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Let Sλ
n be the set of all permutationsover themultiset {

λ︷ ︸︸ ︷
1, . . . , 1, . . . ,

λ︷ ︸︸ ︷
m, . . . ,m} where n = mλ. A frequency permutation array (FPA) of

minimum distance d is a subset of Sλ
n in which every two elements

have distance at least d. FPAs havemany applications related to error

correcting codes. In coding theory, the Gilbert–Varshamov bound

and the sphere-packing bound are derived from the size of balls of

certain radii.

We propose two efficient algorithms that compute the ball size of

frequency permutations under Chebyshev distance. Here it is equiv-

alent to computing the permanent of a special type of matrix, which

generalizes the Toepliz matrix in some sense. Both methods extend

previous known results. The first one runs in O

((
2dλ
dλ

)2.376
log n

)

time and O

((
2dλ
dλ

)2)
space. The second one runs in O

((
2dλ
dλ

)
(
dλ+λ

λ

)
n
λ

)
time and O

((
2dλ
dλ

))
space. For small constants λ and d,

both are efficient in time and use constant storage space.
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1. Introduction

Frequency permutation arrays (FPAs) of frequency λ and length n are sets of permutations over the

multiset {
λ︷ ︸︸ ︷

1, . . . , 1, . . . ,

λ︷ ︸︸ ︷
m, . . . ,m} where n = mλ. In particular, FPAs of frequency λ = 1 are called

permutation arrays (PAs). FPA is a special case of Slepian’s codes [11] for permutation modulation.

Many applications of FPAs in various areas, such as power line communication (see [9,14–16]), multi-

level flash memories (see [3,4,12]) and computer security (see [13]), are found recently. In many

applications, we use FPAs as error correcting codes. It is well-known that the capability against errors

of a code is mainly determined by its minimum distance. Similar to traditional codes, the minimum

distance of an FPA C is d under metric δ if minρ,π∈C;ρ �=π δ(ρ, π) = d. A (λ, n, d)-FPA under some

metric δ is a FPA of frequency λ and length n which has minimum distance at least d under δ. A
(λ, n, d)-FPA is often considered to be better if it has larger cardinality. When we evaluate the quality

of a certain design of (λ, n, d)-FPA, we often compare it with the maximum cardinality of (λ, n, d)-
FPAs. Generally speaking, computing the maximum size of codes of certain parameters is hard. In

coding theory, the Gilbert–Varshamov bound and the sphere-packing bound are famous lower and

upper bounds on the code size, respectively. They are derived from the size of balls of certain radii. We

focus on the efficiency of computing the ball size in this paper.

Shieh and Tsai [13] showed that the cardinality of d-radius balls can be obtained by computing the

permanent of a matrix. It is #P-complete to compute the permanent of a general matrix. However,

the matrix for estimating the ball size of FPAs has a special structure. Kløve [5] used the property and

proposed a method to efficiently compute the cardinality of balls of radius 1 by solving recurrence

relations. Meanwhile, based on Schwartz’s result [10], one can compute the size of d-radius balls in

O

((
2d

d

)2.376
log n

)
time for λ = 1.

In this paper, we give two algorithms to compute the cardinality of a d-radius ball under Chebyshev

distance for d > 1 and λ > 1. The first one runs in O

((
2dλ
dλ

)2.376
log n

)
time and O

((
2dλ
dλ

)2)
space,

and the second one in O
((

2dλ
dλ

)(
dλ+λ

λ

)
n
λ

)
time and O

((
2dλ
dλ

))
space. These algorithms are general-

ization of Schwartz’s result [10]. They are efficient in time and space when d and λ are small fixed

constants.

The rest of the paper is organized as follows. In Section 2, we define some notations. In Sec-

tion 3, we introduce a recursive algorithm EnumV for enumerating permutations in a d-radius ball.

Then, based on the property of EnumV, we give two methods to obtain the ball size efficiently in

Section 4. We compare previous results with ours in Section 5. Then, we conclude this paper

briefly.

2. Notations

We set n = mλ throughout the work unless stated otherwise. For positive integers a and b with

a < b, [a] represents the set {1, . . . , a} and [a, b] represents {a, a+1, . . . , b−1, b}. For convenience,
(−∞, b] represents the set of integers at most b. The Chebyshev distance of two k-dimensional vec-

tors x and y is defined as dmax(x, y) = maxi∈[k] |xi − yi|, where xi and yi are the ith entries of x

and y respectively. For permutations x and y, they are said to be d-close to each other under metric

δ(·, ·) if δ(x, y) ≤ d. We use Sλ
n to denote the set of all frequency permutations with each symbol

appearing λ times. The identity frequency permutation e in Sλ
n is (

λ︷ ︸︸ ︷
1, . . . , 1, . . . ,

λ︷ ︸︸ ︷
m, . . . ,m), i.e., the

ith entry of e is ei =
⌈

i
λ

⌉
. A partial frequency permutation can be derived from a frequency permu-

tation in Sλ
n with some entries replaced with ∗. The symbol ∗ does not contribute to the distance.

I.e., the distance between two k-dimensional partial frequency permutations, x and y, is defined as

dmax(x, y) = maxi∈[k],xi �=∗,yi �=∗ |xi − yi|.
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Under Chebyshev distance, a ball of radius r centered at π is defined as B(r, π) = {ρ : dmax

(ρ, π)≤r}. We can obtain B(r, π) from B(r, e) by rearranging the indices of the entries, therefore

|B(r, π)| = |B(r, e)| for π ∈ Sλ
n . Let Vλ,n,d be the size of a ball of radius d in Sλ

n under Chebyshev

distance.

3. Enumerate d-close permutations

In this section, we give a recursive algorithm to enumerate all frequency permutations in B(d, e).
First, we investigate e closely.

i · · · kλ − λ kλ − λ + 1 · · · kλ kλ + 1 · · ·
ei · · · k − 1 k · · · k k + 1 · · ·

Observe that symbol k appears at the (kλ−λ+1)th, . . . , (kλ)th positions in e. Therefore,π is d-close

to e if and only if πkλ−λ+1, . . . , πkλ ∈ [k − d, k + d]. (Note that we simply ignore the non-positive

values when k ≤ d.) In other words, dmax(e, π) ≤ d if and only if symbol k only appears in the

(kλ − dλ − λ + 1)th, . . . , (kλ + dλ)th positions of π . This observation leads us to define the shift

operator ⊕.

Definition 1. For an integer set S and an integer z, define S ⊕ z = {s + z : s ∈ S}.
Fact 1. Suppose that π is d-close to e, then πi = k implies i ∈ [−dλ + 1, dλ + λ] ⊕ (kλ − λ).

The above fact is useful to capture the frequency permutations that are d-close to e. Note that the

set S = [−dλ + 1, dλ + λ] is independent of k. We give a recursive algorithm EnumVλ,n,d in Fig. 1.

It enumerates all frequency permutations π ∈ Sλ
n in B(d, e). It is a depth-first-search style algorithm.

Basically, it first tries to put 1’s into λ proper vacant positions ofπ . Then, it tries to put 2’s, . . . ,m’s into

the partial frequency permutations recursively. According to Fact 1, symbol k is assigned to positions

of indices in [−dλ + 1, dλ + λ] ⊕ (kλ − λ), and these positions are said to be valid for k.

The basic idea of our algorithms is that the set of valid positions being considered for symbol

k + 1 will be affected by the arrangement of symbols 1, . . . , k. Therefore, the number of frequency

permutations in B(d, e) is equal to the number of such arrangements of symbols. We model each

set of valid positions as a vertex and each arrangement of a symbol as an edge in a graph, then we

can compute the size of B(d, e) by the number of paths between two specific vertices, which can be

evaluated in polynomial time.

Fig. 1. EnumVλ,n,d(k, P).
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EnumVλ,n,d takes an integer k and a subset P of [−dλ+1, dλ+λ] as its input, and EnumVλ,n,d uses

an (n+2dλ)-dimensional vectorπ as a global variable. For convenience, we extend the index set ofπ
to [−dλ + 1, n + dλ] and every entry of π is initialized to 0, which indicates that the entry is vacant.

We use P to trace the indices of valid vacant positions for symbol k, and the set of such positions is

exactly P ⊕ (kλ − λ).
We call EnumVλ,n,d(1, [dλ + λ]) to enumerate all frequency permutations which are d-close to

e. During the enumeration, EnumVλ,n,d(k, P) assigns symbol k into some λ positions, indexed by

X ⊕ (kλ−λ), of a partial frequency permutation, then it recursively invokes EnumVλ,n,d(k+ 1, (X′ ⊕
(−λ)) ∪ [dλ + 1, dλ + λ]), where X and X′ form a partition of P and |X| = λ. After the recursive call

is done, EnumVλ,n,d(k, P) resets the positions indexed by X ⊕ (kλ − λ) as vacant. Then, it repeats to
search another choice of λ positions until all possible combinations of λ positions are investigated. For

k = m + 1, EnumVλ,n,d(k, P) outputs π if P = [dλ + λ]. Given n = λm, k is initialized to 1 and P to

[dλ + λ], we have the following claims.

Claim 1. In each of the recursive calls of EnumVλ,n,d, in line 6 we have max(Y) = dλ + λ.

Proof. By induction, it is clear for k = 1. Suppose max(P) = dλ+λ. Since Y = (X′ ⊕ (−λ))∪ [dλ+
1, dλ + λ] and max(X′) ≤ dλ + λ, we have max(Y) = dλ + λ. �

Claim 2. In line 6, for each k ∈ [m + 1] and each i ∈ Y ⊕ ((k + 1)λ − λ), we have πi = 0.

Proof. We prove this by induction on k. It is clear for k = 1. Assume the claim is true up to k < m+1,

i.e., for each i ∈ P⊕ (kλ−λ),πi = 0. Now, consider the following scenario, EnumVλ,n,d(k, P) invokes
EnumVλ,n,d(k + 1, Y).

Since Y = (X′ ⊕ (−λ)) ∪ [dλ + 1, dλ + λ], we have Y ⊕ ((k + 1)λ − λ) = (X′ ⊕ (kλ − λ)) ∪
[kλ + dλ + 1, kλ + dλ + λ]. While X′ ⊂ P and [kλ + dλ + 1, kλ + dλ + λ] are new vacant positions,

it is clear πi = 0 in these entries. �

Claim 3. In each recursive call of EnumVλ,n,d(k, P), P must be a subset of [−dλ+1, dλ+λ] of cardinality
dλ + λ. This implies, |ei − k| ≤ d for i ∈ P ⊕ (kλ − λ).

Proof. We prove this by induction on k. For k = 1, P is [dλ + λ], and the claim is obvious. Assume

the claim is true up to k, and EnumVλ,n,d(k, P) invokes EnumVλ,n,d(k + 1, Y). Thus Y = (X′ ⊕
(−λ)) ∪ [dλ + 1, dλ + λ]. Due to the constraint on X′ in line 3 and the induction hypothesis, we

have X′ ⊕ (−λ) ⊆ [−dλ + 1, dλ]. We conclude that Y ⊆ [−dλ + 1, dλ] ∪ [dλ + 1, dλ + λ] and
|Y | = |X′| + λ = dλ + λ. Since [−dλ + 1, dλ + λ] ⊕ (kλ) = [kλ − dλ + 1, kλ + dλ + λ], we know

e has values from [k − d + 1, k + d + 1] in these positions. I.e., |ei − (k + 1)| ≤ d for i ∈ Y ⊕ (kλ).
Hence, the claim is true. �

Claim 4. At the beginning of the invocation of EnumVλ,n,d(k, P), i ∈ P ⊕ (kλ − λ) implies i > 0.

Proof. It is clear for k = 1. Observe that min(Y) ≥ min(P) − λ. Since, (min(P) − λ) ⊕ (kλ) =
min(P) ⊕ (kλ − λ), the claim holds for k > 1. �

Claim 5. For k ∈ [m], when EnumVλ,n,d(k, P) invokes EnumVλ,n,d(k + 1, Y) in line 7, there are exactly

λ entries of π equal i for i ∈ [k − 1].
Proof. It is implied by lines 4 and 5. �

Lemma 1. At the beginning of the execution of EnumVλ,n,d(k, P), P ⊕ (kλ − λ) = {i : i > 0 ∧ πi =
0 ∧ i ∈ [−dλ + 1, dλ + λ] ⊕ (kλ − λ)}.
Proof. The lemma holds by Claims 2–4. �
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Let ρ be one of the outputs of EnumVλ,n,d(1, [dλ + λ]). These facts ensure that ρ ∈ Sλ
n and

dmax(e, π) ≤ d.

Lemma 2. For k ∈ [m + 1], let τk be a partial frequency permutation d-close to e and with each symbol

1, . . . , k − 1 appearing exactly λ times in τk. If EnumVλ,n,d(k, P) is invoked with π such that

πi =
⎧⎪⎨
⎪⎩

0, (τk)i = ∗,

(τk)i, (τk)i �= ∗,

then each frequency permutation ρ in the output satisfies the following conditions:

1. ρ is consistent with τk over the entries with symbols 1, . . . , k − 1.

2. ρ is d-close to e.

Proof. Weprove this by reverse induction. First,we consider the case k = m+1. Note that EnumVλ,n,d

(m + 1, P) outputs (π1, . . . , πn) only if P = [dλ + λ], otherwise there is no output. Observe that

(τm+1)i �= ∗ for i ∈ [n]. By the definition of π , we know that πi = (τm+1)i for i ∈ [n]. Hence,
(π1, . . . , πn) is a frequency permutation in Sλ

n , and the first condition holds. Since τm+1 is d-close to

e, the claim is true for k = m + 1.

Assume the claim is true down to k + 1. For k, by Lemma 1, P ⊕ (kλ − λ) is exactly the set of

all positions which are vacant and valid for k. Line 3 of EnumVλ,n,d(k, P) ensures that X is properly

selected. Then symbol k is assigned to X ⊕ (kλ − λ). There are two possible cases:

• For every i ∈ X ⊕ (kλ − λ), i ≤ n. Define partial frequency permutation τk+1 = ((τk+1)1, . . . ,
(τk+1)n) by setting (τk+1)i = ∗ for πi = 0 and (τk+1)i = πi for the others. By Claim 5, each of

symbol 1, . . . , k appears exactly λ times in τk+1. By the induction hypothesis, it is clear that the

frequency permutations, generated by EnumVλ,n,d(k + 1, Y) on line 7, satisfy both

conditions.
• There is some i > n and i ∈ X ⊕ (kλ − λ), so we have πi = k �= 0. By Lemma 1, EnumVλ,n,d(k, P)

never recursively invokes EnumVλ,n,d(m + 1, [dλ + λ]). Therefore, nothing will be

output.

We conclude that EnumVλ,n,d(k, P) outputs only frequency permutation satisfying these two condi-

tions, and this lemma is true. �

We have the following theorem as an immediate result of Lemma 2.

Theorem 1. EnumVλ,n,d(1, [dλ + λ]) enumerates exactly all frequency permutations d-close to e

in Sλ
n .

Proof. Let ρ be a frequency permutation d-close to e in Sλ
n . Let τm+1 = ρ . For k ∈ [m], define τk by

(τk)i =
⎧⎪⎨
⎪⎩

(τk+1)i, τk+1 < k.

0, (τk+1)i ≥ k.

Note that τ1 has 0 in all of its entries. There exists a sequence P1, . . . , Pm+1 such that EnumVλ,n,d

(k, Pk)with π = τk+1 invokes EnumVλ,n,d(k+ 1, Pk+1)with π = τk+1 for every k ∈ [m]. To see this

fact, we simply set Pm+1 = [dλ+λ] and Pk = ((Pk+1\[dλ+1, dλ+λ])⊕λ)∪{i−kλ+λ : ρi = k}.
Therefore, ρ will be enumerated eventually.

Lemma 2 states that EnumVλ,n,d(1, [dλ + λ]) only outputs frequency permutations d-close to e in

Sλ
n , thus the theorem is true. �
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4. Computing Vλ,n,d

The number of elements generated by EnumVλ,n,d(1, [dλ + λ]) is clearly Vλ,n,d. However, the

enumeration is not efficient, since Vλ,n,d is usually a very large number. In this section, we give two

efficient implementations to compute Vλ,n,d. Especially, Vλ,n,d can be computed in polynomial time

for constant d and λ.
From the algorithm EnumV, we see that whether EnumVλ,n,d(k, P) invokes EnumVλ,n,d(k + 1, Y)

or not depends only on k, P and Y . During the execution of EnumVλ,n,d(1, [dλ+λ]), EnumVλ,n,d(k, P)
is invoked recursively only when [dλ+1, dλ+λ] ⊂ P ⊂ [−dλ+1, dλ+λ], due to line 6. Therefore,

we can construct a directed acyclic graph Gλ,n,d = 〈VG, EG〉 where

• VG = {(k,U) : k ∈ [m + 1],U ⊂ [−dλ + 1, dλ] and |U| = dλ}.
• ((k,U), (k+1, V)) ∈ EG if andonly ifEnumVλ,n,d(k,U∪[dλ+1, dλ+λ]) invokesEnumVλ,n,d(k+

1, V ∪ [dλ + 1, dλ + λ]).
For example, Fig. 2 shows the structure of G2,6,1.

Vλ,n,d equals the number of invocations of EnumVλ,n,d(m + 1, [dλ + λ]). With this observation,

Vλ,n,d also equals the number of paths from (1, [dλ]) to (m + 1, [dλ]) in Gλ,n,d. By the definition of

Gλ,n,d, it is a directed acyclic graph. The number of paths from one vertex to another in a directed

acyclic graph can be computed inO(|V |+ |E|), where |V | = (m+1)
(
2dλ
dλ

)
and |E| = O(|V |2). So Vλ,n,d

can be calculated in polynomial time with respect to n if λ and d are constants.

The computation actually can be done inO(log n) time for constantλ and d. DefineHλ,d = 〈VH, EH〉
where VH = {P : |P| = dλ and P ⊆ [−dλ + 1, dλ]} and (P, P′) ∈ EH if and only if there is some

Fig. 2. Graph G2,6,1.

Fig. 3. Graph H2,1.
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k ∈ [m] such thatEnumVλ,n,d(k, P∪[dλ+1, dλ+λ]) invokesEnumVλ,n,d(k+1, P′∪[dλ+1, dλ+λ]).
Note that |VH| =

(
2dλ
dλ

)
. Fig. 3 shows H2,1 as an example.

Theorem 2. Vλ,n,d can be found in O

((
2dλ
dλ

)2.376
logm

)
time and O

((
2dλ
dλ

)2)
space.

Proof. Observe that the value of k ∈ [m] is independent of the invocation of EnumVλ,n,d(k + 1, P′ ∪
[dλ + 1, dλ + λ]) by EnumVλ,n,d(k, P ∪ [dλ + 1, dλ + λ]) , where P and P′ ⊂ [−dλ + 1, dλ] with

|P| = |P′| = dλ. Therefore, the number of paths of length m from [dλ] to itself in Hλ,d is equal to the

number of paths from (1, [dλ]) to (m + 1, [dλ]) in Gλ,n,d.

Let VH = {
v1, . . . , v|VH |

}
, where v1 = [1, dλ]. The number of paths of lengthm from v1 to v1 is the

first entry of the first column of themth power of AH , where AH is the adjacency matrix of Hλ,d. Since

mth power can be computed in O
(
f

((
2dλ
dλ

))
logm

)
, where O(f (x)) is the time cost of multiplying two

x × x matrices. It is well-know that f (x) = O(x2.376) by the Coppersmith–Winograd algorithm. This

algorithm needs a space of O

((
2dλ
dλ

)2)
entries for storing AH and the intermediate results. �

With constants λ and d, we actually show that Vλ,n,d can be computed in O(log n) time. However,

the space to store the adjacency matrix AH can be too large to execute the above algorithm in practice,

even for small d and λ. Note that at least 2×
(
2dλ
dλ

)2
entries and

(
2dλ
dλ

)2.375
multiplications are required

when the above implementation uses the Coppersmith-Winograd algorithm to multiply matrices.

Now we turn to an example showing that the above implementation can be practically inefficient.

By setting d = 3, λ = 3 and m = 100, we need at least 2 ×
(
18

9

)2 ≈ 4.73 × 109 entries to

store AH and the intermediate results of Am
H . In this case, a space for 4.73 × 109 integers and at least(

18

9

)2.375 × log2 100 ≈ 8.99× 1011 multiplications are required to compute Am
H in this way, so it is too

hard to carry out with an ordinary PC. Hence, we provide an alternative implementation which runs

in O
((

2dλ
dλ

)
·
(
dλ+λ

λ

)
· m

)
time and O

((
2dλ
dλ

))
space. This allows us to compute more efficiently for the

caseswith smallerm and larger d andλ. To achieve theO
((

2dλ
dλ

))
-space complexity,wedonot store the

adjacency matrix AH in the memory. Since AH is the adjacency matrix of Hλ,d, for y = (y1, . . . , y|VH |)
and y′ = AHy = (y′

1, . . . , y
′|VH |), we have y′

i = ∑
(i,j)∈EH

yj . Hence, if enumerating all edges in EH

takes S space and T time, then we can compute AHy in O(|VH| + S) space and O(T) time for any

|VH|-dimensional y.

Lemma 3. |EH| ≤ |VH| ·
(
dλ+λ

λ

)
and EH can be enumerated in O(dλ) space and O(|EH|) time.

Proof. For P ∈ VH such that |P ∩ (−∞, −dλ − λ]| = r, P has
(
dλ+λ−r

λ−r

)
out-going edges, since every

partition (X, X′) of P∪[dλ+1, dλ+λ] satisfies the condition in line 3 if and only if P∩ (−∞, −dλ−
λ] ⊂ X , i.e., every choice of (λ − r)-element subset of P\(−∞, −dλ − λ] will invoke a recursive call.

Since
(
dλ+λ−r

λ−r

)
≤

(
dλ+λ

λ

)
, the number of edges has an upper bound |VH|

(
dλ+λ

λ

)
.

To enumerate all λ-element subsets of a (dλ+λ)-element set, we need O(dλ+λ) = O(dλ) space

and O(
(
dλ+λ

λ

)
) time. Since we can recycle the space, the enumeration of edges in EH can be done in

O(dλ) space and O(|EH|) time. �

Now, we give the alternative implementation.

Theorem 3. Vλ,n,d can be computed in O
((

2dλ
dλ

)(
dλ+λ

λ

)
m

)
time and O(

(
2dλ
dλ

)
) space.
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Proof. Let x = (1, 0, . . . , 0)T . Since Am
H x is the first column of Am

H , Vλ,n,d is the first entry of Am
H x.

The alternative evaluates A1
Hx, . . . , A

m
H x iteratively. Instead of storing the whole adjacency matrix, it

only uses two |VH|-dimensional vectors y and y′ for storing Ai
Hx and the intermediate result of A

i+1
H x,

respectively. Initially, y = x and i = 0. We compute AHy by the algorithm described in Lemma 3 and

using y′ to store the intermediate result. Then, we copy the result of AHy back to y. Afterm repetitions,

we have y = Am
H x, and the first entry of y is Vλ,n,d. Therefore, the space complexity can be reduced to

O(|VH| + dλ) = O(
(
2dλ
dλ

)
). The running time is m · O(|EH|) = O

((
2dλ
dλ

)
·
(
dλ+λ

λ

)
· m

)
. �

Here, we briefly compare this implementation with the previous one. In this implementation, the

required space is dominated by 3×
(
2dλ
dλ

)
integral entries, since there are only two

(
2dλ
dλ

)
-dimensional

vectors, and the others need less than
(
2dλ
dλ

)
integers. Computing

∑
(i,j)∈EH

yj for every i ∈ VH consumes

almost all execution time of the multiplication AHy, and the multiplication operations dominate the

others in time consumption. Therefore, the execution time should be nomore than 4×
(
2dλ
dλ

)(
dλ+λ

λ

)
m

additions. For d = 3, λ = 3, and m = 100, this implementation needs a space for storing at

most 3 ×
(
18

9

)
≈ 1.46 × 105 integers and an execution time for at most 4 ×

(
18

9

)(
12

3

)
× 100 ≈

4.28 × 109 additions to compute V3,300,3. It is much more efficient than the previous one under such

configuration.

5. Comparison with previous results

In this section, we compare our results with previous ones. Shieh and Tsai [13] showed that

(λ!)mVλ,n,d equals the permanent of 0-1 matrix A(λ,n,d) = (a
(λ,n,d)
i,j ) where a

(λ,n,d)
i,j = 1 if and only if∣∣∣⌈ i

λ

⌉
−

⌈
j

λ

⌉∣∣∣ ≤ d. For example,

A(2,8,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This gives some simple case of computing Vλ,n,d.

Fact 2. For m ≤ d + 1 and n = mλ, Vλ,n,d = n!
(λ!)m .

Proof. In such case, every entry ofAλ,n,d equals 1. Therefore, the permanent ofAλ,n,d isn!, andVλ,n,d =
n!

(λ!)m . �

However, it is not always easy to compute the permanent of an arbitrary matrix. A naive approach

to evaluate the permanent of an n-by-n matrix takes O(n!) time. In practice, �((λ!)mVλ,n,d) time is

still requiredwhen using a backtracking algorithm. It is clear that both of ourmethods aremuch faster.
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Kløve [5] solved the recurrence ofVλ,n,1, andhe gave the value ofVλ,λm,1 forλ ∈ [10] andm ∈ [20].
Schwartz [10] gave an algorithm which can be applied for computing V1,n,d. In this paper, we provide

solutions to computing Vλ,n,d for λ > 1 and d > 1, which is not known in their works. We list the

values of Vλ,λm,d for λ > 1,m ∈ [20], d > 1, and dλ ≤ 10 in http://www.csie.nctu.edu.tw/^mzhsieh/

balltable.pdf.

6. Conclusion

We extend Schwartz’s result [10] to solve the ball size of frequency permutations under Chebyshev

distance. We give efficient algorithms for the cases of larger frequency, larger minimum distance and

smaller symbol set.
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