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a b s t r a c t

This study constructs a royalty negotiation model for the bi-level programming (BLP) prob-
lem and develops a heuristic algorithm for solving the BLP problem. Concession rate, learn-
ing effect, and the time value discount rate are integrated into the proposed algorithm to
reflect an authentic negotiation process. A case study is employed to simulate the negoti-
ation behavior of two parties and alternative royalty strategies are discussed. Analytical
results indicate that the two parties acquire the best negotiation result during the fifth
negotiation. The operational revenue-based royalty model is more preferred by govern-
ments, while concessionaires favor more the operational output-based royalty model.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The build, operate, and transfer (BOT) approach is one of the private-public participation project (PPP) types for imple-
menting public infrastructure projects in developing and developed countries. The purposes of adopting the BOT approach
for carrying out infrastructure projects are to reduce the government financial burden and to enhance the efficiency in con-
struction and operation (Finnerty, 1996). Renowned examples of BOT projects in the world include the Eurotunnel project,
the Euro Disneyland in France, the north–south highway in Malaysia, the Tribasa Toll Road project in Mexico (Walker and
Smith, 1996; Finnerty, 1996), the High-Speed Rail BOT (HSRBOT) project and the Taipei Port Container Logistic BOT project
in Taiwan (Public Construction Commission, 2001).

In the literature, Tang et al. (2010) reviewed popular research topics and found out that the three mainstream research
issues in the PPP area are risks, relationships, and financing. The financial viability of BOT projects has been regarded as one
of the critical factors for implementing the infrastructure BOT projects (Chen et al., 2002; Chiou and Lan, 2006; Finnerty,
1996), and it varies with factors such as operation revenue, costs, discount rate and so on. In view of this characteristic,
two scenarios may occur during the concession period; one is that the private sector might get excessive profit from the
BOT project; and the other is that the private investors are likely to go bankrupt due to the financial deficit in the BOT project.
The first scenario may result in controversy for society because the private sector obtains the property right of the BOT
project from the government for operating the project; while the second scenario will cause tremendous loss in finance
or economic benefit of society once the concessionaire ceases operating the BOT project. To prevent the above scenarios from
occurring, the government can collect royalty from the concessionaire with excessive profit gained from ‘‘public goods’’
. All rights reserved.

), cmfeng@cc.nctu.edu.tw (C.-M. Feng).

http://dx.doi.org/10.1016/j.tre.2011.10.002
mailto:cckang@pu.edu.tw
mailto:cmfeng@cc.nctu.edu.tw
http://dx.doi.org/10.1016/j.tre.2011.10.002
http://www.sciencedirect.com/science/journal/13665545
http://www.elsevier.com/locate/tre


C.-C. Kang et al. / Transportation Research Part E 48 (2012) 830–842 831
during the concession period; on the other hand, the government can stop collecting royalty from the concessionaire with
deficit to improve the financial viability of the BOT project. Hence, besides factors including concession period, revenue, and
discount rate, royalty also has a significant impact on the financial viability of BOT projects.

Many royalty computation methods, such as pre-tax profit-based royalty, total-revenue-based royalty, lump-sum royalty,
patronage-based royalty, and operational output-based royalty, can be adopted by a government or the private sector (Chiou
and Lan, 2006). For instance, the levied lump-sum royalty of NT$30 billion for Taiwan’s 101 Skyscraper BOT Project in 1998
was calculated using the fixed royalty method. The levied royalty of US$10 million for the Malaysia north–south highway
BOT project was also determined by the fixed royalty method. For the HSRBOT project in Taiwan, the royalty paid by the
concessionaire to the government included 10% of pre-tax annual operational revenue; however, there was no royalty
scheme for the Kaohsiung MRT BOT project because of its poor financial condition. (Public Construction Commission,
2001). For the Euro Disneyland BOT project, the royalty was calculated according to the percentage of gross revenue of oper-
ation items during the concession period (Finnerty, 1996).

From the project financing viewpoint, the royalty the concessionaire pays a government is a cost expenditure in project
discount cash flow for a BOT project. Some BOT cases lay down the royalty scheme in the BOT agreement after negotiation
between both private and public parties. Such scheme becomes the resource of renewal or maintenance expenditure of facil-
ity because it can be regarded as a revenue-sharing scheme developed through a bargaining process for royalty determina-
tion between two parties (Finnerty, 1996). However, as indicated in Tang et al. (2010), previous studies have focused on
three themes including risks of PPP, the relationship between organizations within the public and private sectors, and dif-
ferent financing models in the PPP area. Issues of the royalty strategy or royalty formula of BOT project have not yet been
investigated.

Some studies constructed royalty formulas using mathematical programming, simulation, or financial engineering meth-
ods. For instance, Chiou and Lan (2006) developed many royalty models that involve pre-tax profit, total revenue, and
patronage using mathematical programming and fuzzy mathematical programming to derive the royalty for a BOT project.
Kang et al. (2004, 2007) constructed a financial decision-making model that describes the royalty relationship between gov-
ernment investment and private investment using mathematical programming. The methods developed by Kang et al. (2003,
2004, 2007) for determining royalties for BOT projects can benefit both governments and the private sector. Most studies,
however, did not determine royalties from a negotiation perspective.

Some recent studies have employed the game theory or bi-level programming (BLP) approaches to determine the royalty
and operational output level, or to identify the concession period for a BOT project. For instance, Yang and Meng (2000)
examined the toll scheme for highway networks using BLP under the BOT scheme. Xing and Wu (2001) used BLP to construct
the Stackelberg Game Model for determining the price and production output of a power utility in a BOT project. Shen et al.
(2007) utilized Bargaining Game Theory to identify the concession period of a BOT project. They developed a BOT concession
model to identify a specific concession period which considers the bargaining behavior of the two parties in a BOT contract.
Additionally, Kang et al. (2010) also developed a royalty model using the BLP approach to determine the royalty for a BOT
project, which is calculated according to the total revenue. Notably, other royalty computation methods have not been inves-
tigated. Determining which royalty method suits governments and which suits private sectors warrants investigation. This
study compares alternative royalty strategies from the negotiation perspective. The remainder of this paper is organized as
follows. Section 2 gives the assumptions of the proposed model. Section 3 constructs three royalty negotiation models and
applies a heuristic algorithm to solve the BLP problem. Section 4 presents a numerical example. Finally, findings are dis-
cussed and conclusions are given in Section 5.
2. Assumptions in the proposed model

Assumptions in model development were as follows.

(1) We assume lump-sum royalty, operational revenue-based royalty, and operational output-based royalty methods can
be adopted by both parties to determine the royalty for a BOT project. We also assume the three models are
independent.

(2) Two parties, a government and a private investor, establish a relationship within a BOT contract through negotiations
conducted via rational behavior. Rational behavior means both parties will adequately compare all possible outcomes
to protect their interests and profit-making objectives.

(3) The two parties are entitled to the same full and frank disclosure of relevant information related to a BOT project. Fur-
thermore, the parties communicate clearly and effectively.

3. Methodology

3.1. Concept of BOT project financing

The concept for financing projects proposed by Kang et al. (2003, 2004) was utilized to describe the annual royalty rela-
tionship between a government and private firm. Fig. 1 shows this concept.
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Fig. 1. Concept of annual royalty in BOT projects; the operational output-based case.
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Fig. 2. Concept of an annual royalty in a BOT project: the operational revenue-based case.
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Fig. 3. Concept of annual royalty in a BOT project: the lump-sum royalty case.
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A concessionaire and a government fund the construction and operation of a BOT project. Construction cost of a project
comprises Cgt and Cpt; where Cgt and Cpt are government investment cost and private investment cost at time t during the
construction period, respectively; and Kt is the nominal operation cost at time t during the operation period. The concession-
aire pays Bt + g(1 + /)tQ t + Dt to the government according to operational output and related business income, where Bt is
land rent at time t, Q t is operational output at time t, and Dt is tax at time t. The Bt + g(1 + /)tQ t + Dt term (Fig. 1) is the
sum of land rent, royalty, and tax. Let g be the proportion of operational output of a BOT project during the operating period,
and let / be the annual growth rate of g. As in g(1 + /)tQt, royalty variation depends on changes to g, Q t, / or t; that is, royalty
variation increases as g, Q t, / or t increases.

A causal relationship exists among royalty, government investment, private sector investment, and the government
finance recovery ratio in cash flow for a BOT project. The government finance recovery ratio was derived by Kang et al.
(2007) as ‘‘government income divided by government investment cost; government income includes the royalty, land rent,
and tax needed to cover its investment cost.’’ From this perspective, a government can use this ratio to replace a conventional
evaluation index, such as Net Present Value (NPV), when assessing the ability to recover investment from project financing. If
the royalty the land rent and tax change, then it will have a significant effect on the government finance recovery ratio and
net income for the government and private sector.

Similarly, this study uses the BOT project financing concept (Fig. 1) to elucidate the relationships among royalty, govern-
ment investment, and private investment in the operational revenue-based royalty and lump-sum royalty schemes. Figs. 2
and 3 show the operational revenue-based case and the lump-sum royalty case, respectively.

The definitions for Dt, Kt, Cgt, Cpt, Bt, and t in the operational revenue-based case (Fig. 2) and lump-sum royalty case (Fig. 3)
are the same those on the operational output-based case (Fig. 1). In the operational revenue-based case, Bt + h(1 + a)tRt + Dt is
the sum of land rent, royalty, and tax; where Rt is operating revenue at time t; h(1 + a)tRt is royalty, which varies according to
Rt, t, and h; where h is the proportion of operating revenue from a BOT project at time t. Thus, Bt + h(1 + a)tRt + Dt indicates
that the concessionaire should pay land rent, a royalty, and tax to the government. In the lump-sum royalty case, the royalty
F(1 + b)t also varies according to t, b and F; where F is the annual project royalty, and b is growth rate of the annual royalty.
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Differences in a royalty depend on F(1 + b)t, h(1 + a)tRt, and g(1 + /)tQt for the lump-sum royalty case, the operational rev-
enue-based case, and the operational output-based case, respectively (Figs. 1–3).

3.2. The model

Following the concepts of the operational output-based case (Fig. 1), the operational revenue-based case (Fig. 2) and the
lump-sum royalty case (Fig. 3), the royalty can be computed in three ways—the royalty is based on operational output of a
BOT project; the royalty is based on the operating revenue of a BOT project; and the royalty is a lump-sum fee for a BOT
project. The three royalty models are described as follows.

A. Model I (the operational output-based royalty model): Royalty depends on operational output of a project; the annual
nominal royalty is computed using g(1 + /)tQt. The value of g is negotiated by the two parties.

B. Model II (the operating revenue-based royalty model): Royalty depends on project operating revenue; the annual
nominal royalty is computed using h(1 + a)tRt. The value of h is negotiated by the two parties, and the royalty can
be obtained.

C. Model III (the lump-sum royalty model): Royalty is a lump-sum project franchise fee; the annual nominal royalty is
computed using F(1 + b)t. Once the value of F is determined through negotiation between the two parties, the lump-
sum royalty is obtained.

When the concession period changes, price regulation, price flexibility, or price adjustment schemes for output result in
revenue changes for the private sector during the operational period. Generally, the price cap scheme and minimum guar-
antee of production output or operations will be signed or negotiated in a BOT contract to improve efficiency or reduce the
number of uncertain operational factors for the private sector. Considering the concession period of a project and the min-
imum guarantee output scheme for a government results in massive variation in operating revenue, even though operating
revenue is an output function. The operating revenue-based and operational output-based models in this study should be
used to investigate the negotiation behavior of and royalty for the two participating parties.

To develop a royalty negotiation model for the operational output-based case, we assume the concession period of a BOT
project comprises the construction period (t = 0 � n) and operation period (t = n + 1 � N). We also assume the government
does not offer affiliated business income, joint-development income, and no subsidies to the private sector; notably, this
study does not consider the salvage value of fixed assets in a BOT project. After the concession period expires, the facilities
in a BOT project are typically returned unconditionally to the government. Moreover, we assume government investment is
totally capitalized by debt. Government planning cost is not considered. Additionally, we assume the royalty is not tax-
deductible. The capital cost of a BOT project is evaluated using the Weighted Average Cost of Capital (WACC) approach.

A causal relationship exists among the royalty, government investment, private sector investment, and the government
finance recovery ratio in cash flow for a BOT project (Fig. 1). The government finance recovery ratio was derived by Kang
et al. (2004, 2007) as
Pg;Q ðkÞ ¼
1
Cg
½rg þ guðkÞ � fg;Q � ¼

1
Cð1� PCÞ

½rg þ guðkÞ � fg;Q � ð1Þ
where rg ¼
PN

t¼0
BtþDt
ð1þiÞt , fg;Q ¼

PN
t¼h

ð1þuÞt�hQt

ð1þiÞt , which is a discount factor of the operational output-based royalty model for a pro-

ject, and PC ¼ Cp

C ¼
Cp

CgþCp
; where PC is the rate of a concessionaire’s investment cost; C is the sum of current construction costs,

which is discounted to the first year of the construction period; Cg is the sum of the present value of construction costs fi-
nanced by a government, and this cost is discounted to the first year of the construction period; Cp is the sum of the present
value of construction costs financed by private investment, and this cost is discounted to the first year of the construction
period; and i is the interest rate for government bonds. Notably, gu(k) is the g value, which is the proportion of operational
output of a BOT project during the operating period at the kth negotiation by the government; that is, gu(k) is a decision var-
iable of the upper-level programming problem at the k th negotiation.

Eq. (1) derives the government finance recovery ratio, Pg,Q(k), at the kth negotiation. A positive relationship exists be-
tween Pg,Q(k) and (rg + gu(k) � fg,Q); that is, as the royalty, tax, and land rent for host utilities increase, Pg,Q(k) increases. Thus,
Pg,Q(k) increases when rg, gu(k), and fg,Q increase. Conversely, Pg,Q(k) decreases when PC increases or rg, gu(k), and fg,Q

decrease.
Let Pp,Q(k) be the profit index of the concessionaire:
Pp;Q ðkÞ ¼
NI � g‘ðkÞ � fp;Q

CP
ð2Þ
where NI ¼
PN

t¼nþ1
Rt�Ct�Bt�Dt
ð1þdÞt ; where NI is the total revenue of a BOT project, including operating revenue and non-operating

revenue; g‘(k) represents the g value, which is based on the proportion of operational output of a BOT project during the
operating period at the kth negotiation of the private sector; and g‘(k) is a decision variable of the low-level programming
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problem at the kth negotiation. Additionally, fp;Q ¼
PN

t¼h
ð1þuÞt�hQt

ð1þdÞt ; where d is the risk-adjusted discount ratio after tax for the

concessionaire. Let d > i; thus, d can be estimated by the WACC with corporate tax as
d ¼ dB � ð1� TcÞ �
B

Sþ B

� �
þ dS �

S
Sþ B

� �
ð3Þ
where dB is the cost of long-term debt of a BOT project for a private firm; dS is the cost of equity of a BOT project for a private
firm; B is the market value of debt of a BOT project for a private firm; Tc is the marginal tax ratio of a BOT project; and S is the
market value of equity of a BOT project for a private firm.

The numerator of Eq. (2) is net operating income minus the royalty at the kth negotiation, and the denominator of Eq. (2)
is investment cost for the concessionaire for a project during the construction period. Eq. (2) represents the profitability for
the private sector at the kth negotiation, indicating that the concessionaire pursues maximum profit during the kth negoti-
ation when the private sector is a rational decision-maker.

Based on Eq. (1), the government finance recovery ratios for the operating revenue-based model and lump-sum royalty
model are derived by Eqs. (4) and (5), respectively:
Pg;RðkÞ ¼
1
Cg
½rg þ huðkÞ � fg;R� ¼

1
Cð1� PCÞ

½rg þ huðkÞ � fg;R� ð4Þ

Pg;FðkÞ ¼
1
Cg
½rg þ FuðkÞ � fg;F � ¼

1
Cð1� PCÞ

½rg þ FuðkÞ � fg;F � ð5Þ
Eqs. (4) and (5) also derive Pg,R(k) and Pg,F(k) at the kth negotiation. Thus, both Pg,R(�) and Pg,F(�) are functions of k. In Eq. (1),
a positive relationship exists between the government finance recovery ratio and the royalty for the operational revenue-
based model and lump-sum royalty model. The profit index also implies that as the royalty, tax, and land rent host govern-
ment acquire increase, the government finance recovery ratio increases.

Additionally, based on Eq. (2), the profit index of the concessionaire for the operating revenue-based royalty model and
the lump-sum royalty model are derived by Eqs. (6) and (7), respectively:
Pp;RðkÞ ¼
NI � h‘ðkÞ � fp;R

CP
ð6Þ

Pp;FðkÞ ¼
NI � F‘ðkÞ � fp;F

CP
ð7Þ
where fp;R ¼
PN

t¼h
ð1þaÞt�hRt

ð1þdÞt and fp;F ¼
PN

t¼h
ð1þbÞt�h

ð1þdÞt are the discount factors of the operating revenue-based royalty model and

lump-sum royalty model, respectively. Both h‘ and F‘ are functions of k.
According to Wen and Hsu (1991), the BLP problem is a Stackelberg game, an n-person non-cooperative game with

leader–follower strategy conception. This model is for a sequential decision for two players who pursue maximized goals,
which are subject to another decision-making strategy. The host utility can be regarded as the upper-level problem of the
BLP problem because the royalty was first announced by the government in a BOT tender. The private sector will then
negotiate the royalty with the government. Hence, the private sector can be regarded as the lower-level problem of the
BLP problem. The upper-level problem and lower-level problem were formulated as follows.

Model I: The operational output-based royalty model

[Upper-level problem]:
Max
fguðkÞg

Pg;Q ðkÞ ¼
1
Cg
½rg þ guðkÞ � fg;Q � ¼

1
Cð1� PCÞ

½rg þ guðkÞ � fg;Q � ð8Þ

s:t:guðkÞ � fg;Q þ C �PG0 � PC P C �PG0 � rg ð9Þ

guðkÞ 6 ðNI � PC � CÞ=fp;Q ð10Þ

guðkÞP V ‘ðkÞ ð11Þ

guðkÞ 6WuðkÞ ð12Þ
[Lower-level problem]:
Max
fg‘ðkÞg

Pp;Q ðkÞ ¼
NI � g‘ðkÞ � fp;Q

CP
ð13Þ
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s:tg‘ðkÞ � fg;Q þ C �PG0 � PC P C �PG0 � rg ð14Þ

g‘ðkÞ 6 ðNI � PC � CÞ=fp;Q ð15Þ

g‘ðkÞP V ‘ðkÞ ð16Þ

g‘ðkÞ 6WuðkÞ ð17Þ
where V‘(k) is the lower bound value of a feasible solution at the kth negotiation for the lower-level problem; Wu(k) is the
upper bound value of a feasible solution at the kth negotiation for the upper-level problem; and g‘(k) and gu(k) are decision
variables in the BLP problem. Both g‘(k) and gu(k) are derived by Eqs. (1) and (2), respectively.

The objective function of the upper-level problem in Eq. (8) indicates that the host utility maximizes its financial recovery
rate when joining a BOT project. Thus, as the royalty a government collects increases, the Pg,Q(k) index increases. Eqs. (9)–
(12) are constraints of the upper-level problem. Eq. (9) indicates that the host utility should collect a royalty above a min-
imum from the concessionaire to meet the minimum financial recovery rate, PG0. Moreover, let PG0 be a constant. Eq. (10)
indicates that the royalty has been delivered by the private sector to the host utility, which has an upper bounded value for
avoiding operating deficits. Thus, ððNI � PC � CÞ=fp;Q ÞP 0 holds because gu(k) is not a negative value. The upper and lower
bounded solutions are guðkÞP V ‘ðkÞ and guðkÞ 6WuðkÞ for the upper-level problem, respectively.

The objective function of the lower-level problem indicates that the private sector hopes to reduce the royalty and max-
imize its profit during each negotiation. Eqs. (14)–(17) are constraints in the lower-level problem from; the uses of Eqs. (14)
and (15) are the same as those of Eqs. (9) and (10); and g‘ðkÞP V ‘ðkÞ and g‘ðkÞ 6WuðkÞ are the upper and lower bounded
solutions for the lower-level problem, respectively.

Following the formulation concept of the BLP of the operational output-based royalty model, this work formulates BLP
problems for models II and III. The BLP problem for model II is formulated as

Model II: The operating revenue-based model

[Upper-level problem]:
Max
fhuðkÞg

Pg;RðkÞ ¼
1
Cg
½rg þ huðkÞ � fg;R� ¼

1
Cð1� PCÞ

½rg þ huðkÞ � fg;R� ð18Þ

SthuðkÞ � fg;R þ C �PG0 � PC P C �PG0 � rg ð19Þ

huðkÞ 6 ðNI � PC � CÞ=fp;R ð20Þ

huðkÞP V ‘ðkÞ ð21Þ

huðkÞ 6WuðkÞ ð22Þ
[Lower-level problem]:
Max
fh‘ðkÞg

Pp;RðkÞ ¼
NI � h‘ðkÞ � fp;R

CP
ð23Þ

s:th‘ðkÞ � fg;R þ C �PG0 � PC P C �PG0 � rg ð24Þ

h‘ðkÞ 6 ðNI � PC � CÞ=fp;R ð25Þ

h‘ðkÞP V ‘ðkÞ ð26Þ

h‘ðkÞ 6WuðkÞ ð27Þ
Model III: The lump-sum royalty model.
The BLP problem for the lump-sum royalty model is formulated as
[Upper-level problem]:
Max
fFuðkÞg

Pg;FðkÞ ¼
1
Cg
½rg þ FuðkÞ � fg;F � ¼

1
Cð1� PCÞ

½rg þ FuðkÞ � fg;F � ð28Þ

s:t:FuðkÞ � fg;F þ C �PG0 � PC P C �PG0 � rg ð29Þ

FuðkÞ 6 ðNI � PC � CÞ=fp;F ð30Þ
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FuðkÞP V ‘ðkÞ ð31Þ

FuðkÞ 6WuðkÞ ð32Þ
[Lower-level problem]:
Max
fF‘ðkÞg

Pp;FðkÞ ¼
NI � F‘ðkÞ � fp;F

CP
ð33Þ

s:t: F‘ðkÞ � fg;F þ C �PG0 � PC P C �PG0 � rg ð34Þ

F‘ðkÞ 6 ðNI � PC � CÞ=fp;F ð35Þ

F‘ðkÞP V ‘ðkÞ ð36Þ

F‘ðkÞ 6WuðkÞ ð37Þ
The decision variables in model II are h‘(k) and hu(k), and F‘(k) and Fu(k) are the decision variables in model III.

3.3. Algorithm for the BLP problem

Many algorithms for the BLP problem, including the vertex enumeration or Kuhn–Tucker transformation approaches,
have been applied to find the optimal solution (Wen and Hsu, 1991; Liu and Stephen, 1994). The vertex enumeration ap-
proach uses the simplex algorithm to find a feasible solution to the upper-level problem of the BLP problem, while the
Kuhn–Tucker transformation approach converts the objective function of the low-level problem into constraints for the
upper-level problem. However, to identify the comprisal solution for the operational output-based royalty model, this study
applied a heuristic algorithm to the BLP problem. The steps in the proposed heuristic algorithm are as follows.

Step 0: Let k = 0 and k = k + 1.
Step 1: Derive a feasible solution for the upper-level problem.
Step 2: Derive a feasible solution for the lower-level problem.
Step 3: Test these feasible solutions for the BLP problem. If all solutions converge, then it is the comprisal solution; other-
wise, go to Step 4.

In Step 3, this study set the convergence test by which the difference between the royalty expected by a government and
the royalty a private sector firm is willing to pay is smaller than a tolerance of error. This condition is defined as
huðkÞ � h‘ðkÞ
h‘ðkÞ

����
���� 6 d and

huðkÞ � h‘ðkÞ
huðkÞ

����
���� 6 d ð38aÞ
where d is the tolerated error; we assume d = 0.01. If solutions to the BLP problem satisfy the convergence test criterion, then
royalty negotiation stops.

Additionally, Eq. (38a) is replaced with Eqs. (38b) and (38c) to derive the operational output-based royalty model and
lump-sum royalty model, respectively.
guðkÞ � fg � g‘ðkÞ � fp

g‘ðkÞ � fp

����
���� 6 d and

guðkÞ � fg � g‘ðkÞ � fp

guðkÞ � fg

����
���� 6 d ð38bÞ

FuðkÞ � F‘ðkÞ
F‘ðkÞ

����
���� 6 d and

FuðkÞ � F‘ðkÞ
FuðkÞ

����
���� 6 d ð38cÞ
Step 4: Set the initial concession rates for the two parties, and let k – 0. Substitute the concession rates into Eqs. (39), (40),
and derive V‘(k + 1) and Wu(k + 1).
Step 5: Derive the concession rates for the next negotiation, ru(k + 1), and r‘(k + 1), and find g‘(k + 1) and gu(k + 1).
Step 6: Repeat steps 0–5. The solution to the BLP problem is obtained when the convergence test of the solution holds;
otherwise, no solution exists, and the algorithm is stopped.

Although Chen et al. (2002), Xing and Wu (2001), Yang and Meng (2000) utilized the BLP model to determine the price (or
toll) and road capacity investment using different algorithms under the BOT scheme, they did not explore the effect of the
learning effect, concession rate, and time value discount, on player changes. Nevertheless, these factors, which are regarded
as factors associated with bargaining cost, as addressed by Cross (1965), have significant effects on the bargaining process.
Thus, these factors associated with bargaining cost have been incorporated into BOT bargaining models (Shen et al., 2007; Lin
and Chang, 2005). Following the work by Cross (1965), this work defines the concession rate of the government and that of a
private firm. The concession rates for both parties are derived by Eqs. (39) and (40), respectively.
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where ru(k) and r‘(k) are the concession rates at the kth negotiation for the upper-level and lower-level programming
problems, respectively; similarly, ru(k � 1) and r‘(k � 1) are the concession rates at the (k � 1)th negotiation; and a and b
are time value discounts of the upper-level and lower-level programming problems, respectively. Let a and b be constant
values. Let l and m be the learning rates for the upper-level and lower-level programming problems, respectively. We also
assume l and m are constants.

Eq. (39) indicates that the concession rate for the kth negotiation for the upper-level programming problem is affected by
r‘(k � 1), ru(k � 1), u, v, a, and b. Similarly, r‘(k) in Eq. (40) is affected by r‘(k � 1), ru(k � 1), u, v, a, and b. Obviously, royalty
negotiation of the host utility or concessionaire is reflected in the concession rates of the two parties. Then, Eqs. (39) and (40)
are substituted into Eqs. (41)–(44) and Wu(k + 1) and V‘(k + 1) are modified in the upper-level and lower-level programming
problems, respectively.
Wuðkþ 1Þ ¼WuðkÞ �WuðkÞ � ruðkÞ ð41Þ

V ‘ðkþ 1Þ ¼ V ‘ðkÞ þ V ‘ðkÞ � ruðkÞ ð42Þ

Wuðkþ 1Þ ¼WuðkÞ �WuðkÞ � r‘ðkÞ ð43Þ

V ‘ðkþ 1Þ ¼ V ‘ðkÞ þ V ‘ðkÞ � r‘ðkÞ ð44Þ
where Wu(k) and V‘(k) are the upper and lower bounded values of the k th negotiation for the upper-level and lower-level
programming problems, respectively. Additionally, Wu(k + 1) and V‘(k + 1) are the upper and lower bounded values of the
(k + 1)th negotiation, respectively.

4. Case study

4.1. The Taipei Port Container Logistic BOT Project

This case study uses financial data for the Container Terminal in the Taipei Port BOT Project to demonstrate the applica-
bility of the proposed models.

The Taipei Port, located in Taipei County, will be the second largest international seaport in Taiwan after Kaohsiung
Harbor once all seven container piers, run by the BOT project, are operational in 2014. The annual container handling
capacity is predicted to by MOTC to reach 1.75 million 20-foot equivalent units (TEUs) by 2000. Under the BOT project, a
concessionaire consisting of three private sector firms, the Evergreen Marine Corp, Yangming Marine Transport Corp, and
Wan Hai Lines, Ltd., will jointly invest NT$20.32 billion (US$584 million) into this project to construct this seven-pier con-
tainer port during the concession period.

Some important issues, including the concession period, scope of operations and operational content, financial stipula-
tions, and royalties, must be determined through negotiations between the two parties and then the Concession Contract
for the Container Terminal in Taipei Port must be completed. Based on background data of the Taipei Port BOT project, this
section uses this case study to simulate the negotiation process using the operational output-based royalty, the operating
revenue-based royalty, and lump-sum royalty models (Section 3.2).

According to the Terms of Reference (TOR) of Concessions of the Container Terminal in Taipei Port issued by the Keelung
Harbor Bureau in 2000, some key aspects of this project are as follows.

(a) The scope of this BOT project covers the seven wharves in the container terminal.
(b) The duration of the concession period is 50 years. The construction period is 2001–2010. According to the TOR of this

BOT project, the concessionaire constructed seven wharves; wharves 6 and 7 (W6 and W7) were completed at the end
of 2004 and were operating at the start of 2005; W8–W9 and the container yard were scheduled to be completed by
the end of 2007. The other wharves, W10–W12, were completed by the end of 2010 and started operations in 2011.

(c) We assume the annual volume of containers handled at W6 and W7 during 2005–2006 is 500,000 TEUs. By 2008, the
assumed annual container volume handled at four wharves was 1,000,000 TEUs. During 2011–2050 (2050 is the end of
the concession period), the seven wharves will handle 1,750,000 TEUs.

(d) The basic corporate income tax rate is 25%; however, according to the AFPPIPs, the concessionaire has a corporate
income tax exemption for up to 5 years. Therefore, we assume the tax exemption period is 2005–2009.

(e) We assume the interest rate on government bonds is 8%. We also assume the inflation rate is 3.5%.



Table 1
Summary of TOR of the Container Terminal in the Taipei Port BOT Project. Sources: Terms of Reference (TOR) of ‘‘Concessions of Container Terminal in Taipei
Port’’.

Item Summary

Concession period Years
Implementation schedule Contract negotiation phase: 2001, construction period: 2001–2007, operating period: 2005–2050
No. of wharves 7
Total project installation cost (including

government-related costs)
$US584 million (2001 currency)

Project phase and scales a. 2005–2006, for two wharves: 0.5 million TEU/year
b. 2007, for two wharves: 0.8 million TEU/year
c. 2008, for four wharves: 1.0 million TEU/year
d. 2011–2050, for seven wharves: 1.75 million TEU/year

Concession scope a. Seven wharves and storage yard with exclusive operation rights and land superficies
b. Operation scope: vessel berthing, container loading/unloading, transshipping, transportation,
warehouse and storage, and container repair business

Interest rate of government bonds 8%
Corporate income tax exemption Maximum of 5 years, exemption period 2005–2009 corporate income tax rate is 25%
Subsidy No subsidy
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The construction period is 2001–2004 (n = 3), and the operating period is 2005–2050; royalty collection begins in 2011
(Table 1). According to the TOR, the private sector investment rate of the total investment is 94%, and the government invest-
ment rate of the total investment is 6%. Conversely, we assume government investment items, such as the construction of
access roads, land acquisition, and basic utility infrastructure, account for 10% of total project cost, which is approximately
NT$653 million, L = 653; where L is the sum of the present value of the portion of construction costs the government agrees
to pay. Moreover, we assume the discount rate is 10%, i.e., d = 10%, and annual cash flow is summed at the end of each year.

For the concession rate, when Cross (1965) proposed the concession rate concept, he assumed the concession rate of play-
ers I and II are given when applying the bargaining model. Following the work of Cross (1965) and Lin and Chang (2005), the
concession rate of the government and private sector is assumed constant. Hence, the initial concession rate of the govern-
ment and private firm would be 20% and 17%, respectively. Furthermore, we assume the time value discount rate and the
learning rate are the same for both parties. That is, a = b = 0.2 and l = m = 0.1 (Cross, 1965; Lin and Chang, 2005).

4.2. Model application results

Financial data for this BOT project were substituted into the BLP problem of models I–III; and the proposed algorithm was
implemented by each model. Both LINGO and MATLAB programming were used; both of which used the heuristic algorithm
to simulate the bargaining process in royalty negotiation for both parties.

The initial solution of the upper-level programming problem is hu(k = 0)=0.032, and that of the lower-level programming
problem is h‘(k = 0)=0.006. That hu(k = 0)=0.032 indicates that the government first wants to receive a royalty of 0.032% of
operating revenue during operation the period from the concessionaire according to the project TOR. However,
h‘(k = 0)=0.006 indicates that the private firm pays only 0.006% of operating revenue to the government. The convergence
test does not hold. This demonstrates that the royalty was not determined by the two parties during the first negotiation
because the private firm will not pay the royalty rate the government expected. As concession rate, time value discount rates,
and learning rates affect decision variables of the two parties during the next negotiation, the assumed concession rates of
ru(k = 0) = 20% and r‘ðk ¼ 0Þ ¼ 17%, time value discount rates of a = 0.2 and b = 0.2, and learning rates of l = 0.1 and m = 0.1
were substituted into Eqs. (39)–(44) to modify the concession rate the next negotiation by the two parties. Steps 0–5 in the
algorithm were then repeated. Table 2 shows simulation results of the royalty negotiation.

The solutions are hu(k = 5) = 0.012 and h‘(k = 5) = 0.012 for the upper-level programming problem and lower-level pro-
gramming problem, respectively (Table 2). As shown, the convergence test solution for the BLP problem held, indicating that
the royalty negotiation by the two parties finished at the 5th negotiation. The solutions are hu(k) = 0.012 and h‘(k) = 0.012 for
the upper-level programming problem and lower-level programming problem, respectively. Thus, h(k = 5) = 0.012 for the
Table 2
Simulation result of the royalty negotiation for the operating revenue-based model.

No. of negotiations ru(k) r‘(k) hu(k) h‘(k) PG,R(k) PP,R(k)

k = 0 0.200 0.170 0.032 0.006 13.252 1.082
k = 1 0.185 0.161 0.025 0.007 12.790 1.078
k = 2 0.172 0.152 0.021 0.008 12.447 1.075
k = 3 0.160 0.143 0.017 0.009 12.187 1.071
k = 4 0.148 0.135 0.014 0.011 11.988 1.067
k = 5 0.138 0.127 0.012 0.012 11.832 1.062
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BLP problem. Consequently, simulation results indicate that the government can charge the concessionaire a royalty of
0.012% of operating revenue. Furthermore, the objective function values PG,R(k = 5) = 11.832 and PP,R(k = 5) = 1.062 for
upper-level (government) and concessionaire (low-level) were also determined, respectively. This demonstrates that the
government can obtain a finance recovery ratio of 11.832 times its investment cost and the concessionaire has an operational
benefit of 1.062 based on the royalty negotiation result. Further, the decrease in concession rates for the two parties contrib-
uted to successful royalty negotiations; that is, royalty negotiation will cease when either party fails to change its concession
rate. Moreover, simulation results of royalty negotiation indicate that the proposed royalty negotiation model, the operating
revenue-based model, associated with above-mentioned factors, including concession rates, time value discount rates, and
learning rates, can be applied to explain the negotiation behavior of both parties.

Similarly, by using the BLP heuristic algorithm, one can simulate the royalty negotiation for the operational output-based
model and lump-sum royalty model. However, Eq. (38a) was replaced with Eq. (38b) when solving the BLP problem in the
operational output-based royalty model, and Eq. (38a) was replaced with Eq. (38c) when solving the BLP problem in the
lump-sum royalty model. Tables 3 and 4 show simulation results of royalty negotiation for the operational output-based roy-
alty and the lump-sum royalty models, respectively.

For the operational output-based royalty model, the initial solution of the upper-level programming problem is
gu(k = 0) = 0.0001, while that of the lower-level programming problem is g‘(k = 0) = 0.0019%. The gu(k = 0) = 0.0001 value
indicates that the government wants a royalty of 0.01% of operating output from the concessionaire during the operation
period according to the project TOR. However, g‘(k = 0) = 0.0019% shows that the private firm pays only 0.0019% of operating

quantity to the government. The convergence test did not hold because 0:01%�fg�0:0019%�fp

0:0019%�fp

��� ��� > 0:01 and 0:01%�fg�0:0019%�fp
0:01%�fg

��� ��� > 0:01.

The solutions are gu(k = 5) = 0.0000386 and g‘(k = 5) = 0.0000386 for the upper- level programming problem and
lower-level programming problem for the operational output-based model, respectively (Table 3). The convergence test
solution for the BLP problem held. Therefore, the royalty negotiation for the two parties finished at the 5th negotiation. These
simulation results imply that the government and private firm agree on a compromise royalty solution. Consequently, the
government can charge the concessionaire a royalty of 0.00386% of operating output of this BOT project. At the same time,
the objective function values PG,Q(k = 5) = 11.6567 and PP,Q(k = 5) = 1.0675 for the upper-level (government) and lower-level
(concessionaire) were determined, respectively. These royalty negotiation results show that the government can obtain a
government finance recovery ratio of 11.6567 times its investment and the concessionaire has an operational benefit of
1.0675 based on the royalty negotiation process for this BOT project. Additionally, the concession rates of
ru(k = 5) = 0.1380 and r‘(k = 5) = 0.1270 for the government and private firm were also obtained, respectively.

The solutions Fu(k) = 40.94 and F‘(k) = 40.59 for the upper-level programming problem and lower-level programming
problem for model III were obtained, respectively (Table 4). The solution meets the convergence condition in Eq. (38c) of
the algorithm, even though some minor differences exist between Fu(k) = 40.94 and F‘(k) = 40.59. Model findings indicate
that the government can charge the concessionaire the lump-sum royalty of NT$40.94 million. Additionally, the objective
functions for the upper-level and lower-level programming problems, PG,F(k) = 11.6890 and PP,F(k) = 1.0621, were found
for this model, indicating that the government can obtain a government finance recovery ratio of 11.6890 times its invest-
ment and the concessionaire has an operational benefit of 1.0621 based on the lump-sum royalty method for this BOT
project.

4.3. Analysis of alternative royalty strategies

To compare alternative royalty models, this study uses the objective functions, the government finance recover ratio, and
profit index of BLP models to assess alternative royalty models the government and concessionaire can use based on Eqs. (1)
and (2). Moreover, since we assumed these three models are independent in Section 2, the objective functions of the BLP
problems can be ranked by government finance recovery ratio and profit index. The objective function values for the BLP
problem are obtained as PG,Q(k = 5) = 11.6567 and PP,Q(k = 5) = 1.0675, PG,R(k = 5) = 11.832 and PP,R(k = 5) = 1.062, and
PG,F(k = 5) = 11.6890 and PP,F(k = 5) = 1.0621 for models I–III, respectively (Tables 2–4). From the government’s perspective,
variation in the government finance recovery ratio is PG,R(k = 5) = 11.832 > PG,F(k = 5) = 11.6890 > PG,Q(k = 5) = 11.6567.
However, changes in the profit index of the concessionaire are PP,Q(k = 5) = 1.0675 > PP,F(k = 5) = 1.0621 > PP,R(k = 5) = 1.062.
1.0675 > PP,F(k = 5) = 1.0621 > PP,R(k = 5) = 1.062. These findings demonstrate that the operating revenue-based royalty
Table 3
Simulation result for royalty negotiation for the operational output-based model.

No. of negotiations ru(k) r‘(k) gu(k) g‘(k) PG,Q(k) PP,Q(k)

k = 0 0.2000 0.1700 0.001 0.000019 12.7976 1.0843
k = 1 0.1853 0.1608 0.00008 0.0000222 12.4258 1.0815
k = 2 0.1719 0.1520 0.0000652 0.0000258 12.1503 1.0784
k = 3 0.1596 0.1432 0.000054 0.0000297 11.9420 1.0750
k = 4 0.1484 0.1350 0.0000454 0.000340 11.7878 1.0714
k = 5 0.1380 0.1270 0.0000386 0.0000386 11.6567 1.0675



Table 4
Simulation result of royalty negotiation for the lump-sum royalty model.

No. of negotiations ru(k) r‘(k) Fu(k) F‘(k) PG,F(k) PP,F(k)

k = 0 0.2000 0.1700 106 20 12.8813 1.0816
k = 1 0.1853 0.1608 84 23.4 12.4928 1.0784
k = 2 0.1719 0.1520 69.08 27.16 12.2048 1.0748
k = 3 0.1596 0.1432 57.20 31.28 11.9871 1.0709
k = 4 0.1484 0.1350 48.07 35.77 11.8198 1.0667
k = 5 0.1380 0.1270 40.94 40.59 11.6890 1.0621

Table 5
Sensitivity analysis result for the operating revenue-based royalty model.

Items k hu(k) h‘(k) PG,R(k) PP,R(k)

ru(k) = 0.2, r‘(k) = 0.04 8 0.00941 0.00924 11.6261 1.0721
ru(k) = 0.2, r‘(k) = 0.07 7 0.01000 0.00988 11.6770 1.0695
ru(k) = 0.2, r‘(k) = 0.11 6 0.01100 0.01080 11.7441 1.0664
ru(k) = 0.2, r‘(k) = 0.17 5 0.01220 0.01210 11.8324 1.0621
ru(k) = 0.2, r‘(k) = 0.25 4 0.01400 0.01370 11.9583 1.0581
ru(k) = 0.2, r‘(k) = 0.42 3 0.01620 0.01590 12.1268 1.0506

Note: ru(k) is fixed and r‘(k) changes.
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model is preferable for the government and should be adopted by the host government. However, the operational output-
based royalty model is preferable for the concessionaire and should be adopted by the public sector.

Furthermore, changes in concession rates of the two parties affect the number of negotiation sessions (Tables 2–4). At the
same time, the concession rates of the two parties impact their objective functions. Clearly, PG,Q(k) decreases from 12.7976
to 11.6567 when the number of negotiations increases. Similarly, PP,Q(k) decreases from 1.0843 to 1.0675 as k increases for
model I. For model II, PG,R(k) also decreases from 13.252 to 11.832 and PP,R(k) decreases from 1.082 to 1.062 as k increases.
Moreover, PG,F(k) decreases from 12.8813 to 11.6890 and PP,F(k) decreases from 1.6890 to 1.0621 as k increases for model III.

4.4. Sensitivity analysis

Change in the concession rate of the two parties will change the decision variables of BLP problems and affect changes in
the objective functions of these models (Tables 2–4). Hence, sensitivity analysis is applied to ru(k), r‘(k), hu(k), h‘(k), PG,R(k),
and PP,R(k). Two cases are considered—ru(k) is fixed but r‘(k) changes, and ru(k) changes but r‘(k) is fixed. Tables 5 and 6 show
sensitivity analysis results.

First, a sensitivity analysis while assuming ru(k) is fixed while r‘(k) varies (Table 5) indicates that when r‘(k) changes and
ru(k) remains constant, PP,R(k) decreases from 1.0721 to 1.0506, and r‘(k) increases from 0.04 to 0.42 as PG,R(k) increases
from 11.6261 to 12.1268. At the same time, the number of negotiations decreased from 8 to 3 as r‘(k) increased. In this case,
as the concession rate decreased, and the amount of royalty the private sector must pay increased.

Similarly, this work applies sensitivity analysis when r‘(k) is fixed and ru(k) changes. Table 6 shows analytical results, the
number of negotiations k increases when ru(k) decreases, while the number of negotiations k decreases when ru(k) increases
(Table 6). At the same time, PG,R(k) decreases as ru(k) increases rapidly; however, PP,R(k) increases as ru(k) increases. Ana-
lytical results (Table 4) indicate that PP,R(k) will increase from 1.0435 to 1.0702 when ru(k) increases from 0.04 to 0.36; how-
ever, PG,R(k) decreases from 12.2857 to 11.6423.

Sensitivity analysis clearly indicates that any change in the concession rate for any party will affect the number of nego-
tiations, decision variables, PG,R(k), and PP,R(k). In other words, if either party keeps a constant concession rate, a royalty
negotiation will not be settled easily, and the royalty negotiation may cease. That is to say, the learn effect or time value
discount factors of bargaining cost for either party do not impact the concession rates at the kth negotiation. Additionally,
a negative relationship exists among r‘(k), k, and PP,R(k), but a positive relationship exists among r‘(k), k, and PG,R(k) (Tables 5
and 6). Thus, as the concession rate of the private sector decreases and the number of negotiations decreases, the royalty paid
to the government increases. However, as the concession rate of the government decreases the concession rate of the private
sector does not change, resulting in a reduction in the number of negotiations, and PG,R(k) decreases.

4.5. Discussion

Findings from this case study show that the operating revenue-based royalty model is best suited to governments, and
the operational output-based royalty model is best suited to concessionaires. Chiou and Lan (2006) focused only on con-
structing many royalty computation methods, and did not investigate royalty determination from a negotiation perspective.
The contributions of this study differ from those of Chiou and Lan. (1) This study proposed three novel royalty strategies—the



Table 6
Sensitivity analysis result for the operating revenue-based royalty model.

Items k hu(k) h‘(k) PG,R(k) PP,R(k)

ru(k) = 0.04, r‘(k) = 0.17 11 0.0183 0.01810 12.2857 1.0435
ru(k) = 0.09, r‘(k) = 0.17 8 0.0160 0.01570 12.1038 1.0516
ru(k) = 0.12, r‘(k) = 0.17 7 0.0146 0.01450 12.0030 1.0547
ru(k) = 0.2, r‘(k) = 0.17 5 0.0122 0.01210 11.8324 1.0621
ru(k) = 0.26, r‘(k) = 0.17 4 0.0111 0.01090 11.7541 1.0661
ru(k) = 0.36, r‘(k) = 0.17 11 0.0183 0.01810 12.2857 1.0435

Note: ru(k) varies and r‘(k) is fixed.
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operating-revenue based model, operational output-based model, and lump-sum model—via BLP from negotiation perspec-
tives. (2) This work developed the heuristic algorithm for BLP problems that considers bargaining cost factors such as con-
cession rates, time value discount rates, and learning rates. (3) Chiou and Lan (2006) did not provide information about
which royalty strategy is preferable for the private sector or government. Nevertheless, this study uses the royalty negoti-
ation model to determine the royalties and compares alternative royalty strategies in the royalty negotiation models. Nota-
bly, the operating revenue-based royalty strategy is best suited to government, while the operational output-based royalty
strategy is best suited to a concessionaire. However, Chiou and Lan did not address this issue.

As analyzed in Sections 4.2–4.4, study results demonstrate that model development for royalty determination by BLP can
be applied to investigate or simulate the negotiation process for two parties. However, some issues warrant discussion.

(1) Many algorithms, such that a genetic algorithm (GA) and Tabu search, can be applied to solve BLP problems (Bard,
2002; Calvete et al., 2008). Previous algorithms can find the globally optimized solution to the BLP problem. However,
in this study, the solution to the BLP problem using the ‘‘iterative algorithm’’ is a ‘‘compromise solution’’ for both par-
ties. This differs from global optimization obtained by a GA or other optimization algorithms.

(2) In contrast to conventional negotiation and bargaining theories, concession rate, learning effect, and time value dis-
count rate are factors in the bargaining process, which was addressed by Cross (1965). Shen et al. (2007) and Lin
and Chang (2005) also adopted the work by Cross (1965) to investigate the concession period and revenue-sharing
for a BOT project. Likewise, this work also used the concept and formulas developed by Cross (1965) and Lin and Chang
(2005) to determine the royalty for a BOT project. Unlike the work by Shen et al. (2007), which used the Rubinstein
model, and that by Lin and Chang (2005), which adopted the Cross model, this work adopts the BLP approach. How-
ever, the concession rates, time value discount rates, and learning effect are given, such that this BLP problem could be
handled using negotiator learning, concession rate, and time value discount rate for each negotiation. Conversely, a
negotiator’s attitude toward risk and negotiation cost can also be incorporate into concession rate formulas.

(3) When analyzing negotiation behavior, many royalty negotiation models are based on the independent relationship
assumption; this assumption warrants reexamination in further studies. In fact, for most BOT projects, a government
can adopt royalty strategies combining two or more royalty computation methods; for example, a government can
combine the fixed royalty fee and operational output-based model, the fixed royalty fee and variation royalty method,
or fixed royalty and operating revenue-based royalty model to improve operation effectiveness during the operational
period. Notably, the lump-sum royalty model is a simple strategy with an easy collection method for two parties.

5. Conclusions and suggestions

This work constructs three novel royalty negotiation models, namely the lump-sum royalty, operational revenue-based
royalty, and operational output-based royalty, using the BLP approach from a negotiation perspective, and develops a novel
heuristic algorithm to solve the BLP problem for governments and the private sector. This study also uses the case study of
the Taipei Port Container Logistic BOT Project to determine the amounts of royalty derived using the three royalty methods.
The two parties acquire the best concession negotiation result at the fifth negotiation with all three royalty models. Addi-
tionally, analytical findings indicate that the priority profit index of a concessionaire for the three models is
PP,Q(k = 5) = 1.0675 > PP,F(k = 5) = 1.0621 > PP,R(k = 5) = 1.062, and the priority of the government finance recovery rate for
the three models is PG,R(k = 5) = 11.832 > PG,F(k = 5) = 11.6890 > PG,Q(k = 5) = 11.6567. The operational revenue-based roy-
alty model suits best governments, while the operational output-based royalty model favors most concessionaires. More-
over, the findings of the sensitivity analysis indicate that these factors have significant effects on the bargaining process.

The main contribution of the paper is that it proposes a new appealing research topic for BOT projects or PPP, because
previous studies have neglected the impact of changes in royalty on financial viability of BOT projects, focusing mainly
on three specific research issues including risks, relationship, and financing in PPP or BOT area. We have attempted to devel-
op alternative royalty negotiation models and analyze strategies from the negotiation perspective. Factors, which had not
been taken into account in previous research on bargaining model, including the concession rate, learning rate, and time va-
lue discount rate for both parties, are incorporated into the developed heuristic algorithm. We hope that the analytical model
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and framework for royalty determination and royalty strategy analysis utilized here can be applied to other BOT cases and
can be further extended to analyze multi-party royalty schemes and strategies.

The case study in this research shows that the proposed royalty negotiation models can be utilized to explain negotiation
behavior. In particular, the simulation results indicate that changes in concession rate of two parties affect significantly the
number of negotiation sessions; and that the objective functions also change with the concession rates. In other words, the
impact of factors of bargaining cost including concession rate, learning rate, and time value discount rate of two parties on
the bargaining process should be considered. Nevertheless, survey data for time value discount, concession rate, and learning
rate of two parties in each negotiation are needed when utilizing royalty negotiation models to investigate royalty determi-
nation in real BOT projects.

The following issues can be explored in future studies. (1) Some assumptions of the operational output-based royalty
model can be released. Although concession rate, learning rate, and time value discount rate of two parties for solving
the BLP problem are given to simplify analysis, these factors can be reexamined in future studies. Researchers can survey
data for these factors via a questionnaire. (2) Other studies can utilize this analytical framework to investigate other royalty
strategies, such as a mixed royalty method combining two or more royalty strategies. In addition, multiple issues in the bar-
gaining model and multi-level programming problem can be addressed in future research to explore multi-party negotiation
issues for BOT projects. (3) The Rubinstein bargaining model can be employed to analyze different royalty strategies for two
parties.
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