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While implementing an loT platform called loTtalk,
| once designed a mechanism most suitable for
executing a lambda function (A -function). | have
always had a soft spot for “lambda”.

| took my first computer theory course at the University
of Washington in Seattle in September 1986. Professor
Paul Yang always mentioned "Church’s lambda,
Turing’s machine" during class. These terms seemed
like gangster slang or gang signs to me. When |
looked around, my white classmates sitting nearby
listened with relish, nodded frequently, and laughed
and chattered as if they actually understood. I, on the
other hand, was totally lost and felt like an insignificant
chicken standing among a flock of superior cranes. |
was afraid to ask questions for fear of being laughed
at by others.

Rushing into the library right after class, | flipped
through books to figure out what Church’s lambda
was. At last, | realized that Church was the surname
of Alonzo Church, a mathematician and the advisor
to Alan Mathison Turing. In 1930, on the basis of
mathematical logic, Church proposed the A -calculus,
which defined the rules of variable binding and
substitution to develop a formal system based on
functions and recursion. The A -calculus is a general
computational model that emphasizes the usage of
functional transformation rules rather than the specific
machines that implement them.

Church's student Turing also introduced a simple
abstract machine, later known as the "Turing
machine," that expresses another computational
model equivalent in power to the lambda algorithm.
A Turing machine is not a computation model for
practical problems because of its extremely low
execution efficiency. Nevertheless, it inspired future
generations to imagine that such devices could solve
computing problems.

Turing proves rigorously that there is no algorithm that
will determine whether a given Turing machine will
halt. Even though Church's equivalence proof in the
A -calculus was published a few months earlier than
Turing, Turing's approach is much more intuitive, and
easier for readers to understand.

Although the A -calculus was considered unintuitive at
the time, a A -function, derived from the A -calculus,
is widely used in modern programming languages
such as Java, C#, and Python. The A -calculus
clearly defines what a "computable function" is. Any
computable function can be expressed and evaluated
using a A -function, which is equivalent to the
calculation process of a single-tape Turing machine.
A A -function is an anonymous function with no need
for a user-defined name. A single-line expression of a
A -function with concise syntax can carry out powerful
functionality. Therefore, a A -function is quite suitable
for simple logical operations.

Being implemented in Python, the loTtalk | developed
presented loT devices (sensors and actuators) as
icons with a graphical user interface. These 0T icons
could be connected, and | placed small clickable
circles on the links between icons. The original design
of this small circle was to provide a mechanism
to embed a A -function so as to generate elegant
functions. It was a pity that some loTtalk users did
not even know my ingenuity and always wrote blunt
functions based on von Neumann's architecture. All
my efforts were in vain, just as a smiley beauty winked
at a blind. | could do nothing but murmur, “What a
waste!”
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