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Abstract—We propose a pseudospectral mode solver for optical
waveguide mode analysis formulated by the frequency-domain
Maxwell equations. Special attention is paid upon identifying
the required boundary operator for the formulation and the
relationships between the derived operator and the physical
boundary conditions. These theoretical results are adopted into a
Legendre pseudospectral multidomain computational framework
to compute the propagation characteristics of optical waveguides.
Numerical experiments are conducted, and the expected spectral
convergence of the scheme is observed for smooth problems and
for problems having field jumps at material interfaces. For dielec-
tric waveguides with sharp corners, the spectral convergence is
lost due to the singular nature of fields at the corner. Nevertheless,
compared with other methods, the present formulation remains
as an efficient approach to obtain waveguide modes.

Index Terms—Frequency-domain Maxwell’s equations, op-
tical waveguides, penalty boundary conditions, pseudospectral
methods, waveguide analysis.

I. INTRODUCTION

I N modal analysis for optical waveguides, the propagation
constants and the associated field distributions of guided

modes provide useful information in designing and operating
optical guiding devices such as filters, switches, modulators,
and fibers. To obtain these guiding characteristics, one needs
to solve either Maxwell’s equations or the vectorial Helmholtz
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equations, subject to boundary conditions. However, due to the
involved mathematical difficulties raised from either the geom-
etry configurations of devices or the heterogeneous distribu-
tions of material properties, waveguide problems are in general
very hard to solve analytically. For realistic cases, numerical
methods are employed to obtain the guiding characteristics.
Among numerical methods, Cartesian finite difference

methods [1]–[6] are popular for waveguide problems if the
geometry of the guiding structure is confined to the grid lines.
However, for problems involving curved interfaces, special dif-
ference stencils are required to treat field values in the vicinity
of curved interfaces to maintain accurate computations [7]–[9].
Also commonly used in modal analysis, body-fitted finite
element methods [10]–[13] adopt unstructured and structural
meshes to fit the geometries and employ edge elements and
tangential elements to discretize the equations and boundary
conditions. Most of the aforementioned methods are low-order
accurate methods, typically first or second order. As the com-
plexity of waveguide problems increases, these finite difference
and finite element schemes require using dense meshes to
perform accurate computations. Hence, these approaches lead
to large systems of equations to be solved, which may consume
lots of computational resources and time. An approach for
overcoming this issue is designing high-order accurate schemes
based on spectral/pseudospectral methods [14]–[17]. Gener-
ally, these schemes can compute accurate results by using a
coarse mesh, compared to low-order methods. However, this
advantage does not come along freely, and great care must be
exercised to ensure the high-order convergence rate, because
these methods are very sensitive to the smoothness of the
solutions and the imposition of boundary conditions [18].
In this study, we present a high-order accurate and geomet-

rically flexible computational approach for waveguide mode
analysis. Unlike the mentioned pseudospectral approaches that
adopt the vectorial Helmholtz equations as the main equations,
we consider the frequency-domain Maxwell’s equations as the
governing equations. Special attention is paid upon analyzing
the required boundary operator for the frequency-domain
Maxwell’s equations and its relationships with the common
physical boundary conditions. These analytic results are then
adopted into a multidomain pseudospectral computational
framework through the penalty methodology [19]–[22]. The
proposed formulation is validated through computing the
propagation characteristics of fundamental modes of a number
of waveguide structures. We observe the expected spectral
convergence results for smooth waveguide problems and for
problems having finite jumps of fields at material interfaces.
However, for dielectric waveguides having sharp corners, it is
found that the spectral convergence is lost, due to the singular
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nature of optical fields at the corner. Nevertheless, the results
show that the present scheme remains competitive compared to
other finite difference approaches on solving the same problem.
Preliminary results of this study were reported in [23]. In
this paper, we give the detailed formulation with numerous
numerical examples.
The rest of this paper is organized as follows. In Section II,

we present the mathematical formulation of the concerned prob-
lems and seek the required boundary operator as well as its re-
lationships with common physical boundary conditions to com-
plete the formulation. Section III is devoted to the construction
of the discrete scheme of the formulation based on the multido-
main pseudospectral penalty approach. The validation of the
proposed formulation is presented in Section IV. Concluding
remarks are given in Section V.

II. MATHEMATICAL FORMULATION

A. Maxwell’s Equations

The Maxwell equations for optical fields in linear, lossless,
source-free, and nonmagnetic medium are

(1a)

(1b)

(1c)

(1d)

where , and are the
permittivity, permeability, impedance, and speed of light in free
space, respectively, assumed real constant is the relative per-
mittivity of medium, and are the electric and magnetic
fields, respectively, and denotes the partial differential oper-
ator with respective to .
Let the axis be the propagation direction. To solve the trans-

verse wave fields in waveguides, we assume the fields having
the space-time dependence of the form

(2)

where and are the normalized complex-valued
phasors of and , respectively, is the propagation con-
stant, and is the angular frequency. Substitution of (2) into (1)
leads to the phasor component equations

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

where is the space wavenumber in vacuum. Notice
that (3g)–(3h) can be derived from (3a)–(3e). We have six inde-
pendent equations governing the six field variables formulated
as an eigensystem, with and the phasor fields being the eigen-
value and eigenvectors, respectively.

Fig. 1. Schematic view of the cross section of a waveguide.

B. Boundary Operators

Consider the waveguide having a cross section as depicted
in Fig. 1. The structure is closed by perfect magnetic conductor
(PMC) and perfect electric conductor (PEC) at the outer and
inner surfaces, and , respectively. Within the structure,
the surface divides the guiding area into two regions and
, characterized by the permittivity and permeability of the

material, and , respectively. and denote
the outward pointing unit vectors normal to the surfaces and

, respectively, and and are unit vectors normal to the
surface pointing from region to region and from region
to region , respectively.
To seek the boundary operator required by (3a)–(3e), we

rewrite these equations in the matrix form

(4)

where is the state vector
with denoting the vector transpose, and for

with being the Kronecker delta function. Multiplying (4)
by from the left, where denotes the Hermitian of the
variable , and multiplying the Hermitian of (4) by from
the right, integrating the entire domain , summing the
resultants, and invoking the divergence theorem to change the
volume integrals to surface integrals, we obtain

(5)

where with being the
outward pointing unit vector normal to a domain boundary, and

denotes the integration along the path . Note that the
second and the third integrations on the right-hand side (RHS)
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of (5) are evaluated with variables defined on the interface
but in regions and , respectively.
To proceed further, we introduce the characteristic variables

at the boundaries. Since , there exists a unitary
matrix such that

with , and . Notice
that because is real. Employing , we
define the characteristic state vector

The explicit expressions of and are

(6)

(7)

where is the unit vector in the -direction, is the
transverse electric (magnetic) field, and is the electric
(magnetic) field perpendicular to the plane.
Equation (5) implies that the required boundary conditions

must lead to the vanishing of the RHS of the equation. We now
examine whether the specified boundary conditions satisfy this
constrain.

a) PMC Condition at : The conditions are

It follows from (7), and , that

(8a)

(8b)

Thus, and .
Furthermore, since , we obtain

indicating that in (5).
b) PEC at : The conditions are

It follows from (7), and , that

(9a)

(9b)

Thus, and .
Since , we obtain

indicating that in (5).
c) Material Interface Condition at : The interface

boundary conditions relating fields on both sides of the inter-
face are

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

where is the unit vector normal to pointing from region
to region , and the superscripts and denote the re-

gions where the field variables are defined on the interface,
respectively. From (7), we have

Invoking (10b) and (10c) as well as , we yield

(11)

Following similar procedures, we obtain the conditions

(12)

(13)

(14)

It follows from these expressions and that

Therefore, .
The analysis shows that to satisfy (5), we need to specify

, and on the boundary to complete the system. The
explicit expressions of these characteristic components and their
relationships with the common physical boundary conditions
are established. In the next section, we shall apply these result
and construct a pseudospectral penalty scheme for solving wave
fields in waveguides.

III. NUMERICAL FORMULATION

A. Legendre Pseudospectral Method

Let and be a positive integer. Introduce the
Legendre–Gauss–Lobatto (LGL) points for .
These points are roots of the polynomial where

is the th degree Legendre polynomial and denotes
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Fig. 2. Coordinate mapping of a square in coordinate and a general curvilinear quadrilateral in coordinate.

the differentiation. To approximate a function defined on ,
we seek a polynomial of the form

where and are the Lagrange interpolating func-
tions. The 1-D pseudospectral method can be extended to a 2-D
framework through the tensor product formulation. Let and
be positive integers. Denote and term the coor-

dinates . Consider the grid points for and
for , where and are the LGL grid points along
the - and -axis, respectively. Then, the grid points are defined
as . To approximate defined on , we construct
a polynomial of the form

where and are the 1-D Lagrange interpolating func-
tions based on the grid points and , respectively. The partial
derivatives of are approximated as

We have reviewed some basic concepts related to the Legendre
pseudospectral method. For further details on the method, we
refer the reader to [18].

B. Equations in Curvilinear Coordinates

The tensor-product-based pseudospectral formulation is for
problems defined on standard domain . To apply the

formulation for problems defined on general complex domains,
an approach is decomposing the global domains into unions of
smooth quadrilateral subdomains which can be mapped onto
a standard domain. We understand that establishing a general
coordinate transformation for mapping an arbitrary quadrilat-
eral domain onto a square domain may not be always possible.
Hence, we describe the methodology for problems defined on
a curvilinear quadrilateral element that can be mapped onto a
square.
Consider a general curvilinear quadrilateral and a square
defined in coordinate systems termed and , re-

spectively (see Fig. 2). We apply the transfinite blending in-
terpolation method [24] and construct a coordinate mapping

and its inverse to establish
a one-to-one correspondence between and . The transforma-
tion metric functions are then computed as

and they are related as
where is the identity matrix. Using the

coordinate transformation and the chain rule of differentiation,
we rewrite (4) as

(15)

where
, and .

Denote as the unit vector normal to the boundary
of in the coordinate system. On the boundary of ,
we define the variables and , related by

, and
. The variables , and and their transformed corre-

spondences , and defined on the boundary of are related
as follows. Denote the unit vectors along the - and -axes by

and , respectively. On the edges
, we have and

. Replacing the symbol by in the
aforementioned expressions, we obtain the corresponding rela-
tionships for the variables defined on .
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C. Numerical Scheme

We now present the numerical scheme for solving (15). Let
denote the numerical state vectors at the grid points

satisfying the collocation schemes

(16)

where

(17a)

(17b)

(17c)

(17d)

with and being the quadrature weights [18] associated
with the grid points and , respectively. It is shown in
(16) that the boundary conditions are enforced into the scheme
weakly through the characteristic variables.
To complete the construction of the scheme, we need to pro-

vide the explicit expression of . For simplicity, we consider
the imposition of boundary conditions on the edge as
an example. To impose PMC condition, it is suggested from
(8a) and (8b) to construct
leading to

where . Likewise, to enforce PEC con-
dition, it is suggested from (9a) and (9b) to construct

. Thus,

where . We now discuss the imposition of inter-
face boundary condition. From (11)–(14), it is suggested to take

. Hence,

where and similarly for the other parallel
notations.
By employing (16) and the aforementioned boundary rela-

tionship, the wave fields on the transverse plane of a wave-
guide can be formulated as an eigenvalue problem of the form

,where the propagation constant is the eigenvalue,
is the eigenvector composed of the collocated state vectors,

and is a matrix. Solving the eigensystem, we obtain and the
transverse wave fields.

IV. NUMERICAL VALIDATIONS AND DISCUSSION

A. Errors of Effective Index and Residual Functions

We examine the performance of the method by measuring the
error of the computed effective index defined as

where and are the exact and the computed effective in-
dexes and is the operating wavelength. To measure how well
the computed eigenmode solutions are, we employ the expres-
sions in (3g) and (3h), which are omitted in computations, and
define the residual functions and as

where the integrals are evaluated numerically by the LGL in-
tegration quadrature rule [18]. The residual functions can be
served as accuracy indicators of the numerical eigenmode solu-
tion because if the computed fields are obtained by the scheme
convergence to the exact fields of (3a)–(3h), then the residual
functions shall decay as the mesh is refined.
The convergence rate of the computed effective index is cal-

culated as

where and are the characterized degrees of the approx-
imation polynomials during mesh refinement. Replacing
in the aforementioned expression by and , we compute
the convergence rates of the residual functions and ,
respectively.

B. Partially Filled Metallic Waveguide

Consider a half-filled metallic waveguide structure with the
geometry and the refractive indexes shown in Fig. 3. The ef-
fective index of the fundamental longitudinal-section electric
(LSE ) mode at the operating wavelength m is
solved by the present method with a computational mesh shown
in Fig. 3.
A grid convergence study is given in Table I. We see that the

error of the effective index decays exponentially as the mesh
is refined. The convergence study illustrates the efficiency of
the proposed formulation in computing accurate solutions. It is
observed that the computed effective index has reachedmachine
accuracy level even using coarse grid meshes. In addition, it
is also shown that the residual vanishes as the polynomial
degree increases. The values of are at machine accuracy
level for different values of , because the , and
fields are zero for this particular mode.

C. Circular Metallic Waveguide

Consider an air-filled circular metallic waveguide with the
geometry and the refractive indexes shown in Fig. 4. The effec-
tive index for the fundamental transverse electric (TE ) mode
at the operating wavelength m is solved by the
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Fig. 3. Schematic view of (left) a partially filled metallic waveguide and (right) a multidomain computational mesh composed of two subdomains. Each subdomain
contains grid points, where is the degree of the approximation polynomial.

Fig. 4. (Left) Schematic diagram of a circular metallic waveguide. (Right) Multidomain mesh composed of three subdomains.

TABLE I
CONVERGENCE STUDY OF THE PARTIALLY FILLED METALLIC WAVEGUIDE.

, REFERENCED EFFECTIVE INDEX FOR THE LSE
MODE AT THE OPERATING WAVELENGTH M OBTAINED BY

SOLVING TRANSCENDENTAL EQUATIONS [25]

present method. Due to the geometrical symmetry, we only need
to solve the problem on the upper right quarter fan region sup-
ported by the PEC and PMC conditions at the two straight edges.
A grid convergence study is given in Table II.We observe that

the error of the computed effective index and the residuals
and vanish rapidly to machine accuracy level, as increases.
The results indicate that the present formulations incorporated
with the transfinite blending mapping also perform very well for
solving problems involving curved boundary.

TABLE II
CONVERGENCE STUDY OF THE CIRCULAR METALLIC WAVEGUIDE.

, REFERENCED EFFECTIVE INDEX FOR THE
TE MODE AT THE OPERATING WAVELENGTH M

D. Fiber Waveguide

Consider a fiber waveguide with the geometry and the re-
fractive indicies as shown in Fig. 5. We use the present method
to solve the effective index for the fundamental HE mode of
the fiber waveguide at the operating wavelength m.
Notice that this problem has a high index difference between
the core and the surrounding areas, which causes fields having
jumps at the dielectric interface. Thus, this problem is suitable
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Fig. 5. Schematic view of (left) a fiber waveguide and (right) a multidomain mesh.

for validating the numerical boundary impositions of the present
formulation.
Notice that the problem domain radially extends to infinity,

which cannot be directly solved by the present formulation for
problems defined on finite regions. However, since the fields in
the air region are of evanescent type, the amplitude of each field
vanishes in the far zone. Employing this property, we termi-
nate the domain by a virtual boundary and enforce PEC or PMC
condition at the artificial closure. As will be shown soon, such
an arrangement does not harm the computation accuracy pro-
vided that the artificial boundary is far away from the fiber core.
Furthermore, since the problem domain possesses circular sym-
metry, it is sufficient enough to consider the problem defined on
the upper right quarter of the waveguide cross section. We use
a mesh composed of seven subdomains as shown in Fig. 5.
A grid convergence study is provided in Table III. It is shown

that the errors of the computed effective index and the residual
functions and all vanish exponentially as the mesh is re-
fined. We also obtain when using

, which gives a less than . The computed
fields of the fundamental HE mode with are shown in
Fig. 6.We observe that the field components are mostly confined
in the guiding core area and in the vicinity of the dielectric inter-
face, and the amplitude of each field component decays to zero
away from the core area. We observe the field jumps at the cir-
cular dielectric interface, indicating that the proposed boundary
formulation does well capture the essential character of fields at
the material interface.

E. Channel Waveguide With Sharp Corners

We now examine the performance of the formulation on
solving propagation characteristics of a square channel wave-
guide with the geometry and the refractive indexes shown in
Fig. 7. A special feature of the considered dielectric channel
waveguide is that the electric fields at the dielectric sharp
corners are singular (see [5] and the references therein). There,
an analysis was conducted to compute the propagation char-
acteristics involving the singular behavior of fields at sharp

corners and the result obtained by the difference method is
adopted here as a reference.
A grid convergence study is provided in Table IV.We observe

that the residual functions and only decay in three-quarter
rate at most and a second-order rate, respectively, as the compu-
tational mesh is refined. The spectral converge rate is ruined due
to the weakly divergent behavior of the and field com-
ponents at the sharp corner [5], [13], which indeed has a great
impact on the convergence of the scheme. In our computation,
it is found that the local residual
at the corner does not decay. This ill behavior, thus, leads to a
very poor convergence of the residual . On the other hand, it is
found that the local residual
at the corner decays in the first-order rate. As a consequence, the
residual function vanishes in a second-order rate.
Although the spectral convergence of the scheme is lost for

this problem, it is shown that the effective index obtained by
the present method still agrees well with the referenced one. In
fact, from the computed results, we observe that by employing
a coarse grid mesh (four subdomains with 7 7 grid points
in each subdomain), it is sufficient enough to compute the ef-
fective index having a similar accuracy as the referenced one
obtained by a 150 150 finite difference grid mesh. This ad-
vantage allows one to compute more accurate results by in-
creasing the resolution of the grid mesh. We close this sec-
tion by providing more accurate results of the effective index
of the channel waveguide for in Table V and for

in Table VI. It is shown that the effective indexes are
approximately 1.276274037 for and approximately
2.656796923 for . These values are consistent with those
obtained by a recently developed waveguide mode solver based
on Neumann-to-Dirichlet operators and boundary integral equa-
tions [26], in which an accuracy comparison has beenmade with
the result in [23].

V. CONCLUDING REMARKS

We have presented a pseudospectral computational frame-
work for computing the propagation characteristics of optical
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Fig. 6. Field amplitude contour line plots of the fiber waveguide problem. , and are placed on the top row from left to right. , and
are placed on the bottom row from left to right.

TABLE III
CONVERGENCE STUDY OF THE FIBER WAVEGUIDE.

, REFERENCED EFFECTIVE INDEX OF THE HE
FUNDAMENTAL MODE AT THE OPERATING WAVELENGTH M

wave fields in waveguides. The mathematical formulation is
based on the Maxwell equations in frequency domain, and the
required boundary operator to complete the formulation was
identified. Relationships between the mathematically derived
boundary operator and the common boundary conditions were
also established. We constructed a multidomain Legendre pseu-
dospectral scheme with boundary condition weakly imposed
through the penalty methodology. Numerical experiments were
conducted and we observed the expected spectral convergence
of the scheme for both smooth problems and those having finite
jump discontinuities at material interfaces. However, for prob-
lems involving singular wave fields occurring at sharp dielec-
tric corners, the numerical experiments showed that the spectral
convergence of the scheme is ruined and the order of the conver-
gence is at most first-order accurate in the global sense. Never-
theless, the present pseudospectral method remains an efficient

approach to compute the results compared to those obtained by
finite difference methods [5].
For waveguide analysis, a common approach is solving full-

vectorial wave equations in terms of the two transverse mag-
netic field components. The total number of discrete equations
raised by the transverse field formulations is less than that raised
by the present six-component formulation. We admit that the
present method requires more computational work. To over-
come this issue, we have reformulated our method to reduce the
number of equations. The idea is mimicking the procedure of
obtaining the full-vectorial wave equations from the Maxwell
equations, which involves taking the partial derivatives of the
first-order system of equations and then conducting algebraic
eliminations to yield decoupled second-order wave equations.
For the present method, we can write (16) and (17) into their
continuous representations, and then take derivatives and con-
duct algebraic eliminations to obtain a system of second-order
equations composed of the transverse magnetic field compo-
nents and the nontransverse electric field component. Thus, the
total number of discrete equations is reduced and the computa-
tional work can be reduced. To completely eliminate the non-
transverse electric field requires further investigation. The de-
tails of this study will be further conducted and presented else-
where in the future.
Although the present formulation results into a larger system

compared to the transverse magnetic field components ap-
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Fig. 7. Cross-sectional view of (left) a dielectric waveguide and (right) a computational mesh composed of four subdomains.

TABLE IV
GRID CONVERGENCE STUDY OF THE CHANNEL WAVEGUIDE. , REFERENCE EFFECTIVE

INDEX FOR THE FUNDAMENTAL MODE AT THE OPERATING WAVELENGTH M ADOPTED FROM [5]

TABLE V
EFFECTIVE INDEX OF THE FUNDAMENTALMODE OF THE CHANNELWAVEGUIDE
COMPUTED BY THE SCHEME WITH VERY DENSE MESHES WITH .

OPERATING WAVELENGTH M

TABLE VI
EFFECTIVE INDEX OF THE FUNDAMENTAL MODE OF THE CHANNEL
WAVEGUIDE COMPUTED BY THE SCHEME WITH VERY DENSE MESHES

WITH . OPERATING WAVELENGTH M

proach, the present method may have a possible advantage
on solving problems involving tensor permittivity. For this
situation, the full-vectorial formulation may involve cross
differentiation terms, which may become complicated for im-
posing boundary conditions. However, in the present method,
tensor permittivity will only affect the matrix which is
a low-order term in (4). Consequently, the present boundary
formulation, which is related to the and matrices, may

remain valid. Detail investigations will be explored in the
future.
Before the end of this paper, we briefly discuss two issues re-

lated to the further development of the present method. The first
one regards computing waves propagating toward to far fields
along the transverse plane. In this study, we only conduct exper-
iments either for wave problems defined on closed domain or for
problems where the waves are evanescent in the far field, so the
domain can be terminated into a finite region supported by ar-
tificial boundary conditions. Because of the lack of methods on
absorbing waves propagating toward to far zone for the present
formulation, the performance of the scheme on solving leaky
mode solutions of certain optical waveguide structures has not
yet been examined. Hence, to extend the applicability of the
present method for calculating leaky modes of waveguides, it
is worth to develop suitable perfectly matched layer methods to
absorb outgoing waves andmaintain the solution accuracy in the
guiding regions. The second issue regards the blow-up behavior
of wave fields at dielectric corners. Although the present formu-
lation remains a competitive approach, compared to other finite
difference methods, for computing the propagation characteris-
tics of waveguides involving dielectric corners, the singular na-
ture does ruin the exponential convergence order of the scheme.
It would be interesting to develop methods to enhance the con-
vergence order, so the computations can be more efficient and
accurate to resolve the singular behavior of fields at dielectric
corners. We hope to report this development in the future.
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