2) regardless of n. Furthermore, calculat-
ing the exact nadir vector requires of deciding the priority among several technical robustness
measures, which is often tricky. This can be also avoided by using the proposed nadir vector.

Revisiting the power system capacity expansion model, the ranges of objectives are obtained
as follows:

7440 ≤ UE(C) ≤ 7476

7590 ≤ UWC(C) ≤ 7695

0.125 ≤ UT (y) ≤ 0.4167

After obtaining the range for each objective, the robust set of Pareto optimal solutions is calculated
by changing the priority among objectives, and altering the tolerance of the objective values within
the obtained ranges. Figure 10 shows the robust Pareto optimal solutions resulted according to

)(min 1 x
x
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)()(s.t.)(min )1*(
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fff ≤
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Figure 9. Lexicographic method.
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Figure 10. Robust Pareto optimal solutions.

technical robustness. There are several ways to express robust solutions in two-dimensional space.
In this figure, the economic robustness measure and expected cost are taken for each axis based
on the fact that they use the same monetary unit.

4.3. Decision making procedure

In principle, any robust solution obtained from this multi-objective problem is equally acceptable
because it satisfies Pareto optimality. However, sometimes it is important to decide a best desirable
solution, called a final solution. In this study, the method of global criterion applies under the
assumption that there is no specific requirement from decision-makers (Miettinen 1999). This also
implies that a Pareto optimal solution whose ideal objective value is located nearer the feasible
objective region receives more importance (Miettinen 1999).

In the power system capacity expansion model, the range of each objective is different. Thus,
rescaling the objectives using ideal and nadir objective vectors is required as follows:

fs(x, y) − f ∗
s

f nad
s − f ∗

s

(17)

In this example, normalization is calculated for each objective as follows:

UE(C) − 7440

7476 − 7440
,

UWC(C) − 7590

7695 − 7590
,

UT (y) − 0.125

0.4167 − 0.125

After normalizing objectives, the range of each objective becomes [0, 1]. Then, the final solution
is proposed as the point which has the shortest distance from the ideal objective vector. For the
distance, L2-norm is used as follows.

Definition 4 A vector norm defined for a vector

x =

∣∣∣∣∣∣∣∣∣

x1

x2
...

xn

∣∣∣∣∣∣∣∣∣
with complex entries by |x|2 =

√√√√ n∑
r=1

|xr |2 (18)
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Figure 11. Comparison according to nadir vectors.

Now, the optimization problem for decision making is constructed as follows:

min
x,y

√∣∣∣∣UE(C) − 7440

7476 − 7440

∣∣∣∣
2

+
∣∣∣∣UW(C) − 7590

7695 − 7590

∣∣∣∣
2

+
∣∣∣∣ UT (y) − 0.125

0.416667 − 0.125

∣∣∣∣
2

subject to x, y ∈ �. (P4)

Then, the final solution of (UE , UW , UT ) is (7457.1, 7640.9, 0.246). In this problem, the final
solution with the exact nadir vector is (7464, 7640.9, 0.173). Figure 11 shows these two final
solutions—the hollow point represents the final solution obtained using the proposed nadir and
the filled point shows the final solution obtained using the exact nadir vector. Both final solutions
are located in close proximity. Although the proposed nadir vector is smaller than the exact nadir
vector, it does not appear to have a significant effect for selecting the proper final solution, because
all three objectives are reduced simultaneously to some degree. Therefore, this result demonstrates
that the proposed nadir vector is practically useful for deciding a desirable final solution with less
computational load than the exact nadir vector.

4.4. A reactor and heat exchanger system

Another typical process design is presented here. It is a nonlinear problem consisting of a reactor
and a heat exchanger (Figure 12), where a first order exothermic reaction A → B takes place
(Grossmann et al. 1983). The goal is to determine the optimal design (reactor volume, V , and
area of the heat exchanger, A, for a minimum of 80% conversion under the presence of parameter
uncertainty. The uncertain parameters are two input streams: (i) the feed flow rate F0 and (ii) the
temperature of the feed stream T0. The values are shown in Table 2. The deterministic parameter
values are given in Table 3. The objective function is the total annual plant cost, including annu-
alized fixed cost and operating cost. The mathematical formulation of the problem is addressed
in the Appendix. The objective function can be expressed as follows:

Cs = (691.2V d0.7 + 873.6A0.6) + (1.76Fws + 7.056F ls) s ∈ N (19)

The problem is formulated as a multi-objective problem consisting of five scenarios with the
probabilities: 0.3, 0.2, 0.2, 0.15, and 0.15, respectively. Economic robustness is applied to the cost
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Figure 12. Flowsheet of a reactor–heat exchanger system.

Table 2. Uncertain parameters for a reactor–heat exchanger system.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

T0(K) 333 336.77 329.23 339.34 326.66
F0(kmol/h) 45 48.77 41.23 51.34 38.66

Table 3. Parameters for a reactor–heat exchanger system.

Tw1(K) 300 CA0(kmol/m3) 32.04
k0(h

−1) 12 −�H(kJ/kmol) 23260
Ua(kJ/m2 · h · K) 1635.34 Cp(kJ/kmol · K) 167.4
E/R(K) 555.6 Cpw(kJ/kmol · K) 75.4
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Figure 13. Robust Pareto optimal solutions.
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192 J.-S. Kang et al.

of each scenario and technical robustness is applied to the flow rate of cooling water. By solving
Case I and Case II, the ranges of the objectives are obtained as follows:

4334.9 ≤ UE(C) ≤ 4739.5

4739.5 ≤ UWC(C) ≤ 4860.1

72.15 ≤ UT (y) ≤ 111.84

The ranges of robust solutions are described in Figure 13.
For obtaining a final solution, the problem is solved resulting in the final solution of (UE , UW ,

UT ) = (4355.5, 4768.7, 74.9).

5. Conclusion

This study presents a comprehensive robust optimization model for process design problems based
on a scenario-based approach, in conjunction with a decision-making procedure. Depending on
the variable type (either scenario-dependent economic or technical), different robustness concepts
can be introduced, considering economic and technical robustness measures as monotonic and
even functions, respectively. A novel formulation of robust economic optimization was then
proposed, supported by the theoretical analysis to deal with many objectives using the concept of
pre-ordering. Importantly, the lower bound defined by ordering objectives provided a conceptual
framework for suggesting a proper range of desirable target values in partial mean of costs. Two
possible directions in this range presented worst-case cost and partial mean of costs, respectively.

Then, the robust optimization model was proposed with three kinds of objectives – expected
cost, an economic robustness measure, and technical robustness measures. Of a number of robust
Pareto solutions, the best solution candidate could be identified by minimizing the distance
between the ideal objective vector and the objective vector after normalization. This decision-
making procedure was proposed including the efficient calculation of the nadir vector, upper bound
of the objective vector. Applying the proposed model to process design examples successfully
demonstrated the applicability of the proposed model and the decision making procedure.
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Appendix

The mathematical formulation of the reactor–heat exchanger system can be formulated as follows:

(1) Reactor—Material balance

F0s

CA0 − CA1s

CA0
= Vsk0 exp

(
− E

RT1s

)
CA1s s ∈ S (A1)

(2) Reactor—Heat balance

(−�H)F0s

CA0 − CA1s

CA0
= F0Cp(T1s − T0s ) + QHEs s ∈ S (A2)

(3) Heat exchanger—Heat balance

QHEs = F lsCp(T1s − T2s ) s ∈ S (A3)

QHEs = FwsCpw(Tw2s − Tw1 ) s ∈ S (A4)

(4) Heat exchanger—Design equation

QHEs = AUa(�Tlns ) s ∈ S (A5)

�Tlns = (T1s − Tw2s ) − (T2s − Tw1)

ln
{

T1s −Tw2s
T2s −Tw1

} s ∈ S (A6)
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194 J.-S. Kang et al.

(5) Specific inequalities

V d ≥ 0 (A7)

A ≥ 0 (A8)

Vs ≥ 0 s ∈ S (A9)

V d − Vs ≥ 0 s ∈ S (A10)

Fws ≥ 0 s ∈ S (A11)

F ls ≥ 0 s ∈ S (A12)

CA0 − CA1s

CA0
≥ 0.8 s ∈ S (A13)

311 ≤ T1s ≤ 389 s ∈ S (A14)

311 ≤ T2s ≤ 389 s ∈ S (A15)

301 ≤ Tw2s ≤ 355 s ∈ S (A16)

T1s − T2s ≥ 0 s ∈ S (A17)

Tw2s − Tw1 ≥ 0 s ∈ S (A18)

T1s − Tw2s ≥ 11.1 s ∈ S (A19)

T2s − Tw1 ≥ 11.1 s ∈ S (A20)
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