
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 6, AUGUST 2012 1669

A New Prosody-Assisted Mandarin ASR System
Sin-Horng Chen, Senior Member, IEEE, Jyh-Her Yang, Chen-Yu Chiang, Member, IEEE, Ming-Chieh Liu, and

Yih-Ru Wang, Member, IEEE

Abstract—This paper presents a new prosody-assisted automatic
speech recognition (ASR) system for Mandarin speech. It differs
from the conventional approach of using simple prosodic cues on
employing a sophisticated prosody modeling approach based on a
four-layer prosody-hierarchy structure to automatically generate
12 prosodic models from a large unlabeled speech database by the
joint prosody labeling and modeling (PLM) algorithm proposed
previously. By incorporating these 12 prosodic models into a two-
stage ASR system to rescore the word lattice generated in the first
stage by the conventional hidden Markov model (HMM) recog-
nizer, we can obtain a better recognized word string. Besides, some
other information can also be decoded, including part of speech
(POS), punctuation mark (PM), and two types of prosodic tags
which can be used to construct the prosody-hierarchy structure of
the testing speech. Experimental results on the TCC300 database,
which consists of long paragraphic utterances, showed that the pro-
posed system significantly outperformed the baseline scheme using
an HMM recognizer with a factored language model which models
word, POS, and PM. Performances of 20.7%, 14.4%, and 9.6% in
word, character, and base-syllable error rates were obtained. They
corresponded to 3.7%, 3.7%, and 2.4% absolute (or 15.2%, 20.4%,
and 20% relative) error reductions. By an error analysis, we found
that many word segmentation errors and tone recognition errors
were corrected.

Index Terms—Prosody modeling, prosody-assisted automatic
speech recognition (ASR), prosody-hierarchy structure.

I. INTRODUCTION

T HE use of prosodic information in automatic speech
recognition (ASR) is an attractive research topic in recent

years. Prosody refers to the suprasegmental features of contin-
uous speech, such as accentuation, prominence, tone, pause,
intonation, and rhythm. Prosody is physically encoded in the
variations of pitch contour, energy level, duration, and silence
of spoken utterances. Prosody is known to closely correlate
with the linguistic features of various levels, say from phone,
syllable, word, phrase, to sentence or above. Owing to those
correlations, prosody is potentially useful for ASR. Generally,
the task of prosody-assisted ASR is to first exploit prosodic
cues correlated to linguistic features, and to then model their
relationships with linguistic features and prosodic-acoustic
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features, and to lastly incorporate these models into the ASR
framework.

In the past, many studies on using prosodic information to
assist in ASR have been reported [1]–[7] for American Eng-
lish [1]–[4], [6], [7] and Spanish [5]. Ananthakrishnan et al.
[1]–[3] proposed to incorporate a prosodic language model and
a prosodic acoustic model into the conventional hidden Markov
model (HMM)-based ASR recognizer by rescoring the -best
word sequences or the word lattice. The prosodic acoustic model
used Gaussian mixture model (GMM) or multilayer perceptrons
(MLP) to model the relation of binary pitch accent label of
word and the prosodic-acoustic features extracted from the
track, energy, and duration cues of context. The prosodic lan-
guage model was a trigram language model (LM) with com-
pound tokens of words and their binary pitch accent labels. Be-
sides, an unsupervised adaptation approach to jointly refining
the two categorical prosody models and bootstrapping prosodic
labels was also proposed to assist in solving the problem of
lacking large corpora annotated with relevant prosodic symbols
[1]. Relative improvements of 1.2%–3.1% in word error rate
(WER) were obtained on the Boston University Radio News
Corpus (BU-RNC). Chen et al. [4] used two prosodic events,
intonational phrase boundary and pitch accent, in ASR to con-
struct prosody-dependent word and phoneme models. A rela-
tive improvement of 6.9% in WER was achieved on BU-RNC.
Milone et al. [5] proposed a method to use the accentual in-
formation in ASR. The method first estimated a sequence of
accentual structure of words from speech signal using and
energy by an HMM-based classifier or a neural tree networks
classifier, and then incorporated it into the recognition process.
An LM built to take into account the accentual structure of
words in phrase was used. A relative improvement of 28.91%
in WER was achieved on a medium-vocabulary Spanish contin-
uous-speech recognition task. Vergyri et al. [6] proposed to inte-
grate models of different prosodic knowledge sources into ASR.
They included word duration model, pause language model,
and prosodic model of hidden events (e.g., sentence boundaries
and speech disfluencies). Relative improvements of 2.6–3.1%
in WER were achieved on the Switchboard database. Osten-
dorf et al. [7] presented a statistical modeling framework for
incorporating prosody in the speech recognition process. Sev-
eral issues were discussed, including prosodic feature extrac-
tion in different time scales and normalization, prosody mod-
eling using an intermediate symbol representation in contrast to
directly conditioning on acoustic correlates, the use of questions
about prosodic structure in acoustic model clustering, dynamic
pronunciation modeling conditioned on acoustic-prosodic fea-
tures, etc.

Besides, some other studies on using prosodic information
to assist in Mandarin ASR can also be found [8]–[13]. In
[8], a recurrent neural network (RNN) was used to detect
word-boundary information from the input prosodic fea-
tures with base-syllable boundary being predetermined by an
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HMM-based acoustic decoder. The word boundary informa-
tion was then used to assist the linguistic decoder in solving
word-boundary ambiguity as well as pruning unlikely paths.
An absolute improvement of 1.1% in character error rate
(CER) was achieved on a large-vocabulary speaker-dependent
(SD) Mandarin continuous ASR task. Huang et al. [9], [10]
utilized decision tree-based or GMM-based prosodic models
of syllable- and word-level to generate the prosodic likelihood
score for rescoring in a two-pass recognition process. Abso-
lute CER improvements of 1.06% [9] and 1.45% [10] were
reported on a large-vocabulary multi-speaker continuous ASR
task. In [11], word-dependent tone modeling using prosodic
features of syllable duration and three values with two
back-off schemes was proposed for Mandarin ASR. A minor
improvement on CER was achieved on a Mandarin broadcast
news corpus. Ni et al. [12] proposed an implicit tone model
using contour features and an explicit tone model using
both prosodic and lexical features for assisting in Mandarin
ASR. An improvement of 3.65% in CER was achieved on
the Project-863 database. In [13], Ni et al. incorporated a
GMM-based prosody-dependent tonal syllable duration model
and a maximum entropy (ME)-based syntactical prosody
model into a prosody-dependent acoustic model recognizer by
rescoring the syllable lattice. Only tonal syllable recognition
rate was reported on the Project-863 database.

Prosody modeling was also used in some other speech recog-
nition tasks. Liu et al. [14] conducted enriching speech recog-
nition to automatic detection of sentence boundaries and disflu-
encies on both conversational telephone speech and broadcast
news tasks of NIST RT-04F evaluation using both prosodic and
lexical features. Shriberg et al. [15] employed the decision tree
method to model rhythmic and melodic features of speech for
several applications including sentence segmentation and dis-
fluency detection, topic segmentation in broadcast news, dialog
act labeling and word recognition in conversational speech. Al-
though prosody modeling was useful in those applications, only
minor improvements on word recognition were achieved.

It can be found from above discussions that prosody modeling
is the main concern in all those previous studies. The methods
of prosody modeling in those studies can be classified into two
classes: 1) direct modeling of target classes [8], [10]–[12], and
2) prosody modeling via intermediate abstract phonological cat-
egories [1]–[6], [9], [13], such as ToBI [16] and INTSINT [17].
In direct modeling of target classes, the relationship between
prosodic acoustic features and target classes (usually, linguistic
feature, e.g., lexical tone, lexical word, etc.) is directly mod-
eled by a pattern classifier, such as GMM, decision tree, RNN,
ME, etc. This approach is advantageous on bypassing manual
labeling of prosodic tags and hence can avoid the inter-anno-
tator inconsistency. Nevertheless, the variability or space of both
prosodic-acoustic and linguistic features (target) may be too
large when considering more features of various levels or wider
time window. Therefore, only limited linguistic and prosodic-
acoustic features are incorporated in this direct modeling ap-
proach [8], [10]–[12]. On the other hand, prosody modeling
via intermediate abstract phonological categories [1]–[6], [9],
[13] first explores important prosodic cues or events potentially
useful for ASR and then builds prosodic models to describe
the relations of these prosodic cues with linguistic features of
various levels and prosodic-acoustic features using a prosody-
annotated speech database. Fig. 1 shows a conceptual block
diagram of the prosody modeling using intermediate abstract

Fig. 1. Conceptual block diagram of the prosody modeling class using interme-
diate abstract phonological categories. PD-AM and PD-LM denote prosody-de-
pendent acoustic model and prosody-dependent language model.

phonological categories. Usually, prosody annotation is based
on the ToBI labeling system [16] and is performed manually.
The variability of prosodic-acoustic features can be reduced by
introducing a finite discrete set of prosody tags so as to make
the construction of prosody-syntax relationship easier. The main
drawback of this approach is the lack of a large well-labeled
database due to time-consuming labeling work and inconsis-
tent labeling between human annotators so that only few ob-
vious prosodic cues, such as pitch accent and intonational phrase
boundary, are used. This leads to the limitation of the effect
of using prosodic information on improving the ASR perfor-
mance. Although some studies [13], [18], [19] conducted auto-
matic prosody labeling to enlarge the size of prosody-annotated
corpus, their prosodic models were still trained with manually
annotated speech corpora so that their performances were sub-
ject to the quality of human prosody labeling. Table I summa-
rizes the primary features of prosody modeling and experiment
setting for those previous studies on prosody-assisted ASR for
comparison.

In this paper, a new prosody-assisted ASR system is proposed
for Mandarin speech. It differs from the conventional prosody-
assisted ASR system with prosody modeling shown in Fig. 1
mainly on adopting a systematic way to perform prosody mod-
eling. Fig. 2 shows a conceptual block diagram of the proposed
approach of prosody modeling. It is an extension of our previous
study on the joint prosody labeling and modeling using an un-
labeled speech database [20]. A four-layer model of prosody
hierarchy of Mandarin speech defined based on two types of
prosodic tags, break type and prosodic state, is first chosen. Sev-
eral prosodic models are then designed to describe various rela-
tionships of these two types of tags with both the linguistic fea-
tures of texts and the prosodic-acoustic features of speech sig-
nals. Lastly, the joint prosody labeling and modeling (PLM) al-
gorithm proposed previously [20] is used to train those prosodic
models from a large unlabeled speech database. The new ap-
proach is advantageous on involving abundant prosodic cues in
the prosody modeling for assisting in ASR. We can therefore
expect that it performs better on improving the word recog-
nition performance. Besides, more information other than the
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TABLE I
COMPARISON BETWEEN PROSODY-ASSISTED ASR STUDIES

Fig. 2. Prosody modeling approach in the proposed prosody-assisted ASR
system.

word string can be decoded. It includes prosodic tags which im-
plicitly represent the prosody-hierarchy structure of the testing
utterance, and some linguistic features such as part-of-speech
(POS) and punctuation mark (PM).

The paper is organized as follows. In Section II, the proposed
prosody-assisted ASR system for Mandarin speech is presented
in detail. Experimental results are discussed in Section III. Some
conclusions are given in the last section.

II. PROPOSED PROSODY-ASSISTED ASR SYSTEM

In the proposed prosody-assisted Mandarin-speech ASR
system, prosody modeling is first performed and then incorpo-
rated into a two-stage speech recognizer by rescoring the word
lattice generated by the first-stage speech decoding using the
conventional HMM-based ASR recognizer. In the following
subsections, we present the design of the proposed prosodic
models for ASR, the training of prosodic models by the PLM
algorithm [20], and the two-stage speech recognizer in detail.

A. Design of Prosodic Models for ASR

A most commonly agreed and used prosody-hierarchy struc-
ture consists of four layers including syllable layer, prosodic
word layer, prosodic phrase layer (or intermediate phrase), and
intonation phrase layer. Basically, the four-layer structure inter-
prets the pitch and duration variations of syllable well for short
sentential utterances. To interpret the contributions of higher-
level discourse information to the wider-range and larger varia-
tions on the prosodic-acoustic features of long utterances be-
yond just sentential utterances, Tseng et al. [21] proposed a
hierarchical prosodic phrase grouping (HPG) model of Man-
darin speech. The HPG model consists of five layers, listed in
bottom-up order: syllable (SYL), prosodic word (PW), prosodic
phrase (PPh), breath group (BG), and prosodic phrase group
(PG). The first three layers in the hierarchy are the same as
those of the four-layer prosodic structure mentioned above. The
fourth BG layer is formed by combining a sequence of PPhs,
and a sequence of BGs, in turn, constitutes the fifth PG layer.
The above five prosodic constituents are delimited by six break
types denoted as , , , , , and [21]. First,
and represent respectively non-breaks of reduced syllable
boundary (or tightly-coupling syllable juncture) and normal syl-
lable boundary, within a PW, which have no identifiable pauses
between SYLs. Second, PW boundary is perceived as a
minor-break boundary where a slight tone of voice change usu-
ally follows, while PPh boundary is perceived as a clear
pause. Third, and are defined for BG and PG bound-
aries, respectively. is a breathing pause and is a com-
plete speech paragraph end characterized by final lengthening
coupled with weakening of speech sounds.

In this paper, we adopt a four-layer hierarchy structure, which
is a modified version of the HPG model, in the prosody mod-
eling for assisting in ASR to consider the recognition of long
Mandarin utterances of paragraphs. The motivation of using the
four-layer hierarchy model is owing to its suitability for de-
scribing the prosody of long paragraphic utterances of Man-
darin. The model employs two types of prosodic tags to repre-
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Fig. 3. Prosody-hierarchy model of Mandarin speech used in this study [20],
[21].

sent the four-layer prosody-hierarchy structure. One is the break
tag used to separate two consecutive prosodic constituents. We
modify the break type labeling scheme of the HPG model by
dividing into three types, , , and , and
combining and into one denoted simply by . Here,

, , and represent PW boundaries with
reset, short pause and pre-boundary syllable duration length-

ening, respectively. The reason of refining into three types is
to consider the difference of their prosodic boundary correlates
(i.e., prosodic-acoustic features) to be modeled. On the contrary,
the combination of and is owing to the similarity of their
prosodic-acoustic characteristics. Therefore, the break-type tag
set used is . As shown
in Fig. 3, these seven break-type tags can be used to delimit an
utterance into four types of prosodic units, namely SYL, PW,
PPh, and BG/PG.

Another type of prosodic tag is prosodic state which is con-
ceptually defined as the state in a prosodic phrase to account for
the prosodic-acoustic feature variations imposed on higher-level
prosodic constituents (i.e., PW, PPh, and BG/PG). The consec-
utive prosodic state sequence of a prosodic constituent hence
forms a prosodic-acoustic feature pattern to characterize it. In
practice, prosodic state serves as an intermediate discrete repre-
sentation of the effects on the variation of a syllable’s prosodic-
acoustic feature from linguistic features of word-level or above.
In this study, three types of prosodic states are used, respectively,
for syllable pitch level, syllable duration, and syllable energy
level.

Based on the four-layer prosody-hierarchy model, sev-
eral prosodic models are designed to describe the various
relationships of the three types of features: the two types of
prosodic tags, the linguistic features of various levels, and the
prosodic-acoustic features. The prosodic model design is based
on the following maximum a posterior (MAP) formulation to
find the best linguistic transcriptions ,
prosodic tags , and acoustic segmentation for
the given input acoustic features :

(1)

where is a word sequence; is a
POS sequence associated with ; is a PM se-
quence; is the total number of words; is a break
type sequence with

; with , , and
representing prosodic state sequences for syllable

pitch level, duration, and energy level, respectively; is the
total number of syllables; is a frame-based spectral feature
sequence (i.e., MFCCs and their first-order and second-order

TABLE II
NOTATIONS OF PROSODIC TAGS, PROSODIC-ACOUSTIC FEATURES

AND LINGUISTIC FEATURES

derivatives); and is a prosodic-acoustic fea-
ture sequence with , , and representing sequences of syl-
lable-based features, syllable-juncture features, and inter-syl-
lable differential features, respectively. More detailed prosodic-
acoustic features are given as: syllable pitch contour (sp), syl-
lable energy level (se), and syllable duration (sd) for ; syl-
lable-juncture pause duration (pd) and energy-dip level (ed) for

; and normalized pitch-level jump (pj) and two normalized
duration lengthening factors (dl and df) for . Notations of tags
and features are summarized in Table II.

To make (1) mathematically tractable, we adopt the following
assumptions: 1) Like the conventional acoustic model (AM),
spectral feature sequence depends only on word sequence

; 2) Prosodic-acoustic feature sequence depends on both
prosodic tag sequence and linguistic feature sequence ;
3) Syllable prosodic-acoustic feature sequence is indepen-
dent of syllable-juncture and inter-syllable differential prosodic-
acoustic feature sequences, and ; 4) Break tag sequence
depends mainly on contextual linguistic feature sequence ;
and 5) Prosodic state sequence depends only. The reason is
that is used to characterize the prosodic constituents’ patterns
which are mainly determined by the prosody hierarchy specified
by the break type sequence . The relation between linguistic
features and prosody hierarchy is built through the modeling of

. In other words, the linguistic feature can influence the
prosodic state through . We therefore ignore the direct depen-
dency of on for simplicity. Based on these assumptions,
(1) is rewritten as

(2)

where is an AM; is an
LM which describes the relations among , , and

; is the break-syntax model which describes
how a syllable-juncture break is influenced by the contextual
linguistic features of all levels; is the prosodic state
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Fig. 4. Relationships of AM, LM, and four prosodic models with prosodic tags,
linguistic features, and prosodic-acoustic features.

model describing the variation of prosodic state conditioned on
the neighboring break type; is the syllable
prosodic-acoustic model which describes the influences of the
two types of prosodic tags and the contextual syllable-level
linguistic features on the variations of syllable contour,
duration and energy level; and is the syl-
lable-juncture prosodic-acoustic model which describes how
the prosodic-acoustic features at or across a syllable juncture
are influenced by both the break type of the juncture and the
contextual linguistic features. Fig. 4 shows the relationships of
features involved in the four prosodic models, LM, and AM.

In implementation, we need to further elaborate these four
prosodic models. First, the break-syntax model is ap-
proximated by

(3)

where is the break type model for the juncture fol-
lowing syllable , and is the contextual linguistic features
surrounding syllable . Since the space of linguistic features

is large, we partition it into several classes by the
CART decision tree algorithm [22] using the maximum-likeli-
hood gain criterion. The question set used in the CART consists
of 216 questions considering the following linguistic features
around the juncture: 1) the initial type of the following syllable;
2) interword/intraword indicator; 3) lengths and 4) POSs of the
words before and after the juncture if it is an interword; and 5)
PM type for an interword juncture.

Second, the prosodic state model is further divided
into three sub-models and approximated as

(4)

where , , and
are prosodic state transition models for

syllable pitch level, duration and energy level, respectively.
Notice that, in above formulation, the dependency on the break
type of the preceding syllable juncture makes those models be
able to properly model significant pitch/energy resets across
major breaks and pre-boundary lengthening. We also note

that the three prosodic states are independently modeled for
simplicity.

Third, the syllable prosodic-acoustic model
is further divided into three sub-models and approximated as

(5)

where , , and
are sub-models for the pitch contour,

duration and energy level of syllable , respectively; , ,
and denote the tone, base-syllable type and final type of
syllable ; ; and .

is further elaborated to consider four
major affecting factors. With an assumption that all affecting
factors are combined additively, we have

(6)

where is a vector of four orthogonally-transformed param-
eters representing the observed log- contour of syllable
[23]; is the modeling residue; and are the affecting
patterns (APs) for and , respectively; and

are the forward and backward coarticulation APs
contributed from syllable and syllable , respectively;
and is the global mean of pitch vector. In this study,
is set to have nonzero value only in its first dimension in order
to restrict the influence of prosodic state merely on the log-
level of the current syllable. By assuming that is zero-mean
and normally distributed, i.e., , we have

(7)

It is noted that is a noise-like residual signal so that we
model it by a normal distribution.

Similar to the design of the syllable pitch contour model, the
syllable duration model and the syllable en-
ergy level model are formulated by

(8)

(9)

where and are the observed duration and energy level
of syllable , respectively; and represent APs for syl-
lable duration and syllable energy level; and and are
their global means; and and are variances of modeling
residues.

Lastly, the syllable-juncture prosodic-acoustic model is fur-
ther divided into five sub-models and approximated as



1674 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 6, AUGUST 2012

(10)

where is a Gamma distribution for
pause duration of the juncture following syllable (referred
to as juncture hereafter); is the energy-dip level of junc-
ture and is modeled by a normal distribution:

(11)

is the normalized pitch-level jump across juncture ; is
the first dimension of syllable pitch contour (i.e., syllable
pitch level); is the first dimension of the tone AP;

(12)

(13)

are two normalized duration lengthening factors before and
across juncture . Both and are modeled as normal
distribution. Since the space of is large, the CART algo-
rithm with the node splitting criterion of maximum-likelihood
(ML) gain is adopted to concurrently classify the five fea-
tures of , , , , and for each break type
according to the same question set used in the training of the
break-syntax model. Each leaf node represents the product of
the five sub-models. So, seven decision trees are constructed
for the syllable-juncture prosodic-acoustic model. It is noted
that normal distribution is used to model , , , and

because of its simplicity and fit to the real data distribution.
As for , normal distribution is not suitable because is
distributed unsymmetrically due to the restriction of nonnega-
tive and the tendency of small value for some break types such
as and . Like the state duration of phone HMM model,
Gamma distribution is suitable for this kind of data.

B. Training of the Proposed Prosodic Models

The joint prosody labeling and modeling (PLM) algorithm
proposed previously [20] is adopted to train all these 12 models
from an unlabeled speech database. The PLM algorithm is a se-
quential optimization procedure based on the ML criterion to
jointly label the prosodic tags for all utterances of the training
corpus and estimate the parameters of all 12 prosodic models.
It is composed of two parts: initialization and iteration. The ini-
tialization part first determines initial prosodic tags of all ut-
terances, and then estimates initial parameters of the prosodic
models by a specially designed procedure. The iteration part first
defines an objective likelihood function for each utterance by

(14)

It then performs a multistep iterative procedure to relabel the
prosodic tags of each utterance with the goal of maximizing
and update the parameters of all prosodic models sequentially
and iteratively. In the following, we describe the sequential op-
timization procedure in more detail.

1) Initialization:
Initially Labeling of Break Indices: The initial break index

of each syllable juncture is determined by a decision tree shown
in Fig. 5. The decision tree is designed based on the general
knowledge of the break types obtained in our previous prosody
labeling and modeling study on a single-speaker database [20].
First, a juncture is labeled as if its pause duration is longer
than a large threshold . Then, it is assigned as if its pause
duration is longer than . Then, all intrawords are labeled
as . We then mark interwords with medium pause du-
ration ( ) as , with medium pitch jump ( )
as , and with medium pre- or post-syllable lengthening
( and ) as . All remaining interwords are la-
beled as . Lastly, are refined as if the syllable
juncture has continuous trajectory; otherwise, it is labeled as

. All these six thresholds are determined in a systematic way
by an algorithm to avoid determining them by trial-and-error.
The algorithm is discussed in detail as follows.

The algorithm is designed using both linguistic and acoustic
cues to determine these six thresholds. First, we consider that
PMs are usually associated with long breaks and assigned to

or . We hence collect the pause durations of all word
junctures with PM and use scalar quantization to divide them
into two clusters. Two gamma distributions are accordingly
constructed to stand for pause duration distributions of and

, i.e., and , respectively. The threshold
is then set to be the equal probability intersection between

the two distributions. Then, we construct a Gamma distribu-
tion for by using the pause durations of
all intrawords. Another Gamma distribution for

is then constructed by using the pause durations of
all non-PM interword junctures with apparent pause durations
defined based on the criterion of . This
can exclude non-PM interwords with pause duration similar to
those of . The thresholds and are then set to
be the equal probability intersections of
and .

We then determine the three thresholds, , , and
, which are used to label initial and . First,

six Gaussian distributions of the normalized jump and the
two duration lengthening factors, i.e., , ,

, , , and , for both PM and
intraword are constructed using data of interwords with PM
and of intrawords, respectively. Then, a Gaussian distribution
of for , i.e., , is constructed using non-PM
interwords with apparent pitch jump defined based on the
criterion of . Similarly, two Gaussian
distributions of and for , i.e., and

, are constructed using non-PM interwords with
apparent duration lengthening defined based on the criteria
of and . Lastly,

, and are set to be the equal probability inter-
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Fig. 5. Decision tree for initial break type labeling.

sections of , and
.

Initialization of 12 Prosodic Models: The initializations
of the break-syntax model and the syllable-juncture prosodic-
acoustic model can be done independently with initial break in-
dices of all syllable junctures being given. We realize them by
the CART algorithm [22]. Then, the initializations of the three
syllable prosodic-acoustic models are considered. Since they are
multi-parametric representation models to superimpose several
APs of major affecting factors to form the observed syllable
prosodic-acoustic features, the estimation of an AP may be in-
terfered by the existence of the APs of other types. It is there-
fore improper to estimate all initial parameters independently.
We hence adopt a progressive estimation strategy to first deter-
mine the initial APs which can be estimated most reliably and
then eliminate their effects from the surface prosodic-acoustic
features for the estimations of the remaining APs. Based on
this idea, we determine the order of initial AP estimation ac-
cording to the availability of affecting factor and the size of
AP. The resulting ordering is listed as follows: global means

, tone , coarticulation , base-
syllable/final type , and prosodic states . It is
noted that an improper ordering AP estimation may result in
poor AP estimates. For example, if we reverse the order of ini-
tial estimation of tone and base-syllable APs (i.e., and
) of syllable duration, then the value of for base-syllable
“de” will decrease significantly while the value of for Tone
5 will increase accordingly. This is due to the high-frequency
character “ ” which dominates both distributions of Tone 5
and base-syllable “de”. We also note that the initial pitch, dura-
tion and energy prosodic-state indices are assigned by applying
vector quantization (VQ) to the residues of syllable level,
duration, and energy level, respectively; and their APs are set
to be the corresponding codewords. Lastly, the initializations of
the three prosodic state transition models are done using the la-
beled prosodic-state indices and break indices.

2) Iteration: The iteration is a multistep procedure listed as
follows:
Step 1) Update the APs of tones with all other APs

being fixed.
Step 2) Update the APs of coarticulation with all

other APs being fixed.
Step 3) Update the APs of base-syllable/final type, ,

with all other APs being fixed.
Step 4) Relabel the prosodic state sequence of each utterance

by the Viterbi algorithm so as to maximize defined
in (14).

Step 5) Update the APs of prosodic state, , vari-
ances, , and the prosodic state transi-
tion model.

Step 6) Relabel the break type sequence of each utterance by
the Viterbi algorithm so as to maximize defined in
(14).

Step 7) Update the decision trees of the break-syntax model
and of the syllable-juncture prosodic-acoustic
model.

Step 8) Repeat Steps 1 to 7 until a convergence is reached.

C. Two-Stage Prosody-Assisted ASR System

Fig. 6 displays a block diagram of the proposed two-stage
prosody-assisted ASR system. It first uses the conventional
HMM-based word recognizer with a syllable-based AM and a
word-bigram LM in the first stage to generate a word lattice. It
then employs a factored LM (FLM) [24] and the 12 prosodic
models discussed above in the second stage to rescore the word
lattice and find the best recognition result. Here the FLM is an
extension of the conventional word-based LM to jointly de-
scribe the relations of the word sequence , the part-of-speech
sequence , and the punctuation mark sequence . The
FLM is composed of a word-trigram model, a factored POS
model and a factored PM model, and is formulated as

(15)

Here, the FLM approach [24] is applied to the modeling of the
two factored models of POS and PM. The SRILM toolkit [25]
with Witten–Bell smoothing is used to train these three models.

In the second-stage rescoring process, a product of 16 proba-
bilities from three types of models (i.e., AM, FLM, and prosodic
models) is computed as we completely expand the speech de-
coding equation shown in (2). For considering the relative im-
portance of each individual model to ASR, a log-linear combi-
nation scheme to integrate these 16 probabilities is adopted in
this study:

(16)

where is a 16-dimensional vector formed by
these 16 probabilities; is a weighting vector;
and is a normalization factor. The discriminative model
combination (DMC) method [26] is employed to find the op-
timal weighting vector for minimizing the word error rate on a
development set. The DMC method uses the well-known Gener-
alized Probabilistic Descent (GPD) algorithm [27] to iteratively
minimize a smoothed empirical word error rate on the develop-
ment set.

III. EXPERIMENTAL RESULTS

A. Database and Experiment Setting

The proposed ASR method was tested on a large Mandarin
read speech database TCC300 [28]. The database consists of
two sets: 103-speaker short sentential utterances (Set A) and
200-speaker long paragraphic utterances (Set B). The database
was collected for Mandarin ASR. Set A was designed to con-
sider the phonetic balance of Mandarin speech, while Set B was
designed to additionally consider the usage for prosody study.



1676 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 6, AUGUST 2012

Fig. 6. Block diagram of the two-stage prosody-assisted ASR system.

The database was divided into a training set (about 90%, 274
speakers, 23 hours) and a test set (about 10%, 29 speakers, 2.43
hours). A set of 411 eight-state base-syllable HMM models was
generated from the training set by HTK 3.4 [29] with the MMIE
criterion [30]. The acoustic feature vector is composed of 12
MFCCs and their delta and delta-delta terms, 1 delta energy
and 1 delta-delta energy. For testing the proposed prosody-as-
sisted ASR system, the Set B part of the test set was used. The
test subset contained 226 utterances of 19 speakers with length
about 2 hours. The total number of words in the test subset is
14 993. All testing data were long utterances with average length
of 117.2 syllables.

A text corpus was employed to train both the word-bigram
LM and the FLM which were used, respectively, in the first-
and second-stage speech decodings. The corpus contained in
total about 139 million words and was formed by combining
the following three corpora: 1) Sinorama: a news magazine with
9.87 million words; 2) NTCIR: an information retrieval (IR) test
bench consisting of several domains with 124.4 million words;
and 3) Sinica Corpus: a general text corpus comprising 4.8 mil-
lion words with manually POS tagging. The POS tags used in
this study are the same as those used in the syntactic parsing of
the Sinica Treebank [31]. There are in total 46 types of POS.
A conditional random field CRF-based tagger was employed to
segment all texts in the corpus into word-POS sequences. The
tagger was trained on the Sinica Corpus. For simplicity, PMs
were categorized into four classes: comma, period, major PM
(including dot, exclamation mark, question mark, semicolon,
and colon), and non-PM. A 60 000-word lexicon was also con-
structed based on word frequency.

B. Prosody Modeling

A training subset containing utterances of 164 speakers was
used for prosody modeling. It was selected from the training
set and consisted of long paragraphic utterances with prosody

being properly pronounced. A subjective judgment based on the
rhythm and melody of an utterance was applied to determine
whether it was properly pronounced. Two major types of ill-pro-
nounced utterances were found: 1) bad rhythm—read each char-
acter isolatedly to insert a pause after every character; and 2) bad
melody—read each character with almost the same pitch level to
result in a flat intonation. The excluding of those ill-pronounced
training utterances could avoid polluting the generated prosodic
models so as to degrade their effectiveness on assisting in ASR.
The total length of the training subset was about 8.3 hours. All
speech signals were time-aligned using the 411 base-syllable
HMM models mentioned above. Five prosodic-acoustic features
were then extracted, including syllable pitch contour vector, syl-
lable duration, syllable energy level, and syllable-juncture pause
duration and energy-dip level. It is noted that syllable pitch con-
tour vectors were extracted from the frame-based values nor-
malized by speaker-level mean and variance; while both syllable
duration and syllable energy level were normalized by their cor-
responding speaker-level means and variances. It is also noted
that the three inter-syllable differential prosodic-acoustic fea-
tures [i.e., , , and defined in (11)–(13)] were obtained
automatically in the prosodic model training by the PLM algo-
rithm [20]. The texts of the training subset were processed by the
CRF-based tagger mentioned previously to extract all linguistic
features needed in the prosody modeling. The PLM algorithm
[20] was then applied to automatically generate the 12 prosodic
models from the training subset. In realizing the PLM algorithm,
the numbers of pitch, duration and energy prosodic states were
all set to be 16. For avoiding over-fitting the decision trees of the
break-syntax model and the syllable-juncture prosodic-acoustic
model, the following two stop criteria were used: 1) The size of
a leaf node must be larger than 700 syllables; and 2) The rel-
ative improvement of likelihood must be larger than 0.0065 in
node splitting. These two values were determined empirically.
Finally, the total numbers of nodes (leaf nodes) obtained were
63(31) and 46(27) for these two models, respectively.
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Fig. 7. Decision tree analysis of duration APs of all 411 base-syllables. Numbers associated with each leaf node represents the average length (��) of the APs
and the data count (in the bracket). Solid line indicates positive answer to the question and dashed line indicates negative answer.

Fig. 8. (a) Forward and (b) backward coarticulation patterns, ��� and ��� , for �� (point line), ��(solid line), and ��(dashed line).

TABLE III
APS OF FIVE TONES

A quantitative analysis of the prosody modeling result is
given as follows. Table III shows the APs of five tones. As
shown in the table, Tone 1 and Tone 4 had high pitch mean,
long duration and high energy level; while Tone 3 and Tone
5 had low pitch mean, short duration and low energy level. It
is noted that a negative value of tone AP of syllable duration
means the length of a syllable with this tone type is smaller than
the average length of all syllables with the same base-syllable
type regardless of their tone type. These agreed with the prior
linguistic knowledge and generally matched with those of other
previous studies [32], [33].

Fig. 7 displays the decision-tree analysis of the duration APs
of all 411 base-syllables. It can be found from the figure that the
base-syllables with aspirated affricate ( , , ) or fricative ( , ,

, , ) initials were much longer in average than all other base-
syllables. On the other hand, base-syllables with more vowel
components (double/compound vowel), medial, or nasal ending
in final were generally longer. These results were also confirmed
in the previous study [33].

Fig. 8 depicts the forward and backward coarticulation pat-
terns for the three extreme cases of break types, i.e., (tightly
coupling), (normal) and (major break). Several charac-
teristics of these APs can be found. First, the forward coarticula-
tions mainly affected the beginning parts of syllable pitch con-
tours, while the backward coarticulations affected the ending
parts. Secondly, we find from the dynamic ranges of these APs
that the coarticulation effect was the most serious for junc-
tures and the least for junctures. Third, for tightly coupling

junctures, most coarticulation APs demonstrated well the
effect to compensate for tone concatenation mismatch of their
pitch contours. For example, the upward bending at the begin-
ning parts of were
due to H-L mismatches, while the downward bending at the be-
ginning parts of corresponded to
L-H mismatches. Fig. 9(a) illustrates the effect of the forward
coarticulation AP of Tone 1 in the 1–3 tone pair on raising the
beginning part of the following Tone 3 pitch pattern in order to
be better matched with the high ending level of the preceding
Tone 1 pitch pattern. Fourth, the well-known sandhi rule that
Tone 3-Tone 3 will change to Tone 2-Tone 3 has been learned
in the backward coarticulation AP of 3–3 tone pair. Fig. 9(b) il-
lustrates this effect. Lastly, the forward coarticulations are gen-
erally larger than the backward coarticulations. The above men-
tioned characteristics generally conformed well to the observa-
tion found by Xu [34].
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Fig. 9. Two examples demonstrate the effects of coarticulation APs. (a) Tone 1-Tone 3 and (b) the sandhi rule of Tone 3-Tone 3. Solid lines (left): basic tone pitch
patterns; point lines: backward APs; dashed lines: forward APs; and solid lines (right): the resulting pitch patterns.

Fig. 10. Decision tree for the break-syntax model. The bar plot associated with a node denotes the distribution of these seven break types (��, ��, �� � �,
�� � �, ��� �, ��, ��, from left to right) and the number is the total data count of the node. � is the Shannon entropy to measure the uncertainty of break
type distribution.

Fig. 10 displays the major part of the decision tree of the
break-syntax model. As shown in the figure, the entropy of the
break type distribution decreased as we traced down the deci-
sion tree with more linguistic features being involved. The most
important linguistic features used in the decision tree were PM
and interword/intraword. The two sub-trees corresponding to
PM and intraword were relatively simpler with the entropy of
the break type distribution decreasing fast, while the sub-tree
of interword was very complicated with the entropy decreasing
slowly. Besides, the break type distributions of the nodes in the
PM sub-tree concentrated mainly on and , while they
were on and for nodes in the intraword sub-tree. More-
over, phonetic information was important for the intraword sub-
tree to further discriminate between and . For the PM
sub-tree, the type of PM was important. Fig. 11 displays a deeper
part of the interword sub-tree. Major linguistic features used
were: “stop” initial in the following syllable, content/function
word, the word “DE,” and various types of POS.

Fig. 12 shows the major parts of decision trees of the break-
acoustic model for the seven break types. We can find from
the statistics of root notes that the break types of higher level

were generally associated with longer pause duration, lower en-
ergy-dip level, larger normalized pitch-level jump, and larger
duration lengthening factors. Besides, was similar to

and in the distributions of pause duration, and en-
ergy-dip level. , , and had positive normalized
pitch jumps in average, while , , and had nega-
tive ones. These results illustrated the declination and reset ef-
fects of log- at intra-PW and inter-PW syllable boundaries,
respectively. The two normalized duration lengthening factors
for , , , and were relatively larger than
those of , , and . These distributions showed the
lengthening effect for the last syllable of PW, PPh, and PG/BG.

For each break type, the likelihood of the syllable-juncture
prosodic-acoustic modeling increases as we traced down these
decision trees with more linguistic features being involved. This
means the use of linguistic features can improve the modeling
of syllable-juncture prosodic-acoustic features. It is noted here
that no tree-splitting occurred for due to the relative unifor-
mity on the prosodic-acoustic prosodic features of its data. The
questions used to split trees of pause-related break types (i.e.,

and ) tended to be related to higher-level syntactic
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Fig. 11. Deeper part of the decision tree for the break-syntax model. It is the sub-tree starting from the shaded node shown in Fig. 10.

features, such as PM and POS. On the contrary, the questions
of lower-level linguistic features, such as interword/intraword
and phonetic features, were used to split trees of lower-level
non-pause break types (i.e., , , , and ).

Fig. 13 illustrates the transitions of pitch prosodic state
for seven break types. For and , the

general high-to-low, nearby-state transitions showed that the
syllable log- level declined slowly within PWs. For ,
it had both high-to-low and low-to-high state transitions. For

, , and , their low-to-high state transitions showed
clearly the phenomena of syllable log- level resets across
PWs, PPhs, and BG/PGs. Comparing with these clear log-
level resets, the resets of were insignificant. The transi-
tion of is similar to those of and . This implies no
apparent pitch reset exists at the duration-lengthening juncture
of . These phenomena were similar to those found in our
previous study on the database of a single female speaker [20].
Table IV lists a summary of the parameter numbers (#para) of
these 12 prosodic models.

C. Recognition Performance Evaluation

We then examined the recognition performance of the pro-
posed prosody-assisted ASR system. We first performed the
first-stage decoding by HTK using the 411 base-syllable HMM
models and the word-bigram LM to generate a word lattice. We
note that the beam-width of the first-stage recognition was set to
a large value to make the resulting word lattice have a high cover
rate of the correct words. This was to let the study focus mainly
on the performance comparison between the scheme with and
without using the prosodic models in the second-stage recog-
nition. The WER, CER, and base-syllable error rate (SER) of

the first-stage decoding were 29.6%, 21.4%, and 13.7%, re-
spectively. Moreover, the oracle performance (i.e., the cover
rate) of the word lattice, which corresponds to the best word
string that can be decoded from the lattice, was 9.6%, 9.3%,
and 7% for WER, CER, and SER, respectively. The oracle per-
formance approached the upbound as we considered the high
out-of-vocabulary (OOV) rate of 4.3% of the test data set. The
use of the syllable-based HMM approach was justified by com-
paring its performance with those of 30.7%, 21.8%, and 13.7%
in WER, CER, and SER achieved by the tri-phone HMM rec-
ognizer using similar size of total number of states. The syl-
lable-based HMM recognizer we used was slightly better.

We then performed the second-stage decoding. A baseline
scheme was first tested using only the FLM in the second-stage
rescoring process without involving any prosodic model. Here,
we kept the AM scores and replaced the word-bigram LM scores
with the FLM scores. In implementation, we needed to expand
the first-stage word lattice to consider the applicability of the
word-trigram LM, all possible POSs for every candidate word,
and four types of PM for every interword location. Besides, the
log-linear combination of the scores of AM and the three FLM
sub-models was considered. The DMC algorithm [26] was ap-
plied to find a set of four weights from a development set se-
lected from the Set B part of the training set. The development
set contained 18-minute speech of 33 speakers. For each utter-
ance in the development set, a list of top-100 sequences was
found and used in the DMC algorithm. Since the number of
weights to be estimated is small, the data of the development
set were sufficient. Table V shows the performance of the base-
line scheme. The WER, CER, and SER were 24.4%, 18.1%,
and 12%. This performance was much better than that of 29.6%,
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Fig. 12. Decision trees of the break-acoustics model for seven break types. Solid (dash) line indicates positive (negative) answer to the question. Numbers in a
node are data count and average likelihood (in a bracket). The statistics for each node are shown in the bracket of the tables below the trees. Note that �’s represent
root node of each break type. Numbers in the bracket, from left to right, denote average pause duration in ms, energy-dip level in dB, normalized pitch jump in
log-Hz, and duration lengthening factors 1 and 2 in ms.

21.4%, and 13.7% reached by the ASR using the word-bigram
LM.

Lastly, we evaluated the performance of adding prosodic
models to the baseline scheme. We first categorized these
12 prosodic models into two classes: juncture-based and syl-
lable-based. The former modeled acoustic cues or phenomena
related to different types of juncture and hence was expected

to be useful for distinguishing word boundary ambiguity. The
latter modeled prosodic-acoustic feature patterns of different
types of prosodic constituent so that they were expected to
be useful for tone/word discrimination. We hence designed
and tested two schemes of incorporating prosodic models.
Scheme 1 incorporated the six juncture-based prosodic models,
i.e., the break-syntax model and the five syllable-juncture
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Fig. 13. Most significant prosodic state transitions for (a) ��,��,����, and
����, and (b) ����,��, and ��. Here, the number in each node represents
the index of the prosodic state. Note that larger state index represents higher
log-�� value and darker lines represent more important state transitions.

TABLE IV
SUMMARY OF PARAMETER NUMBERS OF 12 PROSODIC MODELS

TABLE V
RECOGNITION PERFORMANCES OF THE BASELINE SCHEME,

SCHEME 1, AND SCHEME 2 (%)

prosodic-acoustic sub-models, into the baseline FLM scheme,
while Scheme 2 added all 12 prosodic models. In implemen-
tation, all values of frame-based , syllable duration, and
energy level of the testing utterance were normalized by their
corresponding utterance-level mean and variance. Here, the
syllable segmentation corresponded to the best path of the
first-stage decoding. Word lattice expansions were also realized
to consider not only the applicability of the FLM like the case
of realizing the baseline scheme, but also the incorporation
of prosodic models. Two sets of 10 and 16 weights for model
combination were respectively found for the two schemes
by the DMC algorithm using the same development set. The
recognition results are displayed in Table V. As shown in the
table, WER, CER, and SER of 21.3%, 15.0%, and 10.2% for
Scheme 1, and of 20.7%, 14.4%, and 9.6% for Scheme 2 were

TABLE VI
EXPERIMENTAL RESULTS OF POS DECODING (%)

TABLE VII
EXPERIMENTAL RESULTS OF PM DECODING (%)

obtained. They represented 3.1%, 3.1%, and 1.8% absolute
(or 12.7%, 17.1%, and 15% relative) error reductions over the
baseline FLM scheme for Scheme 1, and 3.7%, 3.7%, and 2.4%
absolute (or 15.2%, 20.4%, and 20% relative) error reductions
for Scheme 2. Obviously, Scheme 1 outperformed the baseline
scheme significantly, and Scheme 2 was even better. This
showed that the word recognition performance could be greatly
improved via correcting word segmentation errors by properly
using juncture-based break-related information. Moreover, the
recognition performance could be further improved slightly via
correcting tone errors by modeling tone patterns of prosodic
constituents. We can therefore conclude that the prosodic
information are useful in ASR.

Aside from generating the recognized word sequence, the
system also produced some other linguistic and prosodic infor-
mation of the testing utterance, including POS, PM, syllable
prosodic state, and syllable-juncture break type. Table VI shows
the recognition results of POS. Precision, recall and -measure
were computed as metrics for performance evaluation. Here,
precision is defined as the ratio of the number of correctly
recognized words with correct POS, , to
the total number of correctly recognized words; while recall is
defined as the ratio of to the total number
of words. As shown in the table, the performances of precision,
recall, and -measure were 93.4%, 76.4%, and 84% for the
baseline scheme, and were improved to 93.4%, 80%, and
86.2% by Scheme 2. Since a correct decoding of POS was only
meaningful when the word was correctly decoded, the recalls
were bounded by the word correct rates which were 78.9% and
82.15% for the baseline scheme and Scheme 2, respectively.

Table VII shows the recognition results of PM. As shown in
the table, the performances of precision, recall, and -measure
were 55.2%, 37.8%, and 44.8% for the baseline FLM scheme,
and were improved to 61.2%, 53%, and 56.8%, respectively, by
Scheme 2. Notice that the syllable-based alignment between the
recognition result and the reference transcription was performed
for the evaluation. By error analysis, we found that many major
PMs were misrecognized as commas. Since this type of error
was not serious, we therefore reevaluated the performance of
PM recognition by collapsing all PMs (i.e., comma, dot, and
major PMs) into a single PM class. The resulting precision, re-
call, and -measure were 76.1%, 65.9%, and 70.6% for Scheme
2 verse 66.1%, 45.3%, and 53.8% for the baseline scheme.

Table VIII shows the results of tone recognition. The perfor-
mances of precision, recall, and -measure were 87.9%, 87.5%,
and 87.7% for the baseline FLM scheme, and were improved to
91.9%, 91.6%, and 91.7% by Scheme 2. Obviously, the signifi-
cant improvement of tone recognition mainly resulted from the
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Fig. 14. Example of recognition results for a partial paragraph. Eight panels represent, respectively, waveform, prosodic state AP+global mean of syllable log-��
level, syllable duration, and syllable energy level, break type (B), reference transcription (R), result of baseline scheme (F) and proposed system (P). The utterance
is “lian-ri lai (Day by day) gai-qiao (the bridge) zhi (DE) yin-dao (road), yin (because) zhi (only) pu (pave) yi-ceng (one layer) de (DE) bo-you (asphalt) lu-mian
(surface), jing (by) zhong-xing (heavy-duty) sha-sh-che (trunk) zhi (DE) nian-ya (rolling), lu-main (surface) yi (already) sun-huai (broken).

Fig. 15. Example of the negative effect of OOV on word error correction: (a) reference transcription, and the recognition results of (b) the baseline scheme and
(c) the proposed system.

TABLE VIII
EXPERIMENTAL RESULTS OF TONE DECODING (%)

proper use of tone information in the prosody modeling for syl-
lable pitch contour and syllable duration.

An error analysis was conducted to examine the recognition
results in more detail. First, we found that the WER improve-
ment of the proposed system mainly lay in the corrections of
word segmentation errors and tone recognition errors. This con-
formed to our expectation because both syllable-juncture breaks
and syllable tones were properly modeled in the prosody mod-
eling. Fig. 14 illustrates an example. As shown in the figure,
there were four prosodic phrases (PPh’s) separated by . In
the 3rd PPh, the text “ (jing, by) (zhong-xing, heavy)

(sha-sh-che, trunk) (zhi, DE) (nian-ya, rolling)”
were recognized as “ (jing, by) (zhong-xin, center)
(xiao-shi, hour) (che-zi, car) (nian-ya,rolling)” by
the baseline scheme. There were three word recognition errors
(i.e., (zhong-xin), (xiao-shi) and (che-zi)) and
one segmentation error (between “shi” and “che”). The
proposed system corrected two word recognition errors. One
is the correction of “ (zhong-xin)” to “ (zhong-xing,
heavy)”. Tone modeling is the key factor for this correction.
Another is the correction of “ (xiao-shi) (che-zi)” to
“ (sha-sh-che).” This word recognition error correction
is through the correction of the segmentation error via labeling
a break after the corrected word.

Second, we found that many segmentation error corrections
did not lead to word recognition error corrections. The exis-
tence of OOV was one of the major factors to hamper the im-
provement. Fig. 15 illustrates an example. As shown in (b),

the two words “ (council chairman) (Zhen-
Xing Guo)” were erroneously recognized as “ (council
member) (Guo-Zheng Zhang) (new)” by the
baseline scheme. Both words were not correctly recognized and
there existed two word segmentation errors. As shown in (c),
the proposed system corrected the first word segmentation error
and decoded its boundary as a break. This led to the correct
recognition of the first word, but not the second word because
it is an OOV. Moreover, the OOV caused one word substitution
error and one word insertion error. Actually, the OOV rate of the
test set was only 4.3%, but OOVs caused extra errors of word
insertions and deletions to result in total about 8.1% word er-
rors.

Third, we also found that some syllable segmentation errors
were corrected by the proposed system. The sum of syllable
insertion and deletion error rates was reduced from 1.79% of the
baseline FLM scheme to 1.2% of Scheme 2. One major factor
to contribute to the improvement was the use of the syllable
duration model shown in (9). Actually, the
use of the syllable duration model and break tags in the prosody
modeling also contributed to the reduction of the sum of word
insertion and deletion error rates from 6.1% of the baseline FLM
scheme to 5.5% of Scheme 2.

An additional advantage of the proposed system was the de-
coding of the two types of prosodic tags. As mentioned before,
they were closely correlated with the four-layer prosody-hier-
archy model. We could therefore use them to construct a hierar-
chical structure of prosody for the testing utterance. Taking the
recognition results shown in Fig. 14 as an example, we can de-
scribe the prosody structure of the utterance as follows. On the
top level, there are four prosodic phrases (PPhs) separated by
three breaks. From the first two panels of Fig. 14, we find
that all three breaks were associated with long pauses and
large pitch resets. So, these three breaks were all labeled
well. On the next level, there are 2, 5, 3, and 1 prosodic words
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TABLE IX
COMPLEXITY OF THE EXPANDED LATTICE FOR RESCORING

(PWs) in these four PPhs, respectively. Within these four PPhs,
PWs were separated by ,

, , and ( ). As shown in the first three panels
of Fig. 14, all four breaks were associated with short
pauses, the break was associated with a pre-boundary
lengthening, and the two breaks were associated with
medium pitch resets. So, they were all properly labeled. Lastly,
the bottom level is composed of syllables separated by or
breaks. It is noted that and are not shown in the figure.
From above discussions, we can conclude that the prosody hi-
erarchical structure of the testing utterance constructed by the
decoded break tags matched well with the cues provided by the
prosodic-acoustic features.

Lastly, we analyzed the complexity of the second-stage
rescoring process. Table IX shows the average number of nodes
in the expanded lattice (NEL), the average number of arcs in
the expanded lattice (AEL), the density of the expanded lattice
(DEL), and the real time factor (RTF) of the baseline scheme
and the proposed Scheme 2. NEL and AEL are defined as the
average numbers of nodes and arcs for a testing utterance. DEL
is defined as the number of arcs in the expanded lattice divided
by the number of words in the true transcription. RTF is defined
as the ratio of the time spent on rescoring to the length of the
testing utterance. As shown in Table IX, the proposed system is
about 2 times larger in NEL, AEL, and DEL than the baseline
scheme; while the RTF is about 2.5 times larger.

IV. CONCLUSION

In this paper, we have discussed a new prosody-assisted ASR
system in detail. The system employed a sophisticated prosody
modeling method to generate 12 prosodic models to assist in
improving the recognition performance as well as decoding
more information from the testing utterance. Experimental
results confirmed the effectiveness of the proposed system.
Several advantages of the proposed system can be found. First,
these 12 prosodic models were trained using an unlabeled
speech database. This not only saved the costly hand-labeling
effort, but also avoided the defects of human labeling, including
inaccuracy and inconsistency. The resulting prosodic tag labels
matched well with the cues provided by linguistic features
and/or prosodic-acoustic features. Second, these 12 prosodic
models described well the relationships of the two prosodic tags
of the four-layer prosody-hierarchy model, various linguistic
features of texts, and the eight prosodic-acoustic features of
speech signals. Experimental results showed that parameters
of these 12 well-trained prosodic models were all meaningful.
Third, the recognition performance of the conventional HMM
recognizer can be improved by the proposed system via cor-
recting many word segmentation errors and tone recognition
errors. Fourth, more information could be decoded from the
testing utterance. Aside from the two linguistic features of POS
and PM, the two decoded sequences of break type and prosodic
state could be used to construct the prosody hierarchical struc-
ture of the testing utterance.

Some further works are worth doing in the future. First,
we are interested in generalizing the proposed approach to

spontaneous-speech ASR. To this end, we need to extend the
three models of AM, LM and HPM to additionally consider
the special characteristics, such as disfluency, of spontaneous
speech. A preliminary study has been conducted to construct a
hierarchical prosodic model for spontaneous Mandarin speech
[35]. Second, it is also an interesting task to scale up the
proposed approach to ASR for larger vocabulary comprising
many compound words. The task can be attacked by modifying
the first-stage recognition via first constructing an LM for a
lexicon comprising both words and subwords, then generating
a mixed-word/subword lattice using the new LM, and lastly
forming compound words from subwords by applying some
word-compounding rules. The second-stage recognition can
be directly applied. Third, modifying the proposed approach
to reduce its computational complexity is needed for online
system implementation. The task can be attacked by applying
some prosodic models to reduce the size of the word lattice
generated by the first-stage recognition. Specifically, we can in-
corporate the syllable-juncture prosodic-acoustic model into the
first-stage recognition to detect and from long silences
and generate a word lattice for each PPh-like segment instead
of a large word lattice for the whole utterance. The stage-stage
recognition can then be operated in a way of PPh-by-PPh
decoding process. This can greatly speed up the second-stage
Viterbi decoding process as well as reduce the decoding delay.
Besides, the size of a PPh word lattice can be further reduced
by verifying its constituent words using the syllable-juncture
prosodic-acoustic model to exclude unqualified words with
prosodic features mismatching the intraword prosodic cues.
Fourth, it is found from error analysis that the WER improve-
ment of the proposed system is seriously hampered by OOVs.
Since most OOVs are name entities, incorporating an LM for
name entity should be helpful. Fifth, some high-level linguistic
features, such as word chunk, phrase, and syntax, are still not
used in this study. Design new prosodic models to include
them should be useful for further improving the recognition
performance as well as for decoding the syntactic structure
of the testing utterance. Lastly, applying the same technique
to other languages, such as English, must be interested to the
speech processing society.
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