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Vibration-based damage detection methods are simple and conventionally adopted to monitor the struc-
tural health of buildings. This work proposes a simple and efficient approach to locating the storeys
whose properties (stiffness and mass) change in the life cycle of a shear building. The storeys that may
be damaged are determined by comparing the natural frequencies of sub-structures in different stages
in the life cycle of a building. An appropriate ARX (autoregressive with exogenous input) model of a
sub-structure of a shear building is established from the sub-structural dynamic responses in terms of
acceleration or velocity. The parameters in an ARX model of a sub-structure are identified through the
continuous wavelet transform, and the natural frequency and damping ratio of the sub-structure are esti-
mated directly through these identified parameters. The effectiveness of the proposed procedure is ver-
ified using the numerically simulated earthquake acceleration responses and ambient vibration
responses of a six-storey shear building that is damaged at one or two storeys with different damage lev-
els. The effect of noise on the accuracy of the proposed approach is also examined. The proposed scheme
is demonstrated to be superior to COMAC (Coordinate Modal Assurance Criterion) and the frequency
response function curvature method in identifying damaged storeys. The proposed method is also applied
to process the dynamic responses of three five-storey steel frames, which are not shear buildings, in shak-
ing table tests. The differences in the floor mass or storey stiffness among these frames are accurately
reflected in the sub-structural natural frequencies that are obtained by the proposed approach.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A structure may sustain damage either when subjected to
severe loading, such as a strong earthquake, or when its material
is degraded. The serviceability and safety of structures depend on
the detection and location of structural damage. Early detection
of structural degradation can prevent catastrophic failure. Research
on structural health monitoring has been expanding rapidly over
the last two decades.

Reviews of the literature [1–8] agree that vibration-based
damage detection methods are simple and widely adopted.
Vibration-based damage detection methods utilize the dynamic
characteristics (modal frequencies, damping ratios, and modal
shapes) of a whole structure. These dynamic characteristics of a
structure are known to be functions of its stiffness or mass distribu-
tion, and are identified from its dynamic responses. Theoretically,
changes in stiffness and mass of a structure should lead to changes
ll rights reserved.
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in its dynamic characteristics. Cawley and Adams [9], Hearn and
Tesla [10], Friswell et al. [11], Messina et al. [12], and Zapico and
González [13] presented various methods that exploit the modal
frequencies of full structures to detect damage. These methods
are not very effective because modal frequencies mainly depend
on the global behaviors of the structure, whereas damage is a rather
local phenomenon. Some indexes that are based on modal shapes
have been proposed. They include such as MAC (Modal Assurance
Criterion) [14,15], COMAC (Coordinate Modal Assurance Criterion)
[15–17], MSE (Modal Strain Energy) [18–21], EEQ (Elemental
Energy Quotient) [22], and EMSEC (Elemental Modal Strain Energy
Change) [23,24]. Although MAC and COMAC are easy to apply, they
are not very sensitive to the existence of damage. To estimate the
MSE, EEQ and EMSEC for a damaged structure, the stiffness matrix
of the structure in undamaged state, which is difficult to accurately
determine, is needed. Pandey et al. [25] employed curvature mode
shapes to locate damage in a beam, and Sampaio et al. [26] further
proposed FRFCM (frequency response function curvature method)
and evaluated the efficiency of this method using numerically sim-
ulated data and experimental data for a real bridge. Using modal
frequencies and modal shapes, Lin [27] and Pandey and Biswas
[28] established flexibility matrices of a structure in undamaged
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and damaged states, and located damage by considering changes in
the components of the flexibility matrices. Patjawit and Kanok-
Nukulchai [29] further developed a global flexibility index to infer
the degradation of highway bridges.

As complex systems, civil structures normally have substantial
redundancy, and are modeled with a large number of degrees of
freedom (DOFs). Practical limitations allow only a limited number
of sensors to be installed in a structural health monitoring system,
and the measured responses do not yield information about all of
the degrees of freedom of the structures. Using these incomplete
measurements to determine important parameters of a full struc-
ture may not provide a unique solution. To solve these problems,
sub-structural identification techniques have been proposed. Koh
et al. [30] adapted the extended Kalman filter by adding a weighted
global iteration algorithm to determine the stiffness matrix and the
damping matrix of a sub-structure through solving the state and
observation equations of the sub-structure. This approach needs
acceleration, velocity and displacement responses of the sub-struc-
tures under consideration. There is not an efficient way to accu-
rately measure displacement responses of a structure under
earthquake. The displacement responses required in an identifica-
tion method are typically obtained from integrating measured
acceleration or velocity responses, and an appropriate integration
scheme must be carefully used. This approach was further modi-
fied to use acceleration responses only in [31], where a non-classi-
cal approach of genetic algorithms was applied. Zhao et al. [32]
estimated the stiffness matrix and the damping matrix of a sub-
structure in the frequency domain using an iteration algorithm.
Yun and Bahng [33] evaluated sub-structural parameters using a
back-propagation neural network, with modal data as inputs and
sub-matrix scaling factors as outputs. This approach assumes the
availability of the mass matrix. Yun et al. [34] extended their ap-
proach [33] to estimate the joint damages of a steel structure.
Huang and Yang [35] developed an adaptive damage tracking tech-
nique for sub-structures, known as sequential nonlinear least-
square estimation with unknown inputs and unknown outputs. It
is a recursive approach, whose accuracy is sensitive to noise in
the measured data. They considered only 2% noise, which is usually
too low in a real application.

The dynamic behaviors of a building differ markedly from those
of other structures. The assumption of rigid floors is valid for most
buildings and three DOFs (two horizontal displacement compo-
nents and one torsion angle) are needed to describe the horizontal
motions of each floor in an earthquake. When a building is sym-
metrical, the horizontal displacement components and torsion an-
gle of each floor are uncoupled. Moreover, if the bending of beam
and the effect of axial force on column stiffness are neglected,
the behaviors of a symmetrical building are close to those of a
shear building model considered here. Accordingly, the building
can be divided into numerous sub-structures, including only two
or three floors, and the availability of measurements on the sub-
structures of interest can be reasonably assumed.

This work presents a simple and efficient approach for deter-
mining the storeys of a shear building whose properties change.
This work establishes sub-structural ARX (autoregressive with
exogenous input) models from the dynamic responses of various
sub-structures of a shear building to estimate their natural fre-
quencies. The measured responses are in terms of acceleration or
velocity. The acceleration responses are used herein. Then, the
sub-structural natural frequencies in the reference stage (without
damage) are compared with those in the current stage (possibly
damaged), to locate easily any damaged storeys. The sub-structural
ARX models are developed via the continuous wavelet transform.
Although the natural frequencies of an entire building represent
global behaviors, those of its sub-structures reflect local behaviors.
The proposed procedure is validated using the numerically sim-
ulated earthquake acceleration responses and ambient vibration
velocity responses of a six-storey shear building. A series of cases,
involving various degrees of single-site and dual-site damage, is
examined. The effect of noise on diagnosis of the damage of the
building is also investigated. Then, the proposed approach is fur-
ther applied to the dynamic responses of three five-storey steel
frames in shaking table tests. These frames are not shear buildings.
Their fourth storeys may have a different mass or stiffness from the
other storeys. One of the frames was shaken under a small and a
large earthquake inputs, such that it responded linearly in the
small earthquake, and its columns in the first storey yielded in
the large earthquake. The differences between the frames are cap-
tured by the sub-structural natural frequencies that are evaluated
by the proposed approach. For comparison, MAC is also adopted for
damage detection, and COMAC and a frequency response function
curvature method-based index [26] are also employed to locate the
damaged storeys.

2. Evaluation of modal parameters by wavelet transform

The equations of motion of a linear structure are,

M€xþ C _xþ Kx ¼ f; ð1Þ

where M, C and K are mass, damping, and stiffness matrices, respec-
tively; €x, _x and x are the acceleration, velocity and displacement re-
sponse vectors of the system; and f is the input force vector. Eq. (1)
can be discretized as [36]

yðtÞ ¼
XI

i¼1;2

Uiyðt � iÞ þ
XJ

j¼0;1

Hjfðt � jÞ; ð2Þ

where y(t � i) and f(t � i) are the measured responses, in terms of
acceleration, velocity or displacement, and the forces at time
t � iDt, respectively; I and J denote the lags of output and input,
respectively, Ui and Hj are coefficient matrices. Notably, Eq. (2) is
the time series model ARX with multiple variables without noise
terms, and shows the relations between output vector y and input
vector f. Huang [36] demonstrated that I and J theoretically equal
two when the acceleration responses without noise for all degrees
of freedom are used to establish Eq. (2). When incomplete measure-
ments with noise are utilized to develop Eq. (2), I and J of larger than
two should be used.

Treating y(t � i) and f(t � i) as vector functions, and applying
the continuous wavelet transform to Eq. (2) yields

Wwyða; �bÞ ¼
XI

i¼1

UiWwyða; �b� iÞ þ
XJ

j¼0

HjWwfða; �b� jÞ; ð3Þ

where the continuous wavelet transform of a function f(t) is defined
as

Wwf ða; bÞ ¼ 1ffiffiffi
a
p

Z 1

�1
f ðtÞw� t � b

a

� �
dt; ð4Þ

the superscript � denotes the complex conjugate; a is a dilation or
scale parameter; b is a translation parameter, and w(t) is a mother
wavelet function. The translation parameter b is set to �bDt, and �b is
an integer because b must be a discrete number when the transfor-
mation is applied to discrete responses.

One can obtain the following equations in matrix form from Eq.
(3) with various �b,

½Yð0Þ� ¼ ½bC� Y
F

� �
; ð5Þ

where
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Fig. 1. A discrete model of shear building.
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½bC� ¼ U1 U2 � � � UI H0 H1 � � � HJ½ �; ð6aÞ

Y ¼ ½Yð1Þ�T ½Yð2Þ�T � � � ½YðIÞ�T
� �T

; ð6bÞ

F ¼ ½Fð0Þ�T ½Fð1Þ�T � � � ½FðJÞ�T
� �T

; ð6cÞ

½YðiÞ� ¼ ½Wwyða;max�iÞWwyða;max�i

þ 1Þ � � �Wwyða;max�iþmÞ�; ð6dÞ

½FðiÞ� ¼ ½Wwfða;max�iÞWwfða;max�iþ 1Þ � � �Wwfða;max�iþmÞ�;
ð6eÞ

and max refers to the value of the larger of the pair I and J, so that
�b� i or �b� j does not become negative in Eq. (3). In Eqs. (6d) and
(6e), m is set to a sufficiently large number to yield an over-deter-
mined system of linear algebraic equations for the unknown coeffi-
cients in [bC] in Eq. (5).

Huang and Su [37] demonstrated that the main advantage of
this procedure over other methods in evaluating the modal param-
eters is that this procedure can filter out unwanted frequency com-
ponents if an appropriate value of a is selected and estimate the
coefficient matrices in the same domain (wavelet domain). In the
following, Meyer wavelets [38] are employed to establish Eq. (3).
The Meyer wavelet function is explicitly defined in the frequency
domain and is like a band-pass filter. Certainly, different wavelet
functions can be selected to establish Eqs. (5) and (6). Huang and
Su [37] also showed that accurate modal parameters could be iden-
tified by properly choosing a, I and J, regardless of the wavelet
function that is adopted.

After the coefficient matrices are determined from Eq. (5) using
a conventional least squares approach, a matrix [G] can be con-
structed from these coefficients matrices as follows:

½G� ¼

0 I 0 0 � � � 0

0 0 I 0 � � � 0

..

.

UI UI�1 U1

26666664

37777775 ð7Þ

where I is an unit matrix. Then, the modal parameters (natural fre-
quencies, damping ratios and mode shapes) of the structure can be
estimated from the eigenvalues and eigenvectors of [G] [39]. Let kk

and {/k} represent the kth eigenvalue and eigenvector of [G],
respectively. The eigenvalue kk is normally a complex number,
and is set to ~ak þ i~bk. The frequency and damping ratio of the system
are computed by

~bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k þ b2
k

q
; nk ¼ �ak=~bk ð8Þ

where

bk ¼
1
Dt

tan�1
~bk

~ak

 !
; ak ¼

1
2Dt

lnð~a2
k þ ~b2

kÞ; ð9Þ

~bk is the pseudo-undamped circular natural frequency, and nk is the
modal damping ratio. The kth mode shape can be determined from
{/k} following the procedure of Huang [39].

3. Sub-structure formulation

A damped MDOF shear building with n DOFs has diagonal M,
and tri-diagonal K and C. This structure can be simply displayed
as in Fig. 1. The corresponding M, K and C are, respectively,

M ¼ diagðmnmn�1 � � �m2m1Þ; ð10aÞ
K ¼

kn �kn

�kn kn þ kn�1 �kn�1 0
�kn�1 kn�1 þ kn�2 �kn�2

�kn�2 � �
� � �

0 � k3 þ k2 �k2

�k2 k2 þ k1

2666666664

3777777775
;

ð10bÞ

C ¼

cnn cnðn�1Þ

cnðn�1Þ cðn�1Þðn�1Þ cðn�1Þðn�2Þ 0
cðn�1Þðn�2Þ cðn�2Þðn�2Þ �

� � �
� � �

0 � c22 c21

c21 c11

2666666666664

3777777777775
: ð10cÞ

These matrices enable a shear building to be easily decomposed
into sub-structures that have two or three DOFs. If the jth sub-
structure is defined as having j � 1th, jth and j + 1th DOFs when
j – n and j – 1, then the first sub-structure is associated with the
first and second DOFs, while the nth sub-structure has the (n � 1)th
and nth DOFs.

Consequently, the equation of motion of the jth (j – nand j – 1)
sub-structure can be expressed as

mj€xj þ cjj _xj þ ðkj þ kjþ1Þxj ¼ fj þ kjþ1xjþ1 þ kjxj�1 � cðjþ1Þj _xjþ1

� cjðj�1Þ _xj�1: ð11Þ

If using €xj as the output and fj, €xj�1and €xjþ1 as the inputs to establish
a proper multiple-input/single-output (MISO) ARX model and
identifying the modal parameters, one should be able to find the
natural frequency of the jth sub-structure, which is theoreticallyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkj þ kjþ1Þ=mj

p
(Hz).

Rearranging Eq. (1) with M, C and K as given in Eqs. (10a), (10b),
and (10c) yields the following equations in terms of relative
acceleration, velocity, and displacement of two floors,

mn€xr
n þ cnn _xr

n þ knxr
n ¼ fn �mn€xn�1 � ðcnn þ cnðn�1ÞÞ _xn�1 for j ¼ n

ð12aÞ

mj€xr
j þ ðcjj þ cðjþ1ÞjÞ _xr

j þ kjxr
j

¼ fj �mj€xj�1 � ðcðjþ1Þj þ cjj þ cjðj�1ÞÞ _xj�1 � cðjþ1Þj _xr
jþ1 þ kjþ1xr

jþ1

for j ¼ 2 � ðn� 1Þ ð12bÞ



Table 1
Descriptions of simulated damage cases.

No. of damage case Description of damage case

1 Reduce 10% of k1 at first storey
2 Reduce 20% of k1 at first storey
3 Reduce 10% of k5 at fifth storey
4 Reduce 20% of k5 at fifth storey
5 Reduce 10% of k1 & 10% of k4

6 Reduce 10% of k1 & 20% of k4

7 Reduce 10% of k4 & 10% of k5

8 Reduce 20% of k4 & 10% of k5
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m1€x1 þ c11 _x1 þ k1x1 ¼ f1 � c21 _xr
2 þ k2xr

2 for j ¼ 1 ð12cÞ
where xr
j ¼ xj � xj�1. If an MISO ARX model with €xr

j as output and fj,
€xj�1 and €xr

jþ1 as inputs is constructed for each j = 2 to (n � 1), then
the natural frequency of the jth sub-structure, which is theoreticallyffiffiffiffiffiffiffiffiffiffiffiffi

kj=mj

p
(Hz), should be determinable. Consequently, establishing an

ARX model equivalent to Eq. (12b) is better than finding an equiva-
lent ARX model equivalent to Eq. (11) in locating the damaged
storeys because a change in kj alters the natural frequency given
by Eq. (12b) more than that given by Eq. (11).

A significant problem arises in establishing an MISO ARX model
that is equivalent to Eq. (12b) with j = n � 1 from the earthquake
responses or free vibration responses. For a building in an earth-
quake, fn = �mnag and fn-1 = �mn�1ag where ag is the base excitation
Fig. 2. Simulated earth
acceleration. An ARX model with €xr
n�1 as an output and ag, €xn�2 and

€xr
n as inputs is not uniquely related to Eq. (12b). From Eqs. (12a)

and (12b) with j = n � 1 one can obtain

ðmn�1 þmnÞ€xr
n�1 þ ðcðn�1Þðn�1Þ þ cnn þ 2cnðn�1ÞÞ _xr

n�1 þ kn�1xr
n�1

¼ �ðmn þmn�1Þ€xg � ðmn�1 þmnÞ€xn�2 � ðcnn þ 2cnðn�1Þ

þ cðn�1Þðn�1Þ þ cðn�1Þðn�2ÞÞ _xn�2 �mn€xr
n þ ðcnðn�1Þ � cnnÞ _xr

n ð13Þ

Twice differentiating Eq. (12b) with j = n � 1 and Eq. (13) with
respect to t and discretizing the resulting equations by a typical
central difference technique yield, respectively,

€xr
n�1ðtÞ ¼

X2

i¼1

~/i€xr
n�1ðt � iÞ þ

X2

j¼0

~hj~yðt � jÞ ð14Þ

€xr
n�1ðtÞ ¼

X2

i¼1

�/i€xr
n�1ðt � iÞ þ

X2

j¼0

�hj~yðt � jÞ ð15Þ

where ~/1 ¼
1
â

2mn�1

Dt2 � kn�1

� �
;

~/2 ¼ �
1
â

mn�1

Dt2 �
cðn�1Þðn�1Þ þ cnðn�1Þ

2Dt

� �
;

~h0 ¼
1
â
�mn�1

Dt2 ; �mn�1

Dt2 �
cðn�1Þðn�1Þ þ cnðn�1Þ þ cnðn�2Þ

2Dt
; �cnðn�1Þ

2Dt

� �
;

quake responses.
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~h1 ¼
1
â

2mn�1

Dt2 ;
2mn�1

Dt2 ; kn

� �
;

~h2 ¼
1
â
�mn�1

Dt2 ; �mn�1

Dt2 þ
cðn�1Þðn�1Þ þ cnðn�1Þ þ cnðn�2Þ

2Dt
;

cnðn�1Þ

2Dt

� �
;

�/1 ¼
1
�a

2ðmn�1 þmnÞ
Dt2 � kn�1

� �
;

�/2 ¼ �
1
�a

mn�1 þmn

Dt2 � cnn þ 2cnðn�1Þ þ cðn�1Þðn�1Þ

2Dt

� �
;

�h0¼
1
�a
�mnþmn�1

Dt2 ; �2mn�1

Dt2 �
cnnþ2cnðn�1Þþcðn�1Þðn�1Þþcðn�1Þðn�2Þ

2Dt
;

�
�cnðn�1Þþcnn

2Dt
�mn

Dt2

�
;

�h1 ¼
1
�a

2ðmn þmn�1Þ
Dt2 ;

4mn�1

Dt2 ;
2mn

Dt2

� �
;

�h2¼
1
�a
�mnþmn�1

Dt2 ; �2mn�1

Dt2 þ
cnnþ2cnðn�1Þþcðn�1Þðn�1Þþcðn�1Þðn�2Þ

2Dt
;

�
cnðn�1Þþcnn

2Dt
�mn

Dt2

�
;

~yðt � jÞ ¼ agðt � jÞ; €xn�2ðt � jÞ; €xr
nðt � jÞ

	 
T
;

â ¼ mn�1

Dt2 þ
cðn�1Þðn�1Þ þ cnðn�1Þ

2Dt
;

�a ¼ mn�1 þmn

Dt2 þ cnn þ 2cnðn�1Þ þ cðn�1Þðn�1Þ

2Dt
:

Eqs. (14) and (15) are ARX models with the same form but different
coefficients. Hence, when €xr

n�1 is used as an output and ag, €xn�2 and
€xr

n are used as inputs of an ARX model, if the differential equation
Table 2
Identified modal parameters of full structures.

No. of damage case Modal parameters Mode

1 2

1 (�10% k1) �f n(Hz) 0.755(0.755) 2.23
n(%) 5.51(5.51) 2.49
MAC 1.00(1.00) 1.00

2 (�20% k1) �f n(Hz) 0.740(0.740) 2.19
n(%) 5.61(5.61) 2.51
MAC 1.00(1.00) 1.00

3 (�10% k5) �f n(Hz) 0.765(0.765) 2.22
n(%) 5.44(5.44) 2.49
MAC 1.00(1.00) 1.00

4 (�20% k5) �f n(Hz)) 0.761(0.761) 2.17
n(%) 5.47(5.47) 2.51
MAC 1.00(1.00) 1.00

5 (�10% k1 and k4) �f n(Hz) 0.749(0.749) 2.20
n(%) 5.55(5.55) 2.50
MAC 1.00(1.00) 1.00

6 (�10% k1 and �20% k4) �f n(Hz) 0.743(0.743) 2.17
n(%) 5.59(5.59) 2.52
MAC 1.00(1.00) 1.00

7 (�10% k4 and k5) �f n(Hz) 0.759(0.759) 2.20
n(%) 5.48(5.48) 2.50
MAC 1.00(1.00) 1.00

8 (�20% k4 and �10% k5) �f n(Hz) 0.752(0.752) 2.17
n(%) 5.53(5.53) 2.52
MAC 1.00(1.00) 1.00

Intact �f n(Hz) 0.767(0.767) 2.26
n(%) 5.43(5.43) 2.47
that is equivalent to the ARX model cannot be determined, then
the natural frequency that is evaluated from the established ARX
model is useless. Unfortunately, establishing a rule to determine
the differential equation that correctly corresponds to an estab-
lished ARX model is generally impossible because twice differenti-
ating any linear combinations of Eq. (12b) with j = n � 1 and Eq.
(13) with respect to t yield the ARX models that have the same form
as that given in Eqs. (14) and (15). The conclusion is the same when
free vibration responses are utilized to establish an ARX model.

To overcome the aforementioned difficulty in identifying the
natural frequency of the (n � 1)th sub-structure, a multiple-in-
put/multiple-output (MIMO) ARX model is firstly constructed with
€xn and €xn�1 as outputs and ag and €xn�2 as inputs. The theoretical
natural frequencies that are identified from such an MIMO ARX
model are denoted x1 and x2 (rad/s). The established MIMO ARX
model corresponds to the following equations of motion for the
nth and (n � 1)th DOFs,

mn 0
0 mn�1

� �
€xn

€xn�1

� �
þ

cnn cnðn�1Þ

cnðn�1Þ cðn�1Þðn�1Þ

� �
_xn

_xn�1

� �
þ

kn �kn

�kn kn þ kn�1

� �
xn

xn�1

� �
¼
�mnag

�mn�1ag

� �
þ

0
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The following relation

x1x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn�1kn

mn�1mn

s
ð17Þ

is easy to find from Eq. (16). Notably,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn=mn

p
(rad/s) is the theoret-

ical natural frequency determined from Eq. (12a) and can be iden-
tified from the MISO ARX model established with €xr

n as an output

and ag and €xn�1 as inputs. Consequently,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn�1=mn�1

p
(rad/s), which
3 4 5 6

(2.23) 3.58(3.58) 4.73(4.73) 5.62(5.62) 6.18(6.18)
(2.49) 2.24(2.24) 2.33(2.33) 2.47(2.47) 2.58(2.58)
(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00)

(2.19) 3.54(3.54) 4.70(4.70) 5.60(5.60) 6.17(6.17)
(2.51) 2.24(2.24) 2.32(2.32) 2.47(2.47) 2.58(2.58)
(1.00) 0.99(0.99) 0.99(0.99) 1.00(1.00) 1.00(1.00)

(2.22) 3.59(3.59) 4.76(4.76) 5.55(5.55) 6.13(6.13)
(2.49) 2.24(2.24) 2.33(2.33) 2.46(2.46) 2.57(2.57)
(1.00) 1.00(1.00) 1.00(1.00) 0.98(0.98) 0.98(0.98)

(2.17) 3.56(3.56) 4.75(4.75) 5.46(5.46) 6.09(6.09)
(2.51) 2.24(2.24) 2.33(2.33) 2.44(2.44) 2.57(2.57)
(1.00) 0.99(0.99) 1.00(1.00) 0.94(0.94) 0.95(0.95)

(2.20) 3.57(3.57) 4.66(4.66) 5.61(5.61) 6.09(6.09)
(2.50) 2.24(2.24) 2.32(2.32) 2.47(2.47) 2.57(2.57)
(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00)

(2.17) 3.55(3.55) 4.58(4.58) 5.61(5.61) 6.00(6.00)
(2.52) 2.24(2.24) 2.31(2.31) 2.47(2.47) 2.55(2.55)
(1.00) 1.00(1.00) 0.98(0.98) 0.99(0.99) 0.98(0.98)

(2.20) 3.57(3.57) 4.69(4.69) 5.54(5.54) 6.04(6.04)
(2.50) 2.24(2.24) 2.32(2.32) 2.46(2.46) 2.56(2.56)
(1.00) 1.00(1.00) 1.00(1.00) 0.96(0.96) 0.96(0.96)

(2.17) 3.56(3.56) 4.62(4.62) 5.52(5.52) 5.97(5.97)
(2.52) 2.24(2.24) 2.31(2.31) 2.46(2.46) 2.54(2.54)
(1.00) 0.99(0.99) 0.98(0.98) 0.93(0.93) 0.92(0.92)

(2.26) 3.62(3.62) 4.77(4.77) 5.64(5.64) 6.18(6.18)
(2.47) 2.24(2.24) 2.33(2.33) 2.48(2.48) 2.59(2.59)



Table 3
Frequencies and damping ratios of sub-structures identified from simulated earthquake responses without noise.

No. of damage case Modal parameters Sub-structure

1 2 3 4 5 6

1 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18)
(�10% k1) n(%) 2.27(2.27) 2.25(2.25) 2.25(2.25) 2.25(2.25) / (2.25) 2.25(2.25)

2 �f n(Hz) 2.85(2.85) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18)
(�20% k1) n(%) 2.29(2.29) 2.25(2.25) 2.25(2.25) 2.25(2.25) / (2.25) 2.25(2.25)

3 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.02(3.02) 3.18(3.18)
(�10% k5) n(%) 2.25(2.25) 2.25(2.25) 2.25(2.25) 2.25(2.25) / (2.27) 2.25(2.25)

4 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18) 2.85(2.85) 3.18(3.18)
(�20% k5) n(%) 2.25(2.25) 2.25(2.25) 2.25(2.25) 2.25(2.25) / (2.29) 2.25(2.25)

5 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.18(3.18) 3.02(3.02) 3.18(3.18) 3.18(3.18)
(�10% k1 and k4) n(%) 2.27(2.27) 2.25(2.25) 2.25(2.25) 2.27(2.27) / (2.25) 2.25(2.25)

6 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.18(3.18) 2.85(2.85) 3.18(3.18) 3.18(3.18)
(�10% k1 and �20% k4) n(%) 2.27(2.27) 2.25(2.25) 2.25(2.25) 2.29(2.29) / (2.25) 2.25(2.25)

7 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.02(3.02) 3.02(3.02) 3.18(3.18)
(�10% k4 and k5) n(%) 2.25(2.25) 2.25(2.25) 2.25(2.25) 2.27(2.27) / (2.27) 2.25(2.25)

8 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 2.85(2.85) 3.02(3.02) 3.18(3.18)
(�20% k4 and �10% k5) n(%) 2.25(2.25) 2.25(2.25) 2.25(2.25) 2.29(2.29) / (2.27) 2.25(2.25)

Intact �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.18(3.18)
n(%) 2.25(2.25) 2.25(2.25) 2.25(2.25) 2.25(2.25) / (2.25) 2.25(2.25)

Note: Those bold-face values are the sub-structural frequencies and damping ratios corresponding to the stories whose stiffness is changed. ‘‘/’’ indicates data not available.

Table 4
COMAC values and normalized results from FRFCM.

No. of damage case Method Floor

1 2 3 4 5 6

1 COMAC 1.00 1.00 1.00 1.00 1.00 1.00
(�10% k1) FRFCM 1.00 0.53 0.68 0.54 0.50 0.25

2 COMAC 0.99 0.99 0.99 1.00 1.00 1.00
(�20% k1) FRFCM 1.00 0.52 0.67 0.52 0.49 0.24

3 COMAC 1.00 0.99 0.99 0.99 0.99 1.00
(�10% k5) FRFCM 0.91 0.59 1.00 0.89 0.83 0.41

4 COMAC 0.99 0.98 0.97 0.98 0.97 0.99
(�20% k5) FRFCM 0.92 0.60 1.00 0.88 0.84 0.42

5 COMAC 1.00 0.99 1.00 1.00 1.00 1.00
(�10% k1 and k4) FRFCM 1.00 0.49 0.76 0.73 0.74 0.37

6 COMAC 0.98 0.98 1.00 0.99 0.99 1.00
(�10% k1 and �20% k4) FRFCM 1.00 0.46 0.83 0.88 0.91 0.46

7 COMAC 0.98 0.97 0.98 0.99 0.99 1.00
(�10% k4 and k5) FRFCM 0.89 0.46 0.87 0.96 1.00 0.50

8 COMAC 0.96 0.94 0.97 0.97 0.98 1.00
(�20% k4 and �10% k5) FRFCM 0.82 0.40 0.81 0.95 1.00 0.50
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is the theoretical natural frequency for the sub-structure described
by Eq. (12b) with j = n � 1, can be obtained using Eq. (17).

As a brief summary, the procedure of locating damaged storeys
from the earthquake responses of a shear building is as follows:

(1) Establish an MISO ARX model from €xr
n, ag and €xn�1 to identify

natural frequency,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn=mn

p
, and damping ratio,

cnn=ð2
ffiffiffiffiffiffiffiffiffiffiffi
mnkn

p
Þ,

(2) Establish MISO ARX models from €xr
j , ag, €xj�1 and €xr

jþ1 for j=2 to
n-2 to identify natural frequency,

ffiffiffiffiffiffiffiffiffiffiffiffi
kj=mj

p
, and damping

ratio, ðcjj þ cðjþ1ÞjÞ=ð2
ffiffiffiffiffiffiffiffiffiffi
mjkj

p
Þ,

(3) Construct an MISO ARX model from €x1, ag and €xr
2 to find nat-

ural frequency,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
, and damping ratio, c11=ð2

ffiffiffiffiffiffiffiffiffiffiffi
m1k1

p
Þ,

(4) Construct an MIMO ARX model from €xn, €xn�1, €xn�2, and ag to
determine

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkn�1knÞ=ðmn�1mnÞ

p
,

(5) Determine
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn�1=mn�1

p
from the results of steps (1) and (4),
(6) Compare the natural frequencies of all sub-structures in the
current state with those in the undamaged state to locate
the storeys that may have been damaged.

When free vibration responses of a building are processed, ag in
the above procedure is eliminated. Notably, the MISO ARX models
and MIMO ARX models are established and the corresponding fre-
quencies and damping ratios are determined using the procedure
given in the previous section.

4. Numerical simulation and comparisons

Numerically simulated responses of a six-storey shear building
were processed to demonstrate the accuracy and effectiveness of
the proposed approach in locating damaged storeys. The numerical
examples incorporate most of the complications encountered in
real applications, i.e., noise in the measurements of input and out-
put and multiple damaged storeys with damage of different sever-
ity. The stiffness and mass of each floor of the shear building are
ki = 40 kN/m and mi = 0.1 t, respectively. Rayleigh damping is as-
sumed, and the damping matrix is expressed as C = aM + bK, where
a = 0.5 s�1and b = 0.001 s. Eight cases of damage, including various
degrees of single-site and dual-site damage, given in Table 1, were
examined.

4.1. Simulating earthquake responses

The north-south component of the 1999 Chi–Chi earthquake,
which was recorded in a free field, was used to excite the shear
building. Fig. 2 displays the input excitations and the responses
of the second, fourth and sixth floors. The acceleration responses
of each floor and input base excitations, sampled at 250 Hz, were
used to determine the modal parameters in Table 2 for the full
structure under various damage conditions. Comparisons of the
natural frequencies (�f n) and damping ratios (n) thus obtained with
the theoretical values, given in parentheses in Table 2, reveal that
the identified natural frequencies and modal damping ratios are
accurate to three significant figures, demonstrating the accuracy
of the identification method based on the continuous wavelet
transform. Values of MAC indicate a correlation between the modal



Table 5
Frequencies and damping ratios of sub-structures identified from simulated earthquake responses with 20% noise.

No. of damage case Modal parameters Sub-structure

1 2 3 4 5 6

1 �f n(Hz) 3.01(3.02) 3.18(3.18) 3.18(3.18) 3.16(3.18) 3.19(3.18) 3.19(3.18)
(�10% k1) n(%) 2.94(2.27) 2.69(2.25) 2.50(2.25) 2.06(2.25) / (2.25) 2.30(2.25)

2 �f n(Hz) 2.84(2.85) 3.17(3.18) 3.18(3.18) 3.17(3.18) 3.18(3.18) 3.18(3.18)
(�20% k1) n(%) 2.11(2.29) 2.89(2.25) 2.58(2.25) 2.12(2.25) / (2.25) 2.43(2.25)

3 �f n(Hz) 3.17(3.18) 3.17(3.18) 3.17(3.18) 3.18(3.18) 3.02(3.02) 3.19(3.18)
(�10% k5) n(%) 2.10(2.25) 2.73(2.25) 2.30(2.25) 3.04(2.25) / (2.27) 2.29(2.25)

4 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.17(3.18) 3.20(3.18) 2.87(2.85) 3.18(3.18)
(�20% k5) n(%) 2.04(2.25) 2.78(2.25) 2.24(2.25) 3.97(2.25) / (2.29) 2.39(2.25)

5 �f n(Hz) 3.01(3.02) 3.18(3.18) 3.18(3.18) 3.02(3.02) 3.17(3.18) 3.19(3.18)
(�10% k1 and k4) n(%) 2.02(2.27) 2.83(2.25) 2.56(2.25) 2.32(2.27) / (2.25) 2.38(2.25)

6 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.18(3.18) 2.85(2.85) 3.20(3.18) 3.18(3.18)
(�10% k1 and �20% k4) n(%) 2.10(2.27) 2.85(2.25) 2.50(2.25) 2.53(2.29) / (2.25) 2.17(2.25)

7 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 3.01(3.02) 3.02(3.02) 3.19(3.18)
(�10% k4 and k5) n(%) 2.20(2.25) 2.79(2.25) 2.65(2.25) 2.76(2.27) / (2.25) 2.73(2.25)

8 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 2.83(2.85) 3.02(3.02) 3.19(3.18)
(�20% k4 and �10% k5) n(%) 2.17(2.25) 2.82(2.25) 2.68(2.25) 2.97(2.25) / (2.25) 2.72(2.25)

Intact �f n(Hz) 3.17(3.18) 3.17(3.18) 3.19(3.18) 3.19(3.18) 3.19(3.18) 3.19(3.18)
n(%) 2.06(2.25) 2.69(2.25) 2.62(2.25) 3.05(2.25) / (2.25) 2.16(2.25)

Note: Those bold-face values are the sub-structural frequencies and damping ratios corresponding to the stories whose stiffness is changed. ‘‘/’’ indicates data not available.
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shapes of the intact structure and those of the damaged structure.
Damage changes the natural frequencies of structures. Severe dam-
age as in case six causes changes in the frequencies of the second
and fourth modes of up to 3.98%. However, determining from the
values of MAC whether a structure is damaged or not is difficult
because most of the MAC values in Table 2 exceed 0.98, and are
too close to unity, except for the fifth and sixth modes in cases four,
seven and eight.

Table 3 summarizes the identified natural frequencies and
damping ratios of various sub-structures. In Table 3, the jth
sub-structure includes the (j � 1)th, jth and (j + 1)th floors when
j is not equal to one or six. The first sub-structure contains the
first and second floors while the sixth sub-structure contains
the fifth and sixth floors. The results in parentheses are exact
values. The identified results and the exact values are identical
to three significant figures. The damping ratio of the fifth sub-
structure is not available because the identification procedure
that was described in the preceding section does not give the
damping ratio of the (n � 1)th sub-structure. The locations of
the damaged storeys are assessed by the differences between
the natural frequencies of the damaged and undamaged sub-
structures. The damping ratios of the sub-structures are not
employed to locate the damaged storeys because the damping
ratios of a real building depend on its amplitude of vibration, and
the accuracy of the identified damping ratios is typically much
lower than that of the identified natural frequencies, especially
when responses are noisy.

Table 3 reveals that damage to a storey reduces the natural fre-
quency of the sub-structure that includes the damaged storey.
Comparisons of damage cases one and three with cases two and
four, respectively, demonstrate that the changes in the frequencies
of the sub-structures are proportional to the changes in the square
root of the stiffness of a damaged storey. Comparing the sub-struc-
tural natural frequencies in the intact structure with those in cases
five and six shows that only the natural frequencies of the first and
fourth sub-structures change, whereas the natural frequencies of
the other sub-structures do not change. The changes in the natural
frequencies of the first and fourth sub-structures in case six are
5.03% and 10.38%, respectively. The differences between the
sub-structural natural frequencies in the damaged and undamaged
states accurately reflect the changes in their stiffness. The results
also indicate that the present approach accurately locates multiple
storeys with various extents of damage. Comparisons of the results
in Tables 2 and 3 reveal that damage causes much more significant
change in the frequency of a sub-structure than in that of the full
structure. Accordingly, locating the damaged storeys using the nat-
ural frequencies of the substructures is easier than doing so using
the natural frequencies of a full structure.

To demonstrate further the superiority of the present approach
to some of the methods in the literature, Table 4 shows the values
of COMAC (coordinate modal assurance criterion) [16] and the nor-
malized results that were obtained using the frequency response
function curvature method (FRFCM) [26]. In FRFCM, the magnitude
of frequency response function for the ith DOF was simply esti-
mated by j€Xij=jAgj, where j€Xij and |Ag| are the magnitudes of the
Fourier transforms of relative acceleration responses of the ith
DOF and input acceleration, respectively, and the Fourier transform
is practically calculated at discrete circular frequencies using Fast
Fourier transform. The absolute differences between the frequency
response function curvatures of the damaged and undamaged
structures at floor i were computed for the frequency range from
0 to 10 Hz, which covers all of the natural frequencies. The values
of COMAC are between zero and unity. Larger values of COMAC
correspond to less damage in a DOF; larger normalized values ob-
tained by the FRFCM indicate more severe damage. Table 4 discov-
ers that the values of COMAC and the results from FRFCM do not
correctly identify the damaged storeys. Even when a storey is dam-
aged with a 20% decrease in stiffness (as in cases two and four), the
corresponding COMAC value is only slightly smaller than unity. Ex-
cept for the second floor in case eight, all of the values of COMAC
exceed 0.96, raising difficulty in correctly identifying the damaged
storeys. In damage cases one and two, although the greatest values
obtained by FRFCM are correctly at the first floor, the values for the
undamaged floors are not close to zero, and most are more than
50% of the maximum results. The highest values obtained from
FRFCM are at the undamaged floors in cases three and four. Com-
parison of the results in Tables 3 and 4 clearly reveals that the pro-
posed procedure outperforms the frequency response function
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curvature method or the use of COMAC in correctly locating the
damaged storeys.

Measured responses always contain some corrupting noise. To
simulate this fact, independent Gaussian white noise with a 20%
variance in the noise-to-signal ratio (NSR) was randomly added
to the computed acceleration responses and input base excitation.
Table 5 lists the sub-structural frequencies identified from the
Fig. 3. Simulated ambient vibration responses
noisy responses and input. Again, the results in parentheses are
theoretical values. The identified natural frequencies in all of the
damage cases agree excellently with the theoretical values. Com-
parison of the identified natural frequencies in Tables 3 and 5 re-
veals that 20% noise does not significantly influence the accuracy
of the present results. However, the noise markedly affects the
accuracy of the identified damping ratio of each sub-structure.
and corresponding Randomdec signatures.



Table 6
Frequencies and damping ratios of sub-structures identified from simulated ambient vibration responses with 20% noise.

No. of damage case Modal parameters Sub-structure

1 2 3 4 5 6

1 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.18(3.18) 3.17(3.18) 3.18(3.18) 3.18(3.18)
(�10% k1) n(%) 2.22(2.27) 2.57(2.25) 2.33(2.25) 2.24(2.25) / (2.25) 2.22(2.25)

2 �f n(Hz) 2.85(2.85) 3.18(3.18) 3.17(3.18) 3.17(3.18) 3.18(3.18) 3.18(3.18)
(�20% k1) n(%) 2.26(2.29) 2.59(2.25) 2.32(2.25) 2.07(2.25) / (2.25) 2.20(2.25)

3 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.17(3.18) 3.17(3.18) 3.02(3.02) 3.18(3.18)
(�10% k5) n(%) 2.21(2.25) 2.51(2.25) 2.30(2.25) 2.11(2.25) / (2.27) 2.23(2.25)

4 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.17(3.18) 3.18(3.18) 2.85(2.85) 3.18(3.18)
(�20% k5) n(%) 2.21(2.25) 2.39(2.25) 2.11(2.25) 2.06(2.25) / (2.29) 2.25(2.25)

5 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.17(3.18) 3.01(3.02) 3.18(3.18) 3.18(3.18)
(�10% k1 and k4) n(%) 2.22(2.27) 2.47(2.25) 2.20(2.25) 2.08(2.27) / (2.25) 2.21(2.25)

6 �f n(Hz) 3.02(3.02) 3.18(3.18) 3.17(3.18) 2.84(2.85) 3.18(3.18) 3.18(3.18)
(�10% k1 and �20% k4) n(%) 2.22(2.27) 2.53(2.25) 2.02(2.25) 2.14(2.29) / (2.25) 2.25(2.25)

7 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.17(3.18) 3.01(3.02) 3.02(3.02) 3.18(3.18)
(�10% k4 and k5) n(%) 2.22(2.25) 2.49(2.25) 2.11(2.25) 2.00(2.27) / (2.27) 2.22(2.25)

8 �f n(Hz) 3.18(3.18) 3.18(3.18) 3.18(3.18) 2.84(2.85) 3.02(3.02) 3.18(3.18)
(�20% k4 and �10% k5) n(%) 2.20(2.25) 2.36(2.25) 2.45(2.25) 2.02(2.29) / (2.27) 2.21(2.25)

Intact �f n(Hz) 3.18(3.18) 3.18(3.18) 3.17(3.18) 3.17(3.18) 3.18(3.18) 3.18(3.18)
n(%) 2.20(2.25) 2.59(2.25) 2.31(2.25) 2.10(2.25) / (2.25) 2.28(2.25)

Note: Those bold-face values are the sub-structural frequencies and damping ratios corresponding to the stories whose stiffness is changed. ‘‘/’’ indicates data not available.
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Fig. 4. A photo of frame ‘‘std’’ and simple sketch of frames ‘‘add-m’’ and ‘‘add-k’’.
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4.2. Simulating ambient vibration responses

Ambient vibration tests are popular in situ tests for monitoring
the dynamic behaviors of a structure. Unlike a system for monitor-
ing responses to earthquake, an ambient vibration measuring sys-
tem, especially a wireless system, is portable, and so can be easily
used to measure the dynamic responses of a structure anytime and
at any location. Therefore, measuring the ambient vibration re-
sponses of any sub-structure of a building is an easy task. To dem-
onstrate the applicability of the proposed procedure to processing
the ambient vibration responses of a building for locating possibly
damaged storeys, ambient vibration responses of the six-storey
shear building, considered in the previous section, are simulated
under an external force vector f = (1, 1, 1, 1, 1, 1)Ta, where a is a
white noise process with zero mean. Five minutes of ambient
vibration responses for all six DOFs were processed and sampled
at 200 Hz.

Since measured responses are normally contaminated by noise,
independent Gaussian white noise with a 20% variance in the
noise-to-signal ratio was randomly added to the computed velocity
responses. Processing the velocity responses without noise using
the random decrement technique [40] yielded Randomdec signa-
tures, which are equivalent to the free decay responses of the
structure [41]. Fig. 3 depicts parts of the noisy ambient vibration
responses and the corresponding Randomdec signatures. Natural
frequencies and damping ratios of sub-structures were obtained
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by employing the procedure that is presented in Section 3 to ana-
lyze the Randomdec signatures. For example, to estimate the nat-
ural frequency and damping ratio of the jth sub-structure, which
includes the (j � 1)th, jth and (j + 1)th DOFs, the random decre-
ment technique was applied to the noisy velocity responses of
these DOFs to obtain the auto-Randomdec signature and cross-
Randomdec signatures with respect to the responses of the jth
DOF. Let djj(t) be the obtained auto-Randomdec signature of the
responses of DOF j, while dj(j�1)(t) and dj(j + 1)(t) represent the
Fig. 5. The acceleration responses of frame ‘‘std’’ in the lo
cross-Randomdec signatures of the responses of DOFs (j � 1) and
(j + 1), respectively. Then, an MISO ARX model can be constructed
with ~dr

j ðtÞ as output and ~dr
jþ1ðtÞ and dj(j�1)(t) as inputs, where

~dr
j ðtÞ ¼ djjðtÞ � djðj�1ÞðtÞ and ~dr

jþ1ðtÞ ¼ djðjþ1ÞðtÞ � djjðtÞ. Then, the
natural frequency and damping ratio of the jth sub-structure are
estimated from the established MISO ARX model.

Table 6 summarizes the natural frequencies and damping ratios
that were obtained from the simulated ambient vibration re-
sponses with noise (NSR = 20%). The exact values are given in
ng-span direction subjected to 60% Kobe earthquake.



Table 7
Identified modal parameters of steel frames.

Frame Modal parameters Mode

1 2 3 4 5

std �f n(Hz) 1.40 4.53 8.23 12.39 15.98
n(%) 1.59 0.18 0.20 0.15 0.18

add-k �f n(Hz) 1.52 5.94 8.23 13.99 18.37
n(%) 1.81 0.20 0.16 0.14 1.66
MAC 0.99 0.91 1.00 0.65 0.80

add-m �f n(Hz) 1.34 4.52 8.06 11.93 15.73
n(%) 1.42 0.19 0.25 0.17 0.29
MAC 1.00 1.00 0.99 0.98 0.99

std-yield �f n(Hz) 1.35 4.44 8.08 12.18 15.48
n(%) 4.31 1.08 1.40 0.93 1.48
MAC 1.00 1.00 0.99 0.99 0.98

Table 8
Identified sub-structural frequencies and damping ratios of five-storey steel frames.

Frame Modal parameters Sub-structure

1 2 3 4 5

std �f n(Hz) 7.01 5.30 5.50 6.27 5.08
n(%) 0.20 0.12 0.87 / 0.45

add-k �f n(Hz) 7.14 5.73 6.19 12.98 5.78
n(%) 0.10 0.55 2.91 / 0.28

add-m �f n(Hz) 7.03 5.26 5.49 5.60 5.07
n(%) 0.21 0.11 0.71 / 0.47

std-yield �f n(Hz) 6.40 5.26 5.48 6.29 5.06
n(%) 0.65 0.74 2.74 / 2.06

Note: ‘‘/’’ denotes data unavailable.
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parentheses. The identified natural frequencies of the sub-struc-
tures agree excellently with the exact values with a difference of
less than 0.3%. The accuracy of the determined damping ratios is
not as high as that of the determined natural frequencies. The
damaged storeys in the various damage cases are easily and accu-
rately identified by comparing the sub-structural natural frequen-
cies of the damaged structures with those of the intact structure.
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Fig. 6. Comparison of the results obtained from different methods.
5. Application to steel frames in shaking table tests

Shaking table tests are often employed in laboratories to exam-
ine the behaviors of structures in an earthquake. To generate a set
of earthquake response data for benchmark models of five-storey
steel structures, NCREE (National Center for Research on Earth-
quake Engineering) conducted a series of shaking table tests on
three steel frames, which were 3 m long, 2 m wide and 6.5 m high
[42] (Fig. 4). These three frames are denoted ‘‘std’’, ‘‘add-m’’ and
‘‘add-k’’. Frame ‘‘add-k’’ is identical to ‘‘std’’ except that stiffening
braces were installed in its fourth storey, while frame ‘‘add-m’’ dif-
fers from ‘‘std’’ only in that its fourth storey is 25% heavier. In the
shaking table tests two accelerometers were installed in the long-
span direction at the two edges of each floor, respectively. The
average responses of the measured acceleration data at the two
edges were used in the following analyses.

The frames were subjected to base excitation by the Kobe earth-
quake with various reduction levels. Frame ‘‘add-m’’ and ‘‘add-k’’
were subjected to 10% and 8% Kobe earthquake, respectively.
Frame ‘‘std’’ was subjected to 8% and 60% Kobe earthquake. Fig. 5
plots the acceleration responses of the floors in the long-span
direction for frame ‘‘std’’, subjected to 60% Kobe earthquake. Nota-
bly, such an intense earthquake caused the columns in the first sto-
rey to yield. For convenience, the frame that responded nonlinearly
is denoted ‘‘std-yield’’ in the following analyses. The acceleration
responses of all floors at t = 5–10 s were used in evaluating modal
parameters for each frame. The responses were sampled at 200 Hz.

The acceleration responses of each floor and the base excita-
tions in the long-span direction were adopted to determine the
modal parameters for the full frames by employing the continuous
wavelet transform. Table 7 presents the results thus obtained. The
MAC values for ‘‘add-m’’, ‘‘add-k’’ and ‘‘std-yield’’ indicate the cor-
relation between the modal shapes of these frames and the modal
shapes of frame ‘‘std’’. The natural frequencies of ‘‘add-k’’, ‘‘add-m’’
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and ‘‘std-yield’’ differ significantly from those of ‘‘std’’. As expected,
frame ‘‘add-k’’ has higher natural frequencies than frame ‘‘std’’,
whereas frame ‘‘add-m’’ has lower natural frequencies. The MAC
values for ‘‘add-m’’ and ‘‘std-yield’’ all exceed 0.98 and do not
clearly reveal the differences in the modal shapes among the
frames.

These steel frames are not shear buildings. However, a shear
building model is adopted to fit the responses of a steel frame in
shaking table tests and to find the sub-structural natural frequen-
cies of the frame in order to explore the possible application of the
proposed method to a real building. Table 8 lists the identified sub-
structural frequencies for ‘‘std’’, ‘‘add-m’’, ‘‘add-k’’ and ‘‘std-yield’’.
Based on the design data of frame ‘‘std’’, the stiffness and mass of
each storey are uniform. Hence, under the assumption that the
structure is a shear building, all sub-structures were expected to
have the same natural frequencies. In fact, the identified frequen-
cies of the sub-structures varied, perhaps because the dynamic
behaviors of the steel frame differ considerably from those of a
shear building. The use of a shear building model to fit the re-
sponses of the frame is responsible for the unexpected results. An-
other cause is that the construction details, such as the welding of a
beam to a column, may not be consistent across all floors.

Comparing the sub-structural frequencies of frame ‘‘add-m’’
with those of frame ‘‘std’’ reveals that the main difference occurs
in the fourth sub-structure. The differences in the other sub-struc-
tures are relatively minor. This finding is expected because frame
‘‘add-m’’ was designed to different from ‘‘std’’ only in the mass of
the fourth storey.

A comparison of the sub-structural frequencies of frames ‘‘add-
k’’ and ‘‘std’’ discloses that the largest difference in frequency is at
the fourth sub-structure, indicating that these two frames differ
greatly in their fourth storeys. Significant frequency differences
in the other sub-structures may be caused by the difference be-
tween the dynamic behaviors of the frames and those of the shear
building models assumed herein.

The differences between the sub-structural frequencies for ‘‘std-
yield’’ and ‘‘std’’ are as expected: only the first sub-structure exhib-
its a considerable difference and other sub-structures exhibit only
slight differences. In real buildings, damage frequently occurs to
the first storey under a large earthquake because the first storey
is subjected to larger storey shear forces than the other storeys.
The results for ‘‘std-yield’’ and ‘‘std’’ indicate that the proposed ap-
proach is highly applicable to locate possible damage in the first
storey of a real building, even when the building may be very dif-
ferent from a shear building.

Fig. 6 compares the results obtained using the various methods.
The frame ‘‘std’’ is treated as a reference structure. Since the CO-
MAC values are always between zero and unity, the maximum val-
ues of the results from FRFCM were normalized to unity for
comparison. The frequency response functions that are required
in FRFCM were estimated by processing the acceleration responses
at t = 5–15 s (Fig. 5). The results denoted by ‘‘present’’ in Fig. 6 are
normalized relative changes in sub-structural frequencies. Fig. 6
clearly demonstrates that the proposed approach is superior to CO-
MAC and FRFCM in identifying the storey whose properties differ
from those of the corresponding storey in the reference structure.
The success of the proposed procedure, as revealed in capturing
the differences in properties of experimental frames, demonstrates
the practical applicability of this procedure to a real building with
symmetry.

6. Concluding remarks

The work developed a simple and efficient approach for identi-
fying damaged storeys in a shear building, based on the fact
that damage to a storey reduces the natural frequency of the
sub-structure that includes the damaged storey. Sub-structural
natural frequencies are directly determined from ARX models that
are established from the acceleration or velocity responses of
corresponding sub-structures using the continuous wavelet
transform. Comparing the natural frequencies of sub-structures
in the current state with those in the undamaged state enables
damaged storeys to be accurately located.

The proposed approach was demonstrated on a six-storey shear
building under earthquake excitation and ambient vibration. A
shear building with various extents of single-site or dual-site dam-
age was considered. The proposed approach was validated by suc-
cessfully identifying damaged storeys by processing numerically
simulated responses, even when the responses and input excita-
tions were contaminated by noise with a 20% variance of the
noise-to-signal ratio. More severe damage to a storey yields a
greater decrease in the identified natural frequency of the sub-
structure that includes the damaged storey. Comparing the results
obtained by the proposed approach with COMAC values and the re-
sults obtained using a frequency response curvature function
method revealed that the present approach is substantially supe-
rior to these two methods in identifying damaged storeys.

The measured responses of three five-storey steel frames, which
are not shear buildings and are 3 m long, 2 m wide and 6.5 m high,
in shaking table tests were analyzed to demonstrate the applicabil-
ity of the proposed approach in processing real measured data. The
present method accurately identified the fact that the three frames
had different mass or stiffness in the fourth storey, and that the
first storey of one frame was damaged under a large earthquake.
The success of the proposed approach when applied to the exper-
imental responses demonstrates its practical applicability to a real
symmetrical building.
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