
Two-stage assembly-type flowshop batch
scheduling problem subject to a fixed job
sequence
FJ Hwang and BMT Lin�

Institute of Information Management, Department of Information and Finance Management, National

Chiao Tung University, Hsinchu, Taiwan

This paper discusses a two-stage assembly-type flowshop scheduling problem with batching considerations
subject to a fixed job sequence. The two-stage assembly flowshop consists of m stage-1 parallel dedicated
machines and a stage-2 assembly machine which processes the jobs in batches. Four regular performance
metrics, namely, the total completion time, maximum lateness, total tardiness, and number of tardy
jobs, are considered. The goal is to obtain an optimal batching decision for the predetermined job sequence
at stage 2. This study presents a two-phase algorithm, which is developed by coupling a problem-
transformation procedure with a dynamic program. The running time of the proposed algorithm is
O(mnþ n5), where n is the number of jobs.

Journal of the Operational Research Society (2012) 63, 839–845. doi:10.1057/jors.2011.90

Published online 21 September 2011

Keywords: assembly flowshop; batch scheduling; fixed sequence; dynamic programming

1. Introduction

In machine or shop scheduling, the issues of fixed-job-

sequence scheduling are worthy of consideration for some

problems where schedules cannot be immediately deter-

mined by given sequences of jobs. For these problems,

establishing an optimal schedule from a predetermined

sequence could be non-trivial because another decision

such as batching, interleaving, and idle time insertion

would be needed for optimality (Hwang, 2011). This study

addresses a two-stage assembly-type flowshop scheduling

problem with batching considerations subject to a fixed

job sequence. The considered two-stage assembly flowshop

is a generalisation of the classical two-machine flowshop

studied by Johnson (1954). A typical example of the

assembly-type flowshop scheduling concerns the produc-

tion of fire engines (Lee et al, 1993). A fire engine comprises

three major components, that is, the body, the chassis, and

the engine. These components are respectively produced

by three parallel dedicated machines at stage 1 and then

delivered to a stage-2 assembly line for final assembly

operations.

The problem under study is stated as follows. From

time zero onwards, a set of n jobs is to be processed in

a two-stage flowshop equipped with mþ 1 machines. At

stage 1, there are m parallel dedicated machines which

independently produce the m components for jobs. Then

these components are transferred to the stage-2 assembly

line for assembly operation. Each job consists of mþ 1

specific operations to be executed respectively on the m

stage-1 parallel dedicated machines and the stage-2

assembly machine. At stage 2, the assembly operations

are processed in batches. The sequential-batch (or sum-

batch) model with batch availability is adopted. The setup

on the assembly machine is non-anticipatory and assumed

to be a constant setup time. Batch availability indicates

that jobs of the same batch complete at the same time,

when processing of the latest job in this batch has been

finished. In the sum-batch model, the processing time of

a batch is defined as the sum of the setup time and the

processing times of all jobs belonging to this batch. The

non-anticipatory setup implies that a setup can start only

after all the components of the jobs in the same batch

arrive at stage 2 and the stage-2 assembly machine is not

occupied. We also assumed that the centralised decision-

making policy is adopted. Namely, all the m parallel

dedicated machines comply with the sequencing and

batching decisions determined by the assembly site. In this

study, we address four regular objective functions, that is,

the total completion time, the maximum lateness, the total

tardiness, and the number of tardy jobs. Following Lin

et al (2007) who consider the criterion of makespan for

the same machine setting, the problem under study is

denoted by (mþ 1)MAF|md-b, s-batch, fixed_seq|g,

Journal of the Operational Research Society (2012) 63, 839–845 © 2012 Operational Research Society Ltd. All rights reserved. 0160-5682/12

www.palgrave-journals.com/jors/

�Correspondence: BMT Lin, Institute of Information Management,

Department of Information and Finance Management, National Chiao

Tung University, 1001 University Road, Hsinchu, Taiwan.

E-mail: bmtlin@mail.nctu.edu.tw

where (mþ 1)MAF stands for the (mþ 1)-machine

assembly flowshop, md-b for a two-stage system with m

stage-1 discrete processors and a stage-2 batch processor,

s-batch for sum-batch model, fixed_seq for fixed job

sequence, and gA{
P

Cj,Lmax,
P

Tj,
P

Uj}.

Regarding complexity status, problem (mþ 1)MAF|

md-b, s-batch|g is hard to tackle due to the base

fact that F28g is known to be strongly NP-hard for

gA{
P

Cj,Lmax,
P

Tj,
P

Uj}. Owing to the strong NP-

hardness, this paper investigates the setting with a fixed

job sequence, (mþ 1)MAF|md-b, s-batch, fixed_seq|g.
The assumption of a fixed job sequence can be justified

from both practical and theoretical aspects (Hwang, 2011).

Practical considerations include technological or manage-

rial decisions (Shafransky and Strusevich, 1998) and First-

Come-First-Served principle (Hwang et al, 2010). The main

theoretical motivation comes from the development of

local search and meta-heuristic algorithms for the NP-hard

scheduling problem where a schedule cannot be readily

induced from a job sequence. In the local search procedure,

an efficient approach to the problem subject to a fixed job

sequence can be exploited to evaluate the candidate job

sequences. Other justifications of the fixed-job-sequence

assumption can also be found in previous studies

(Herrmann and Lee, 1992; Cheng and Wang, 1999; Cheng

et al, 2000b; Lin and Cheng, 2006; Lin et al, 2007; Ng and

Kovalyov, 2007; Potts and Whitehead, 2007; Cheng et al,

2009; Hwang and Lin, 2011; Lin and Cheng, 2011; Lin and

Hwang, 2011).

The remainder of this paper is organised as follows.

A brief literature review of flowshop scheduling with

batching considerations subject to a fixed job sequence

is given in Section 2. Formal problem definition is

provided in Section 3. In Section 4, we present a two-

phase algorithm for the studied problem. The last

section summarises our results and provides suggestions

for future research.

2. Review on batch scheduling in flowshop with a

fixed-job-sequence

Flowshop scheduling usually becomes NP-hard when

batching is taken into account (please refer to Potts and

Van Wassenhove (1992), Allahverdi et al (1999), Potts

and Kovalyov (2000), Cheng et al (2000a) for comprehen-

sive surveys of scheduling models with batching or setup

times). In the following, we review batch scheduling in

flowshops subject to fixed job sequences. Potts and

Kovalyov (2000) indicated that dynamic programming

is a viable approach to tackling single-machine batching

problem where the sequencing and batching decisions

can be decoupled. However, for shop models the fixed

job sequence is necessary for the design of dynamic pro-

grams. Considering a given job sequence in a two-machine

flowshop comprising a stage-1 discrete processor and a

stage-2 batch processor, Lin and Cheng (2005) developed

an O(n2) algorithm to minimise the makespan. For the

fixed-job-sequence problem in a two-machine flowshop

with both batch processors, Cheng et al (2000b) presented

an O(n3) algorithm for makespan minimisation. An O(n5)

algorithm was proposed by Hwang et al (2010) with the

same machine setting for the minimisation of total com-

pletion time. For makespan minimisation, an O(n5m�7)
dynamic programming algorithm for the generalised

m-machine environment was presented by Ng and

Kovalyov (2007). With regard to the fabrication and

assembly scheduling in a two-machine flowshop, each job

consists of three components: a common component and a

unique component which are both executed on machine 1,

and an assembly component which is executed on machine

2 after the above two components are completed. Common

components of all jobs are executed in batches, each of

which is preceded by the same setup time. For makespan

minimisation in the identical common component case,

Cheng and Wang (1999) proposed an O(n4) algorithm to

optimally batch the jobs sequenced according to Johnson’s

rule. For the constant assembly time case, another O(n3)

algorithm was developed for optimally batching the jobs

sequenced according to the agreeable processing time

condition. Actually, the Oðn4Þ algorithm proposed by

Cheng and Wang (1999) can be utilised for the general

case. As for the assembly-type flowshop batching problem,

Lin et al (2007) proposed an O(n2) dynamic programming

algorithm for problem 3MAF|2d-b, s-batch, fixed_

seq|Cmax. Their algorithm can be generalised to problem

(mþ 1)MAF|md-b, s-batch, fixed_seq|Cmax, and has an

O(mn2) running time. The complexity results of related

fixed-job-sequence flowshop batching problems are sum-

marised in Table 1. Most of these cited results centre

around the minimisation of makespan. The four objective

functions considered in this study exhibit more complicated

structures due to the min-sum objectives and/or the due

date constraints.

3. Problem definition and preliminaries

In this section, a formal problem definition is provided for

the base case with m¼ 2. Generalisation to the case with

arbitrary m parallel dedicated machines will be given in the

next section.

Assume without loss of generality that a given sequence

of jobs (1, 2, . . . , n) is to be processed in a two-stage

assembly flowshop with two dedicated parallel machines,

Ma and Mb, at stage 1 and one assembly machine M2

at stage 2. Each job j consists of three operations to be

processed on machine Ma, Mb and M2, respectively. The

corresponding processing times are respectively pa, j, pb, j
and p2, j. Each job j is also characterised by a due date dj.

840 Journal of the Operational Research Society Vol. 63, No. 6

To facilitate our discussion, we define

pa;½i: j � ¼
Xj
l¼i

pa; l ;

pb;½i: j � ¼
Xj
l¼i

pb; l ;

p2;½i: j � ¼
Xj
l¼i

p2; l ; and

d½i: j � ¼ min
l2fi; iþ1;...; jg

dl:

After both stage-1 operations of job j are completed,

these two produced component parts of job j are trans-

ferred to stage 2 for assembly. Machine M2 processes

the jobs in batches with a non-anticipatory constant setup

time s. The processing length of a batch on machine M2 is

defined as the setup time s plus the processing times of all

jobs included in this batch. The kth batch formed at stage 2

is denoted by Bk. The objective is to optimally batch the

given job sequence for the minimisation of the addressed

performance measure. Consider the following instance with

n¼ 6 for illustration: (pa,1, pb,1, p2,1)¼ (2, 1, 1), (pa,2, pb,2,

p2,2)¼ (1, 3, 3), (pa,3,pb,3,p2,3)¼ (4, 2, 2), (pa,4, pb,4, p2,4)¼
(1, 3, 1), (pa,5, pb,5, p2,5)¼ (2, 2, 2), (pa,6, pb,6, p2,6)¼ (5, 3, 3),

(d1, d2, d3, d4, d5, d6)¼ (8, 10, 14, 19, 20, 22), and s¼ 1.

Assume that the batching decision is to group jobs {1, 2}

into batch B1, jobs {3, 4, 5} into batch B2, and {6} into

batch B3. As illustrated in Figure 1, the obtained schedule

has
P

Cj¼ 90, Lmax¼ 3,
P

Tj¼ 4 and
P

Uj¼ 2.

Notation

n number of jobs

m number of stage-1 parallel dedicated machines

pa, j processing time of job j on the stage-1 machineMa

pb, j processing time of job j on the stage-1 machineMb

p2, j processing time of job j on the stage-2 machineM2

dj due date of job j

pa,[i : j] sum of processing times pa,i, pa,iþ 1, . . . , pa, j,

that is, pa,[i: j]¼
P

l¼ i
j pa, l

pb,[i : j] sum of processing times pb,i, pb, iþ 1, . . . , pb, j,

that is, pb,[i: j]¼
P

l¼ i
j pb, l

p2,[i: j] sum of processing times p2,i, p2,iþ 1, . . . , p2, j,

that is, p2,[i: j]¼
P

l¼ i
j p2, l

d[i: j] minimum of due dates di, diþ i, . . . , d j, that is,

d[i: j]¼minlA{i,iþ l, . . . , j }dl
s batch setup time

Bk the kth batch formed at stage 2

C1, j completion time of job j on dummy machine M1,

that is, C1, j¼max{pa,[l: j], pb,[l: j]}

Tj (t) tardiness of job j which completes at time t,

that is, Tj (t)¼max{0,t�dj}
Uj (t) tardiness status of job j which completes at time

t, that is, Uj(t)¼ 1 for t 4 dj, and Uj (t)¼ 0 for

tpdj

4. Two-phase algorithm

In this section, we present a two-phase algorithm to

solve problems (mþ 1)MAF|md-b, s-batch, fixed_seq|g
for g A{

P
Cj,Lmax,

P
Tj,
P

Uj}. The first phase is a pre-

processing procedure for transforming the studied problem

to a two-machine flowshop batching problem subject to

a fixed job sequence. Notice that given the instance input

(numerical values and a job sequence), the schedule of

jobs at stage 1 can be settled. Then problem (mþ 1)

MAF|md-b, s-batch, fixed_seq|g can be transformed to

problem F2|d-b, s-batch, fixed_seq|g by mapping the

stage-1 schedule of the original problem to the stage-1

discrete processor in the transformed problem. Consider

the base case m¼ 2. As illustrated in Figure 2, the schedule

of a dummy discrete processor M1 can be mapped from

that of the two parallel dedicated machines Ma and Mb

by setting the completion time of job j on M1 as

C1, j¼max{pa, [1: j], pb, [1: j]}. Then the studied problem is

transformed to a two-machine flowshop problem with

a discrete processor M1 at stage 1 and a batch machine M2

at stage 2. If m is constant, then O(n) time is needed for

Table 1 Complexity results of related fixed-job-sequence
flowshop batching problems

Problem Complexity Reference

F2|d-b, s-batch, fixed_seq|Cmax O(n2) Lin and Cheng (2005)

F2|s-batch, fixed_seq|Cmax O(n3) Cheng et al (2000b)

Fm|s-batch, fixed_seq|Cmax O(n5m�7) Ng and Kovalyov

(2007)

F2|s-batch, fixed_seq|
P

Cj O(n5) Hwang et al (2010)

F2|s-batch, (c, uj, aj), fixed_seq|Cmax O(n4) Cheng and Wang

(1999)

F2|s-batch, (cj, uj, a), fixed_seq|Cmax O(n3) Cheng and Wang

(1999)

F2|s-batch, (cj, uj, aj), fixed_seq|Cmax O(n4) �
3MAF|2d-b, s-batch,

fixed_seq|Cmax

O(n2) Lin et al (2007)

(mþ 1)MAF|md-b, s-batch,

fixed_seq|Cmax

O(mn2) w

�The result is derived from Cheng and Wang (1999); wThe result is

derived from Lin et al (2007).

Ma

Mb

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6

1 2 3 4 5 6

B1 B2 B3

s 1 2 s s3 4 5 6

Figure 1 Example schedule.

FJ Hwang and BMT Lin—Two-stage assembly-type flowshop batch scheduling problem 841

this transformation procedure. For the general case of

arbitrary m, the first phase requires O(mn) time.

In the second phase, problem F2|d-b, s-batch, fixed_
seq|g is solved by a dynamic program. The difficulty in the

design of a polynomial time dynamic program arises from

the potential conflicts between the makespan and the

considered objective functions. A subschedule of the first j

jobs that minimises the considered performance measure

may have a comparatively large makespan, which will

worsen the performance measure of the remaining n�j
jobs. To resolve the problem, a dynamic program

incorporating one more state variable to specify possible

makespans can be developed. Nevertheless, the time

complexity of the dynamic program designed by this

approach will be pseudo-polynomial time. The technique

devised in this study is to introduce a fixed number of jobs

or positional indices to specify makespans.

For a partial schedule, a maximal (by inclusion)

sequence of stage-2 batches processed consecutively with-

out inserted idle times on the stage-2 machine is called a

block. The last block of a partial schedule is called critical

block. A state (i, i1, j, k) specifies all the partial schedules of

the first j jobs 1, 2, . . . , j which satisfy the following three

conditions:

1. i and j are respectively the first and the last jobs of the

critical block,

2. k is the number of batches within the critical block, and

3. i1 is the last job of the first batch within the critical

block.

The structure of a partial schedule in state (i, i1, j, k) is

shown in Figure 3. Note that each state can be associated

with several partial schedules having different objective

function values. Denote by g(i, i1, j, k) the minimum

objective function value attained from among those partial

schedules associated with state (i, i1, j, k) for 1pipi1pjpn

and J(j�i1)/jnþ 1pkpj�i1þ 1. A partial schedule in

state (i, i1, j,k) with value g(i, i1, j,k) dominates all other

partial schedules in the same state in the sense that it

contributes the minimum value to the objective function

value among those of all partial schedules in this state. The

development of the proposed dynamic program is based

upon forward recursions by batches, that is, the last batch

of the partial schedule is removed for each recursion. The

dynamic programming formulation is given in a pseudo-

code-like fashion. To facilitate notation, denote by

Tj (t)¼max{0, t�dj} the tardiness of job j which completes

at time t in a particular schedule. Also, its tardiness status

is indicated by the binary variable

UjðtÞ ¼
1; if t4dj;
0; otherwise:

�

Algorithm DP

Initialisation:

01 for each combination of i, i1, j, k satisfying 1p
ipi1pjpn, and J(j�i1)/jnþ 1pkpj�i1þ 1 do

02 gði; i1; j; kÞ ¼
f1ðjÞ; if i ¼ k ¼ 1 and i1 ¼ j;
1; otherwise:

�

Recursion:

03 for each combination of i, i1, j, k satisfying

2pipi1pjpn, and J(j�i1)/jnþ 1pkpj�i1þ 1 do

04 Set z¼N;

05 Case k¼ 1 (Figure 4):

06 for each combination of i 0, i 01,k
0 satisfying

1pi 0pi 01pi�1, and J(i�i 01�1)/(i�1)nþ 1p
k0pi�i 01 do

07 if C1, j�C1,i 014k0sþ p2,[i 0:i�1]
08 then temp¼ f2(i

0, i 01, i,k
0, j);

09 else temp¼N;

10 z¼min{z, temp}.

11 Case k41 (Figure 5):

12 for each j 0 from i1þ k�2 up to j�1 do

13 if C1, j� C1,i 1
p(k�1)sþ p2,[i: j 0]

14 then temp¼ f3(i, i1, j
0, k, j);

15 else temp¼N;

16 z¼min{z, temp}.

17 g(i, i1, j, k)¼ z.

1 2 n-1 n

1 2 n-1 n

Ma

Mb

C1,1 C1,2 C1,n-1 C1,n

C1,j = max {pa,[1:j], pb,[1:j]}

0

M1

⇓

1 2 n-1 n

Figure 2 Mapping of the schedules of Ma and Mb to that
of M1.

s i i1 s s jM2

M1 i i1 j1

s s1 s s i-1

i-1

no idle time
with k batches

Figure 3 Illustration of a partial schedule in state (i, i1, j, k).

s i jM2

M1 i j1

s s1

To be removed
for recursion

s s s i-1i'

no idle time
with k' batches

k=1

i' i-1i1

i1

Figure 4 Forward recursion of the case k¼ 1

842 Journal of the Operational Research Society Vol. 63, No. 6

Goal: Find min {g(i, i1, n,k)|1pipi1pn, J(n�i1)/nn
þ 1pkpn�i1þ 1}.

If Algorithm DP is deployed for the performance metric of

total completion time, Function f1(j), f2(i
0, i 01, i,k

0, j)
and f3(i, i1, j

0,k, j) are denoted as follows.

In line 02; f1ðjÞ ¼ j C1; j þ sþ p2;½1: j �
� �

:

In line 08; f2ði 0; i 01; i; k0; jÞ ¼ g i 0; i 01; i � 1; k0ð Þ
þ j � i þ 1ð Þ C1;j þ sþ p2;½i: j �

� �
:

In line 14; f3ði; i1; j 0; k; jÞ ¼ g i; i1; j
0; k� 1ð Þ

þ j � j 0ð Þ C1;i1 þ ksþ p2;½i: j �
� �

:

For the objective function of maximum lateness, we define

f1ðjÞ ¼ C1;j þ sþ p2;½1: j � � d½1: j �;

f2ði 0; i 01; i; k0; jÞ ¼ max g i 0; i 01; i � 1; k0ð Þ;f
C1; j þ sþ p2;½i: j � � d½i: j �

�
; and

f3ði; i1; j 0; k; jÞ ¼ max gði; i1; j 0; k� 1Þ;f
ðC1;i1 þ ksþ p2;½i: j � � d½ j 0þ1: j �Þ

�
:

For the objective function of total tardiness, we have

f1ðjÞ ¼
Xj
h¼1

Th C1;j þ sþ p2;½1: j �
� �

;

f2ði 0; i 01; i; k0; jÞ ¼ gði 0; i 01; i � 1; k0Þ

þ
Xj
h¼i

Th C1;j þ sþ p2;½i: j �
� �

; and

f3ði; i1; j 0; k; jÞ ¼ gði; i1; j 0; k� 1Þ

þ
Xj

h¼j 0þ1
Th C1;i1 þ ksþ p2;½i: j �
� �

:

As for the number of tardy jobs, we denote

f1ðjÞ ¼
Xj
h¼1

Uh C1; j þ sþ p2;½1: j �
� �

;

f2ði 0; i 01; i; k0; jÞ ¼ gði 0; i 01; i � 1; k0Þ

þ
Xj
h¼i

Uh C1;j þ sþ p2;½i: j �
� �

; and

f3ði; i1; j 0; k; jÞ ¼ gði; i1; j 0; k� 1Þ

þ
Xj

h¼j 0þ1
Uh C1;i1 þ ksþ p2;½i: j �
� �

:

As shown in Figure 4, the if-condition in line 07 is utilised

to examine whether a partial schedule in state (i, j, j, 1) can

be constructed by attaching jobs i, . . . , j, which constitute

a single batch on M2, to the partial schedule in state

(i 0, i 01, i�1,k0) with value g(i 0, i 01, i�1, k0). Figure 5 illustrates
that the if-condition in line 13 is used to check whether

a partial schedule in state (i, i1, j, k) can be constructed

by merging the batch of jobs j 0 þ 1, . . . , j with the partial

schedule achieving g(i, i1, j
0,k�1) in state (i, i1, j

0,k�1). The
optimal objective value is min{g(i, i1, n,k)|1pipi1pn,

J(n�i1)/nnþ 1pkpn�i1þ 1} and the corresponding opti-

mal schedule can be obtained by backtracking.

The recursion part of Algorithm DP consists of two

cases: (1) For the case k¼ 1 (also implying i1¼ j), there

are O(n2) states (i, j, j, 1), each of which requires O(n3)

operations; (2) For the case k41, there are O(n4) states

(i, i1, j,k), each of which needs O(n) operations. Note that

for any considered performance measure, function f1(j),

f2(i
0, i 01, i,k

0, j) and f3(i, i1, j
0,k, j) can be calculated in

constant time or by a straightforward pre-processing

procedure. The goal step requires O(n3) comparisons, each

of which takes constant time. Hence, the running time of

algorithm DP is O(n5).

Since the first and second phases respectively require

O(mn) and O(n5) times, the running time of the proposed

two-phase algorithm is O(mnþ n5).

Theorem 1 Problem (mþ 1)MAF|md-b, s-batch, fixed_
seq|g, where g¼

P
Cj, Lmax,

P
Tj or

P
Uj, can be solved in

O(mnþ n5) time.

Example Consider the following instance with m¼ 2 and

n¼ 4: (pa,1, pb,1, p2,1)¼ (2, 1, 1), (pa,2, pb,2, p2,2)¼ (1, 3, 3),

(pa,3, pb,3, p2,3)¼ (4, 2, 2), (pa,4, pb,4, p2,4)¼ (1, 3, 1), and

s¼ 1. The two-phase algorithm is demonstrated for the

objective function of total completion time as follows:

Phase 1: (Problem-transformation procedure)

C1;1 ¼ maxf2; 1g ¼ 2;

C1;2 ¼ maxf2þ 1; 1þ 3g ¼ 4;

C1;3 ¼ maxf2þ 1þ 4; 1þ 3þ 2g ¼ 7;

C1;4 ¼ maxf2þ 1þ 4þ 1; 1þ 3þ 2þ 3g ¼ 9:

Phase 2: (Algorithm DP-Batch)

Initialisation

gð1; 1; 1; 1Þ ¼ 1�ð2þ 1þ 1Þ ¼ 4;

gð1; 2; 2; 1Þ ¼ 2�ð4þ 1þ 4Þ ¼ 18;

gð1; 3; 3; 1Þ ¼ 3�ð7þ 1þ 6Þ ¼ 42;

gð1; 4; 4; 1Þ ¼ 4�ð9þ 1þ 7Þ ¼ 68;

For other values of i, i1, j, k, we denote g(i, i1, j, k)¼N.

s i i1s s j'M2

M1 i i1 j'1

s s1 s s i-1

i-1

no idle time
with k batches

s jj'+1

jj'+1

To be removed
for recursion

Figure 5 Forward recursion of the case k41.

FJ Hwang and BMT Lin—Two-stage assembly-type flowshop batch scheduling problem 843

Recursion

gð2; 2; 2; 1Þ ¼ 1;

gð2; 2; 3; 2Þ ¼ gð2; 2; 2; 1Þ þ ð3� 2Þ
� C1;2 þ 1� 1þ p2;½2:3�
� �

¼ 1;

gð2; 2; 4; 2Þ ¼ min 1; gð2; 2; 3; 1Þ þ ð4� 3Þf
� C1;2 þ 2� 1þ p2;½2:4�
� ��

¼ 1;

gð2; 2; 4; 3Þ ¼ gð2; 2; 3; 3Þ þ ð4� 3Þ
� C1;2 þ 3� 1þ p2;½2:4�
� �

¼ 1;

gð2; 3; 3; 1Þ ¼ gð1; 1; 1; 1Þ þ ð3� 2þ 1Þð7þ 1þ 5Þ
¼ 30;

gð2; 3; 4; 2Þ ¼ gð2; 3; 3; 1Þ þ ð4� 3Þ
� ð7þ 2þ 6Þ ¼ 30þ 15 ¼ 45;

gð2; 4; 4; 1Þ ¼ gð1; 1; 1; 1Þ þ ð4� 2þ 1Þ
� ð9þ 1þ 6Þ ¼ 4þ 48 ¼ 52;

gð3; 3; 3; 1Þ ¼ 1;

gð3; 3; 4; 2Þ ¼ gð3; 3; 3; 1Þ þ ð4� 3Þ
� C1;3 þ 2� 1þ p2;½3:4�
� �

¼ 1;

gð3; 4; 4; 1Þ ¼ min gð1; 1; 2; 2Þ þ ð4� 3þ 1Þf
� ð9þ 1þ 3Þ;1; gð2; 2; 2; 1Þ
þ ð4� 3þ 1Þð9þ 1þ 3Þg ¼ 1;

gð4; 4; 4; 1Þ ¼ 1:

Goal

min gði; i1; 4; kÞjf 1pipi1p4;
4� i1

4

� �

þ 1pkp4� i1 þ 1g
¼ min gð1; 4; 4; 1Þf ; gð2; 3; 4; 2Þ
gð2; 4; 4; 1Þg ¼ 45:

The optimal schedule (2, 3, 4, 2) can be constructed by

backtracking the recursion, as demonstrated in Figure 6.

5. Concluding remarks

A two-stage assembly-type flowshop batch scheduling

problem with a fixed job sequence has been addressed in

this study. For the minimisation of total completion time,

maximum lateness, total tardiness or number of tardy jobs,

this study designed an O(mnþ n5)-time two-phase algo-

rithm, where m is the number of parallel dedicated

machines arranged at stage 1 and n is the number of jobs.

The running time will be O(n5) if the number of dedicated

machines m is not a part of the input. Besides, problem

F2|d-b, s-batch, fixed_seq|g was solved in O(n5) time in

this study. Furthermore, the developed algorithm can be

easily generalised for the weighted counterparts.

Future study may be conducted on the parallel-batch

(max-batch) model, that is, (mþ 1)MAF|md-b, p-batch,
fixed_seq|g. Furthermore, we can address the reverse model

which is a two-stage (1þm)-machine flowshop dismantling

and refurbishing products. In the reverse model, stage 1 is

equipped with a dismantling line which disassembles pro-

ducts in batches. There are m parallel dedicated machines

arranged at stage 2 for processing the m individual

component parts generated from the dismantled products.

This reverse model can also be studied with the sum-batch

or max-batch model.

Acknowledgements—The authors are grateful to the anonymous
reviewers for their constructive comments that have improved an
earlier version of this paper.

References

Allahverdi A, Gupta JND and Aldowaisan T (1999). A review of
scheduling research involving setup considerations. Omega 27:
219–239.

Cheng TCE and Wang G (1999). Scheduling the fabrication and
assembly of components in a two-machine flowshop. IIE Trans
31: 135–143.

Cheng TCE, Gupta JND and Wang G (2000a). A review of
flowshop scheduling research with setup times. Prod Opns Mngt
9: 262–282.

Cheng TCE, Lin BMT and Tian YM (2009). Scheduling of a
two-stage differentiation flowshop to minimise weighted sum
of machine completion times. Comput Opns Res 36: 3031–3040.

Cheng TCE, Lin BMT and Toker A (2000b). Makespan
minimization in the two-machine flowshop batch scheduling
problem. Nav Res Log 47: 128–144.

Herrmann JW and Lee CY (1992). Three-machine look-ahead
scheduling problems. Research Report No. 92–93, Department of
Industrial Engineering, University of Florida, FL.

Hwang FJ (2011). Scheduling problems subject to fixed
job sequences. PhD Dissertation, Institute of Information
Management, National Chiao Tung University, Taiwan.

Hwang FJ and Lin BMT (2011). Coupled-task scheduling on a
single machine subject to a fixed-job-sequence. Comput Indust
Eng 60: 690–698.

Hwang FJ, Kovalyov MY and Lin BMT (2010). Minimization of
total completion time in flowshop scheduling subject to fixed job
sequences. In: Proceedings of 12th International Workshop on
Project Management and Scheduling, Tours, France, pp 249–252.

Johnson SM (1954). Optimal two- and three-stage production
schedules with setup times included. Nav Res Log Q 1: 61–68.

Lee CY, Cheng TCE and Lin BMT (1993). Minimizing the
makespan in the 3-machine assembly-type flowshop scheduling
problem. Mngt Sci 39: 616–625.

Ma

Mb

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3

B1 B2

s 1 s 32

1 2 3

M2

4

4

4

14 15

s

B3

Figure 6 Optimal schedule (2, 3, 4, 2).

844 Journal of the Operational Research Society Vol. 63, No. 6

Lin BMT and Cheng TCE (2005). Two-machine flowshop batching
and scheduling. Ann Opns Res 133: 149–161.

Lin BMT and Cheng TCE (2006). Two-machine flowshop
scheduling with conditional deteriorating second operations.
Int Trans Opl Res 13: 91–98.

Lin BMT and Cheng TCE (2011). Scheduling with centralized
and decentralized batching policies in concurrent open shops.
Nav Res Log 58: 17–27.

Lin BMT and Hwang FJ (2011). Total completion time minimiza-
tion in a 2-stage differentiation flowshop with fixed sequences per
job type. Inform Process Lett 111: 208–212.

Lin BMT, Cheng TCE and Chou ASC (2007). Scheduling in an
assembly-type production chain with batch transfer. Omega—Int
J Mngt Sci 35: 143–151.

Ng CT and Kovalyov MY (2007). Batching and scheduling in
a multi-machine flow shop. J Scheduling 10: 353–364.

Potts CN and Kovalyov MY (2000). Scheduling with batching:
A review. Eur J Opl Res 120: 228–249.

Potts CN and Van Wassenhove LN (1992). Integrating scheduling
with batching and lot-sizing: A review of algorithms and
complexity. J Opl Res Soc 43: 395–406.

Potts CN and Whitehead JD (2007). Heuristics for a
coupled-operation scheduling problem. J Opl Res Soc 58:
1375–1388.

Shafransky YM and Strusevich VA (1998). The open shop
scheduling problem with a given sequence of jobs on one
machine. Nav Res Log 45: 705–731.

Received February 2011;
accepted June 2011 after one revision

FJ Hwang and BMT Lin—Two-stage assembly-type flowshop batch scheduling problem 845

