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We propose a method for designing artificial neural networks (ANNs) for prediction problems based on

an evolutionary constructive and pruning algorithm (ECPA). The proposed ECPA begins with a set of

ANNs with the simplest possible structure, one hidden neuron connected to an input node, and

employs crossover and mutation operators to increase the complexity of an ANN population.

two new operators for ANN pruning. The CBP operator retains significant neurons and prunes

insignificant neurons on a probability basis and therefore prevents the exponential growth of an

ANN. The ABSS operator can delete old ANNs with potentially complex structures and then introduce

new ANNs with simple structures; thus, the ANNs are less likely to be trapped in a fully connected

topology. The ECPA framework incorporates constructive and pruning approaches in an attempt to

efficiently evolve compact ANNs. As a demonstration of the method, ECPA is applied to three prediction

problems: the Mackey-Glass time series, the number of sunspots, and traffic flow. The numerical results

show that ECPA makes the design of ANNs more feasible and practical for real-world applications.

Crown Copyright & 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

Many numerical algorithms to accurately predict the trends of
time series in the future have been proposed, including the
autocorrelation method [1], the covariance method [2], and grey
theory [3]. Recently, to further improve the accuracy of time
series prediction, investigators have focused on intelligent algo-
rithms based on artificial neural networks (ANNs) due to their
learning abilities and powerful prediction capability [4], [5].

ANNs were first developed to imitate biological neural systems
and are organized into several interconnected simple processing
units called neurons or nodes. ANNs are data-driven approaches
that learn from examples, even when the input–output relation-
ships are unknown [6]. Thus, ANNs can accurately solve problems
without prior knowledge when sufficient observed data are
supplied. This property is useful for evaluating numerous fore-
casting problems because acquiring data is easier than making
good theoretical guesses about certain systems.

An important component of every ANN is architecture selec-
tion, which involves determining an appropriate architecture to
accurately fit the underlying function described by the training
012 Published by Elsevier B.V. All
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data [7]. An architecture that is too large may precisely fit the
training data but may provide poor generalization due to over-
fitting of the training data. Conversely, an architecture that is too
small saves computational costs but may not possess sufficient
processing ability to accurately approximate the underlying
function. Therefore, architecture selection should consider both
network complexity and goodness of fit.

For prediction purposes, it has been shown that a feedforward
ANN with a single hidden layer is sufficient to achieve any desired
accuracy [8]. In most applications, ANNs are fully connected, i.e.,
all inputs are fully connected to all hidden neurons. Numerous
studies have shown that partially connected ANNs have better
storage capability per connection than fully connected ANNs [9],
[10]. Furthermore, partially connected ANNs can yield improved
generalization capabilities with reduced cost in terms of hard-
ware and processing time [11]. However, how to determine the
optimal numbers of hidden neurons and connections remains an
open question.

Among several algorithms for designing three-layered ANNs,
the most frequently used algorithms are the constructive, pruning,
and constructive-pruning algorithms. A constructive algorithm [12]
starts with a minimal ANN architecture, a three-layered ANN with
one hidden neuron. The algorithm adds hidden neurons to the
minimal ANN, one-by-one, during the training phase. The advantage
of the constructive algorithm is that the initial phase can simply set
the number of hidden layers and neurons as one each. However,
rights reserved.
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Fig. 1. Major steps performed in ECPA.
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deciding when to add hidden neurons or connections and when to
stop the addition process is difficult.

A pruning algorithm [13] starts with an oversized architecture
and then deletes unnecessary hidden neurons or connections,
either during training or upon convergence to a local minimum.
Each iteration of the pruning algorithm determines which unit,
i.e., which hidden neuron or connection, to prune via its relevance
or significance. Several pruning criteria have been proposed, for
example, sensitivity analysis [14] and magnitude-based pruning
[15]. Sensitivity analysis is based on Taylor expansion and reflects
the ways in which the derivatives of a performance function can
be applied to quantify a system’s response to unit perturbations.
Magnitude-based pruning assumes that small weights are irrele-
vant. However, no criterion can be used to determine the initially
oversized architecture for a given problem [12].

In the constructive algorithm, the architecture of the ANN may
become oversized if the addition procedure is not appropriately
stopped. A number of algorithms have attempted to combine
constructive and pruning algorithms to solve the aforementioned
problem [16], [17]. These constructive-pruning algorithms first
estimate the number of hidden neurons and/or connections via a
constructive method. A pruning method is then used to delete the
inappropriate hidden neurons and/or connections to find a near-
optimal architecture for a given problem. However, determining
when to stop the pruning procedure is difficult [18].

Several researchers have developed methods for designing
ANNs using evolutionary algorithms (EAs). EAs emerged as a
biologically plausible approach for adapting various ANN para-
meters such as weight values and architectures [19]. Recently,
several studies have been proposed to employ various EAs to
prune NNs. Mantzaris et al. [20] pruned probabilistic neural
network by genetic algorithm to minimize the number of diag-
nostic factors, and therefore minimized the number of input
nodes and hidden layers. Curry and Morgan [21] proposed a
modified feedforward neural network which is pruned and
optimized by means of differential evolution for seasonal data.
Huang and Du [22] use particle swarm optimization to prune the
radial basis probabilistic neural networks. Masutti and Castro [23]
combined characteristics from self-organizing networks and arti-
ficial immune systems to solve the traveling salesman problem
and pruned neurons which are not related to a city. Furthermore,
numerous works have been done to perform EAs and pruning
methods separately or simultaneously. Kaylani et al. [24] incor-
porated prune operator into a genetic algorithm as a mutation
operator to design ARTMAP architecture for classification pro-
blems. Goh et al. [25] developed a hybrid multiobjective evolu-
tionary approach for adaptation of ANNs structures and a
geometrical approach in identifying hidden neurons to prune for
classification problems. Hervás-Martı́nez et al. [26] applied an
evolutionary algorithm to design the structure and weights of a
product-unit neural network, and finally used a backward step-
wise procedure to prune variables sequentially until no further
pruning can be made to improve the fit. However, most encoding
schemes must predefine the chromosome length, which is pro-
blem-dependent. This user-defined length can affect the flexibil-
ity of problem representation and EA efficiency [27], [28].

Herein, we propose a new approach for designing ANNs, the
evolutionary constructive and pruning algorithm (ECPA). This
algorithm directs the evolution of the ANN topology using
constructive and pruning methods in an evolutionary manner.
In ECPA, a variable-length chromosome representation is adopted
to describe ANNs with different architectures. Thus, it is not
necessary to predefine the length of the chromosome, and this
makes the use of memory more efficient. Furthermore, ECPA
introduces the concept of constructive method into the crossover
and mutation operations in a manner that allows the initial
structure of the ANN to be simply set as a minimal network
containing one hidden neuron with a single connection to one
input. The crossover and mutation operations then enlarge the
architecture by adding hidden neurons and connections. ECPA
then prunes the resulting ANNs via a newly developed scheme
consisting of cluster-based pruning (CBP) and age-based survival
selection (ABSS).

The rest of this paper is organized as follows. Section 2
describes the proposed ECPA in detail. Section 3 demonstrates
the proposed algorithm’s ability to evolve partially connected
ANNs for a variety of problems of interest. Finally, in Section 4, we
present our conclusions.
2. ECPA

Based on the characteristics of ANNs and EA, we propose ECPA
to develop ANNs based on an evolutionary constructive and
pruning manner. As discussed in [29], theoretical work has shown
that a single hidden layer is sufficient for forecasting purposes.
Therefore, in this work, we designed a three-layer feedforward ANN
with an input layer, a hidden layer, and an output layer. The major
steps of ECPA are summarized in Fig. 1 and explained below.
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Initialization phase
(Step 1)
ANN1

ANN2

1

Generate an initial population with Np ANNs, where
Np is the population size. The initial ANN structure
starts with a minimal network with one neuron and a
single connection from one of the inputs, which is
randomly selected.
(Step 2)
 Train all ANNs using backpropagation (BP) algorithm
[30] for j epochs, where j is specified by the user,
and determine their fitness.
Reproduction phase
(Step 3)
 Select two parents by tournament selection. Produce
one offspring from the two parents using network
crossover with crossover probability, pc.
(Step 4)
 Apply network mutation to the offspring with muta-
tion probability, pm.
(Step 5)
 Train the offspring ANN using BP for j epochs and
determine its fitness.
(Step 6)
 Perform CBP on the offspring. Go to Step 3 until Np

offspring are generated.

(Step 7)
 Apply ABSS to the parents and their offspring to

generate the parents of the next generation. Go to
Step 3 until the maximum number of generations, G,
is reached.
(Step 8)
 Select a single best ANN among the final population.
2.1. Encoding scheme

In order to encode an ANN into a chromosome, ANN is
represented as a vector whose length depends on the size of
ANN such that the memory can be used efficiently. Fig. 2 shows
the chromosome representation of two ANNs and their corre-
sponding graphical representations. The chromosome consists of
the network connections and weights where w1, wb1, and w12

indicate the output weight of the first hidden neuron, the weight
connected from bias, and weight connected between first hidden
neuron and second input node, respectively. Note that the weight
with nonzero value represents the connected weight while that
with zero value represents the disconnected weight. The initial
population is a set of simplest possible networks whose initial
w1 wb1 w11 w12 w13 w14

0.7 0 0 0 2.5 −0.2

w1 wb1 w11 w12 w13 w14

0.7 0 0 0 2.5 −0.2

w2 wb2 w21 w22 w23 w24

0.3 0 −0.4 0 0 0

ANN1

x1 x2 x3 x4

ANN2

1 x1 x2 x3 x4

w1

w13
w14 w14w13w21

w1w2

Fig. 2. Coding of NN and two examples.
weights are randomly generated by a uniform distribution in the
range [�1.0, 1.0] via the suggestion in [31]. ECPA directs the
evolution of the ANNs via four essential components: network
crossover, network mutation, CBP, and ABSS. Details regarding
each component of ECPA are provided in the following sections.

2.2. Network crossover

The ECPA starts from a population of ANNs with the simplest
possible structures so that the initialization phase can easily set
the topology of ANNs as one hidden neuron and a single connec-
tion from one input. However, these ANNs may not be able to
achieve sufficient and desired accuracy. In order to increase the
processing capabilities of NNs, it is necessary to facilitate the
exploration of the wider regions of a structural search space. For
the sake of this objective, this stage executes constructive manner
to add hidden neurons to each NN. To decide how many hidden
neurons should be add to each NN, network crossover simply
selects two ANNs and combines them together. Hence, this
operator does not require many heuristics, user-defined para-
meters, and rich prior knowledge. The network crossover opera-
tion in ECPA produces an offspring ANN by combining the
substructures of two parent ANNs. To clearly illustrate the net-
work crossover, an example is shown in Fig. 3 for two parent
ANNs, ANNa and ANNb, and their offspring ANNc. The input–
output relationship of ANNa is as follows:

ya ¼wa
o1Uhðwa

h11Ux1þwa
h12Ux2Þ ð1Þ

where h is the hidden node activation function, wb
o1 is the output

weight, and wa
h12 is the weight connected from x2 to the hidden

node. The hidden node activation function can be a linear, logistic
or hyperbolic tangent function. The superscript of each weights
represents its network index, and the subscript indicates the
relationship between neurons. For ANNb, the input–output rela-
tionship is as follows:

yb ¼wb
o1Uhðwb

h11Ux1Þþwb
o2Uhðwb

h22Ux2þwb
h24Ux4Þ ð2Þ

where wb
o1 is the output weight of the first hidden node and wb

h24

is the weight from x4 to the second hidden node.
The network crossover directly combines the substructures

of ANNa and ANNb, and the offspring ANNc is subsequently
obtained as:

yc ¼ 1=2ðyaþybÞ

¼ 0:5wa
o1Uhðwa

h11Ux1þwa
h12Ux2Þ

þ0:5wb
o1Uh wb

h11Ux1

� �
þ0:5wb

o2Uhðwb
h22Ux2þwb

h24Ux4Þ ð3Þ

This result is shown in Fig. 3. The output weights of the
offspring ANN are half those of the parent ANNs, and the hidden
weights of the offspring retain the same weights as those of the
parent ANNs. As shown in Fig. 3, it is clear that the network
crossover operator directs the evolution of the ANNs in a
constructive manner. Furthermore, a crossover probability is
Fig. 3. An example of a network crossover.
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chosen to determine whether or not to perform network cross-
over on two parent ANNs. If pc is larger than a random number,
network crossover is performed on the two parent ANNs; other-
wise, the two parent ANNs are copied as two offspring.

2.3. Network mutation

When the network crossover is applied to parent ANNs, some
offspring ANNs are likely to have more hidden neurons and thus
possess much processing ability. However, it may be inefficient to
increase ANN’s performance by only adding hidden neuron with
single connection generated by the initialization phase. It is
possible to introduce more inputs into each hidden neuron to
increase the prediction accuracy. EAs usually adopt mutation
operator to achieve the perturbation and thus have a better
exploitation capability. Hence, a small perturbation of structure
is suitable for structural leaning. Since the initialization phase
generates ANNs with single connection, a small perturbation can
be achieved via adding more connections to ANNs and its
capability is distinct from adding hidden neurons. For the sake
of simple and small perturbation, network mutation introduces a
new connection into ANN where the connection is built between
randomly selected one input and one hidden neuron, and initi-
alizes its weight according to a uniform distribution in the range
[�0.01, 0.01]. A graphical representation of this operation, where
a new connection is added between x2 and the first hidden node,
is shown in Fig. 4. The input–output relationship of the mutated
ANNb, ANNb0 , is written as follows:

yb ¼wb
o1Uhðwb

h11Ux1þwb
h12Ux2Þþwb

o2Uhðwb
h22Ux2þwb

h24Ux4Þ ð4Þ

where wb
h12 ¼ 0 and thus, ANNb0 retains the performance of ANNb.

To further improve the performance of ANNb0 , the training process
executes Step 5.

2.4. CBP

ECPA employs network crossover and network mutation to
design ANNs in a constructive manner. However, it is well known
that the constructive algorithms difficultly decide when to stop
the addition process and may design an excessively large and
complex ANN with poor generalization performance. Thus, a
pruning algorithm can be used to determine the relevance or
significance of hidden neurons and delete insignificant ones.
Nevertheless, it is not easy to determine the threshold value for
distinguishing insignificant hidden neurons from significant ones.
Therefore, ECPA uses a different pruning scheme, called CBP,
which simply separates the hidden neurons into two classes,
good and worse, according to the best hidden neuron and the
worst one without any user specified parameter. Then the hidden
Fig. 4. An example of a network mutation.
neurons in worse class are pruned in a stochastic way to avoid
deleting excessive hidden neurons. Unlike conventional pruning
algorithms, CBP proceeds in three steps.

In the first step, the significance of each hidden neuron is
determined. For the ith hidden neuron, the significance is defined as

si ¼
ffiffiffiffi
Si

p
ð5Þ

where Si is obtained as follows [32], [33]:

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
p ¼ 1 ðS

p
i Þ

2

P

s
ð6Þ

Thus, Si is the root-mean-square of Sp
i , which is the sensitivity

of the network output op to the output hp
i of the ith hidden neuron

for the pth pattern, expressed as

Sp
i ¼

@op

@hp
i

¼wi ð7Þ

Here, wi is the weight of the connection from the ith hidden
neuron to the output neuron; this weight is constant because it is
irrelevant to the patterns. Hence, the significance in (5) can be
rewritten as

si ¼

ffiffiffiffiffiffiffiffiffi
9wi9

q
ð8Þ

Thus, a hidden neuron with low significance has little influ-
ence on the network output and can be removed [14]. However,
to avoid excessive pruning of the hidden neurons, the significance
in (5) is purposely chosen as the square root of Si, following the
concept of the rootogram [34].

In the second step, the hidden neurons are categorized into
two classes: good and worse. The prototypes of the good and
worse classes are the hidden neurons with maximum and mini-
mum significance, respectively. The remaining hidden neurons
are categorized according to the difference between the good and
worse prototypes with respect to their significance. If the sig-
nificance of one hidden neuron is close to the good prototype, the
hidden neuron is then categorized in the good class; otherwise,
the hidden neuron is categorized in the worse class. The neurons
in the good class are retained, whereas those in the worse class
are deleted in a stochastic manner. For each neuron in the worse
class, a random number r with a uniform distribution between
[0,1] is generated. If r is smaller than 0.5, the neuron is deleted;
otherwise, the neuron is retained.

2.5. ABSS

After the network crossover, network mutation and CBP are
completed, the individuals in the next generation are chosen
through survival selection. If a general survival selection is
adopted, the evolved ANNs tend to have fully connected topolo-
gies due to network mutations, which add more inputs to the
hidden neurons. As a result, hardware implementation costs are
increased, and the generalization capabilities of the evolved ANNs
are reduced. To avoid this problem, we propose a different
survival selection method, ABSS, to select younger ANNs with
partial connections, rather than full connections, for the next
generation.

ABSS is performed in two stages. The first stage involves
traditional tournament selection to choose Np candidates for the
next stage. If the age of an ANN is defined as the number of
generations it survives in the population, then the Np candidates
may have different ages. For example, the age of a newborn ANN
is one, and its age increases by one if it survives to the next
generation. The second stage continues to delete the elder ANNs
from the Np candidates according to the health index, defined as
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follows:

Hj ¼ 1�
1

Agej

 !2

ð9Þ

where Agej is the age of the jth ANN. Selection proceeds by
generating a uniform random number r in the range [0,1]. If Hj4r,
the jth ANN is deleted and replaced by a newborn ANN produced
by Step 1; otherwise, the jth ANN is retained in the population. As
a result, the population size Np is unchanged after ABSS, and the
average age of the ANNs is potentially lower, which prevents the
evolved ANNs from adopting a fully connected topology.

In summary, the network crossover operator constructs an
ANN by adding hidden neurons so that the ANN possesses more
processing ability to accurately approximate the target function.
The network mutation operator adds one connection from the
input to the hidden neuron so that the hidden neuron can process
more input information. CBP prunes the worse hidden neurons
from an ANN to prevent overfitting of the training data. ABSS
deletes elder ANNs that are potentially fully connected. Thus,
network crossover and mutation operations direct the evolution
of ANNs in a constructive manner that can improve their proces-
sing ability to accurately approximate the true function, whereas
CBP and ABSS direct the evolution of ANNs in a destructive way
that can improve their generalization capabilities while reducing
their hardware requirements.

2.6. Computational complexity

The computational complexity of ECPA is dominated by BP
algorithm. It has been known that the computational complexity
of BP is of the order of O(Nc) where Nc denotes the number of
connections or weights [35]. Note that Nc is small due to the use
of simplest possible ANNs in the beginning generations while Nc

is large as applying the network crossover and network mutation
in the later generations. Thus, the total computational complexity
of ECPA can be easily derived as the order of O(Np�G�j�Nc).
Clearly, the computational cost of large and complex ANN is more
expensive than small and simple NN. Hence, CBP and ABSS are
necessary for pruning ANNs and reducing computational cost.
3. Experimental results

In this section, we demonstrate the performance of the
proposed algorithm using three time series prediction problems:
Mackey-Glass, sunspots, and vehicle count. The first time series is
generated from the Mackey-Glass differential equation, the sec-
ond series is recorded from the sunspots, and the third series is
obtained from the hourly vehicle count for the Monash Freeway
outside Melbourne in Victoria, Australia, beginning in August,
1995. During the evolutionary process, the root-mean-square-
error (RMSE) is adopted as the fitness, which is calculated as
follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t ¼ 1

ðxðtÞ�x̂ðtÞÞ2

vuut ð10Þ

where x̂ tð Þ is the predicted value at time t and N is the number of
data points. To observe the evolutionary progress of an ANN, the
RMSE, the number of hidden nodes Nh, and the number of
connections Nc are recorded.

As described in Section 3.5, the Np, G, and j would affect the
computational complexity of ECPA. The larger Np the less effect of
genetic drift, the larger G the more chances to find better ANNs,
and the larger j the more prediction accuracy. However, the
larger Np, G, and j lead to the longer computation time. To select
suitable values, Np is set as 30 according to the suggestion in [36].
In order to select appropriate j and G, the values of j were
chosen as 5, 10, 15, 20, 25, and 30, and the values of G were
chosen as 300, 400, 500, and 600 in the preliminary runs. As a
result, G¼500 and j¼15 were adopted in the following experi-
ments due to the sufficient prediction accuracy and acceptable
computation time. Because the parameters were chosen after
some preliminary runs, the values were not meant to be optimal.
The setting of pc¼0.8 and pm¼0.6 is to provide more chances of
increasing the number of hidden neurons than increasing the
number of connections. It was expected that structures with more
hidden neurons would be found first, and these structure would
then be pruned.

3.1. Results on the Mackey-Glass time series

The Mackey-Glass time series prediction is recognized as a
benchmark problem in the area of ANNs. This chaotic time series
prediction was considered to be a suitable way to evaluate the
performance of the proposed ECPA. The Mackey-Glass time series
is generated from the following delay differential equation:

dxðtÞ

dt
¼

0:2xðt�tÞ
1þx10ðt�tÞ

�0:1xðtÞ ð11Þ

where t¼17 and x(0)¼1.2 in the simulation. The fourth-order
Runge–Kutta method is used to generate 1000 data points ranging
from t¼118 to 1117. The task involves predicting the value of
x(tþ6) from the input vector [x(t�18) x(t�12) x(t�6) x(t)] for
any t. Therefore, the input–output data pairs for prediction are

½xðt�18Þ,xðt�12Þ,xðt�6Þ,xðtÞ; xðtþ6Þ�

where the first 500 data pairs are used as training data, and the
last 500 data pairs are used as testing data.

For better understanding ECPA, the following statements are
used to demonstrate the major steps of ECPA in detail. In Step 1,
30 ANNs are generated with one hidden neuron and a single
connection from one of the four inputs. In Step 2, the 30 ANNs are
trained by BP for 15 epochs and their fitness is determined
according to (10). In Step 3, two parent ANNs are selected by
tournament selection based on their fitness. If a random number
is smaller than 0.8, one offspring ANN is produced from the two
parent ANNs by network crossover; otherwise, the two parent
ANNs are copied as two offspring ANNs. In Step 4, the offspring
ANN is mutated by network mutation with pm¼0.6. In Step 5, the
offspring ANN is trained by BP for 15 epochs and its fitness is
determined according to (10). In Step 6, the significance of each
neuron of the offspring ANN is calculated by (8). The neurons are
categorized into good and worse classes by their significances and
the neuron in worse class is deleted if a random number is
smaller than 0.5. Then go to Step 3 until 30 offspring ANNs are
generated. In Step 7, 30 ANNs are chosen by the traditional
tournament selection from the parent and offspring ANNs. Then
the health indices of the 30 ANNs are determined via (9). If the
health index of an ANN is larger than a random number, the ANN
is further deleted and replaced by a newborn ANN produced by
Step 1. Then go to Step 3 until reach 500th generation. In Step 8, a
single best ANN is selected as the solution of the problem.

The evolutionary progress of the ANNs for the Mackey-Glass
time series prediction problem is illustrated in Fig. 5. The top
panel of Fig. 5 shows the decrease in the RMSE resulting from the
evolution of the ANNs. The middle and bottom panels of Fig. 5
present Nh and Nc, respectively and demonstrate the structural
evolution of the ANNs. Fig. 6 graphically illustrates how the
topologies of the ANNs evolve in selected generations. The input
vector [u(4)u(3)u(2)u(1)] represents [x(t�18)x(t�12)x(t�6)x(t)],
and the output y represents x(tþ6). The blue lines represent
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positive-valued weights, and the red lines represent negative-
valued weights. The widths of the lines indicate the relative
strengths of the weights. The ANNs were observed to grow
rapidly, but growth did not always occur due to the use of CBP
and ABSS. Note that the resulting ANN structure does not have a
fully connected topology; less than 85% of the synapses are
connected.

Many approaches have been developed to design both the
architecture and weights of ANNs to address the same prediction
problem. Table 1 presents the average results obtained using the
proposed algorithm and other algorithms. Note that the results of
ECPA are averaged over 10 independent runs and thus Nh and Nc

are decimal numbers. As shown here, although ECPA achieved a
larger RMSE than that of Du and Zhang [37] with the training
data, it obtained a lower RMSE than the other methods for the
testing data. It is interesting that ECPA obtained a lower RMSE for
the testing data than for the training data in this experiment, but
this phenomenon has been observed previously [38]. In terms of
Fig. 5. Evolution progress for the Mackey-Glass time series.

Fig. 6. Evolved ANNs for the M

Table 1
Prediction results for the Mackey-Glass time series.

Method Dt¼6 Dt¼84

Train Test First 5

Du and Zhang [37] 2.87�10�4 7.67�10�4 1.93�

Harpham and Dawson [39] – 1.50�10�3 –

Rojas et al. [40] 2.87�10�3 – 2.63�

Chen et al. [41] 3.30�10�3 3.60�10�3 –

Cho and Wang [42] 9.60�10�3 1.14�10�2 –

ECPA 6.76�10�4 6.30�10�4 6.20�
the average number of hidden neurons, ECPA obtained a lower Nh

than those of Du and Zhang [37] and Harpham and Dawson [39].
Although ECPA obtained a higher Nh than those of Rojas et al. [40],
Chen et al. [41], and Cho and Wang [42], it achieved a lower
RMSE. However, it took much longer computation time, Tc, than
Chen et al. [41], which is the major cost in real problem. ECPA
resulted in the evolution of an ANN with training data RMSE,
testing data RMSE, Nh, and Nc values of 6.76�10�4, 6.30�10�4,
40.5, and 203.2, respectively. Clearly, the evolved ANN possessed
a partially connected topology; our observations showed that
ECPA can evolve ANNs with a lower RMSE and more compact
structure than the other methods.

In addition to the one-step prediction of x(tþ6), the evolved
ANN was applied to another general testing case: the multiple-
step prediction of x(tþ84) [38]. To perform a multiple-step
prediction, the proposed algorithm iteratively predicts x(tþ6),
x(tþ12), etc. until it reaches x(tþ84) after 14 such iterations. As
shown in Table 1, the prediction error the multiple-step predic-
tion increases to 3.10�10�3 because multiple-step prediction is
more complex than one-step prediction. However, the prediction
results of ECPA were still superior to the other methods according
to the prediction error of multiple-step prediction.

3.2. Results on the number of sunspots

The number of sunspots varies nonlinearly in nonstationary
and non-Gaussian cycles that are difficult to predict [43]. In this
experiment, ECPA was used to predict the number of sunspots.
The objective of this test involves using [x(t�10) x(t�9) y x(t)]
to predict x(tþ1), where t represents the year and x(t) represents
the number of sunspots in year t. For a fair comparison with the
other methods, the number of sunspots from 1700 to 1920 was
used as the training data, and the number of sunspots from 1921
to 1955 was used as the testing data.

The learning curves of ECPA, including the training error, Nh,
and Nc, in this example are shown in Fig. 7. To illustrate the
structural evolution of the ANNs in detail, Fig. 8 shows the
topologies of the ANNs in selected generations. The input vector
[u(11) u(10) y u(1)] represents [x(t�10) x(t�9) y x(t)], and the
output y represents x(tþ1). We observed that Nh was less than
ackey-Glass time series.

Nh Nc Tc

00 points Last 500 points

10�2 2.07�10�2 294 – –

–– 116 – –

10�2 – 12 – –

– 10 110 114

– 23 – –

10�3 3.10�10�3 40.5 203.2 1112.7



Table 2
Prediction results for the sunspot time series.

Method MAPE NMSE Nh Nc

ADNN [44] 28.45 0.068 6 –

ANN [4] 30.8 0.078 6 –

Hybrid [45] 31.2 0.0852 – –

AKN [46] 50.3 0.1833 – –

ECPA 24.66 0.0573 5.0 46.9
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5 before the 12th generation, and only a few inputs were
connected to the hidden neurons. Nh increased to 10 in the 40th
generation and further increased to 12 in the 60th generation.
During the 40th and 300th generations, the structures of the
evolved ANNs grew rapidly, and more inputs were processed.
Finally, Nh and Nc dropped to 5 and 32, respectively, at the end of
the evolution process. Notably, all of the evolved ANNs lack
connections from the bias of the hidden layer to the output layer.
The final evolved ANN connected most of the inputs, except for
x(t�7), and each neuron connected an average of 5.6 inputs. Thus,
the final evolved ANN clearly has a partially connected topology.

Table 2 presents the average performance of the evolved ANNs
for the testing set over ten independent runs. ECPA performance
was compared to those of an adaptive neural network (ADNN)
[44], an artificial neural network (ANN) [4], a hybrid methodology
that combines an autoregressive integrated moving average with
an artificial neural network (Hybrid) [45], and an adaptive
k-nearest neighbors (AKN) [46]. In terms of average performance,
ECPA obtained an ANN with mean absolute percentage error
(MAPE), normalized mean squared error (NMSE), Nh, and Nc

values of 24.66, 0.0573, 5.0, and 46.9, respectively. These results
indicate that the proposed ECPA can design an ANN with a
compact structure and a smaller prediction error than other
methods.

3.3. Results on the vehicle count

The vehicle count data set was obtained from the hourly
vehicle count for the Monash Freeway outside Melbourne in
Victoria, Australia, beginning in August 1995. The objective of
Fig. 7. Evolution progress for the sunspot time series.

Fig. 8. Evolved ANNs for th
this experiment involves using [x(t�15) x(t�14) y x(t)] to
predict x(tþ1).

The top panel of Fig. 9 shows that NMSE of the evolved ANNs
decreased rapidly in the first 50 generations and converged in the
later generations. In addition to the middle and bottom panels of
Fig. 9, the structural evolution of the ANNs is presented in more
detail in Fig. 10, which graphically illustrates the topologies of the
ANNs in selected generations. The 16 inputs [u(16) u(15) y u(1)]
represent [x(t�15) x(t�14) y x(t)], and the output y represents
x(tþ1). According to the middle panel of Fig. 9, Nh increased to
4 in the 4th generation and further increased to 9 in the 8th
generation. After the 9th generation, Nh varied from 7 to 13.
Finally, Nh converged to 7 in the 373rd generation. According to
the bottom panel of Fig. 9, the ANNs have few connections in the
early generations due to the single-connection topology present
in the initial population, and Nc does not always increase. Nc drops
from 37 to 22 in the 20th generation and from 40 to 37 in the
240th generation, implying that more connections do not neces-
sarily result in superior fitness. In other words, appropriate
topology, not the number of connections, is the key to improving
e sunspot time series.

Fig. 9. Evolution progress for the vehicle count.



Fig. 10. Evolved ANNs for the vehicle count.

Table 3
Prediction results for the hourly vehicle count time series.

Method MAPE NMSE Ni Nh Nc

ADNN [44] 14.31 0.0193 180 12 –

ANN [4] 17.97 0.0267 180 12 –

Hybrid [45] 26.98 0.0818 180 – –

AKN [46] 17.39 0.0206 180 – –

ECPA 11.35 0.0182 16 7.7 77.6

Table 4
Performance of ECPA and ECPAWA in Mackey-Glass, sunspot, and vehicle count

time series.

Method Experiment NMSE Nh Nc Rc (%) Tc

ECPA Mackey-Glass n6.3027�10�4 40.5 203.2 83.28 1112.7

Sunspot 0.0573 5.0 46.9 71.06 375.1

Vehicle count 0.0182 7.7 77.6 55.59 693.3

ECPAWC Mackey-Glass n1.3535�10�3 860.6 2357.7 45.65 60531.7

Sunspot 0.5741 419.3 1145.6 21.01 5841.3

Vehicle count 0.0358 224.3 605.1 14.98 5939.6

ECPAWA Mackey-Glass n6.3147�10�4 575.3 2173.9 62.96 12958.9

Sunspot 0.7547 173.7 603.1 26.70 2237.1

Vehicle count 0.0176 70.8 653.6 51.25 3358.3

All results are averaged over 10 independent runs, where n refers to the RMSE.
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fitness. However, we observed that each neuron attempted to
connect to more inputs as the number of generations was
increased. The evolution of ANNs almost converges, and no
further improvement in the ANNs was observed after the 373rd
generation. As a result, the highest-quality ANN with well-trained
weights has 7 hidden neurons and connects most of the inputs,
except for x(t�5) and x(t�10). Thus, the ANN can automatically
select the necessary inputs via ECPA. Clearly, the evolved ANN is a
partially connected network.

Table 3 summarizes the average performance of the evolved
ANNs for the testing set over ten independent runs and compares
these results to other methods, including ADNN [44], ANN [4],
Hybrid [45], and AKN [46]. The average NMSE using ECPA was
0.0182, which is less than that obtained using the other methods.
Furthermore, the evolved ANNs obtained using ECPA have an
average of 7.7 hidden neurons, which is less than the other
methods.

3.4. Effect of CBP and ABSS

The previous section discusses the performance of ECPA for
different prediction problems. However, the effect of CBP and
ABSS on evolution of ANNs is unclear. To evaluate how CBP and
ABSS affect ANN evolution, two variants of ECPA which do not use
CBP and ABSS, respectively, were used in repetitions of the above
experiments. The variant of ECPA without CBP is referred to as
ECPAWC and that without ABSS is referred to as ECPAWA. The
setup of these experiments was identical to those in the previous
experiments.

In order to gain the deeper understanding of the performance
difference between ECPA, ECPAWC, and ECPAWA in these three
experiments, the three algorithms are compared in terms of
NMSE, Nh, Nc, connection ratio, Rc, and computation time, Tc,
whose unit is second. The Rc is determined as follows:

Rc ¼Nc=Nf U100% ð12Þ

where Nf is the number of connections in an ANN with a fully
connected topology. An ANN with Nh hidden nodes with a fully
connected topology leads to the following relation:

Nf ¼ ðNiþ1ÞUNhþNhþ1

¼ ðNiþ2ÞUNhþ1 ð13Þ

where Ni is the number of input nodes. When Rco100%, ANN has
a partially connected topology, and when Rc¼100%, ANN has a
fully connected topology. The computational environment is
Windows XP with Intel Core i7 870 2.93G CPU and 4GB RAM.
These algorithms are implemented in MATLAB.

The results in Table 4 present that ECPA and ECPAWA produce
different ANNs in some aspects. For the three examples, the
average Nh and Nc values over 10 independent runs returned by
ECPAWA are much larger than those of ECPA which applies both
CBP and ABSS. As comparing their prediction performance,
ECPAWA yielded slightly smaller NMSE values than ECPA in the
Mackey-Glass and vehicle count time series. This improvement
may be yielded due to the great processing capability of a large
number of hidden neurons. However, the ANNs developed via
ECPAWA for the sunspot time series have larger NMSE value than
those via ECPA. This may be due to the overfitting property
caused by too many hidden neurons. The results indicate that
ECPA facilitates ANNs with more generalization ability than
ECPAWA.

In addition to NMSE, Nh, and Nc, Table 4 presents that Rc

obtained by ECPAWC is lower than ECPAWA due to the use of
ABSS. More specifically, elder ANNs which are much likely to have
more connections from inputs caused by network mutation
would be deleted by ABSS in ECPAWC. Although ECPAWC can
produce sparsely connected topology of ANN by the aid of ABSS, it
would result in ANNs with huge Nh. Thus, the ANNs in ECPAWC
face overfitting problem and have bad generalization ability, i.e.,
larger NMSE for testing set. When comparing ECPA, ECPAWC, and
ECPAWA, ECPAWA can produce ANNs with less hidden neurons
than ECPAWC due to the use of CBP. ECPA further yields ANNs
with more compact structures and better generalization ability
than ECPAWA due to the use of ABSS.

Furthermore, the computation time of ECPA, ECPAWC, and
ECPAWA is compared and shown in Table 4. Since Nc obtained by
ECPAWC and ECPAWA is larger than ECPA, the computational
costs of ECPAWC and ECPAWA are relatively higher than ECPA
according to the computational complexity O(Np�G�j�Nc)
described in Section 3.5. It is reasonable that the computation
time through the overall learning process required by ECPA was
less than that required by ECPAWC and ECPAWA. According to the



S.-H. Yang, Y.-P. Chen / Neurocomputing 86 (2012) 140–149148
observation, both CBP and ABSS are beneficial for producing ANNs
with a compact structure and reducing computation time.

3.5. Discussion

In this section, we summarize the observations in the three
experiments described above, and discuss the experimental
results. Figs. 5, 7 and 9 show that the ANN structures developed
using ECPA are simple in the first generations due to the use of
ANNs with one hidden neuron and a single connection to one of
the inputs in the initial population. As their evolution progresses,
the ANN structures grew rapidly due to the addition of neurons
via crossover and the addition of connections via mutation.
However, the ANNs do not grow continuously due to the use of
CBP and ABSS. CBP primarily preserves the significant neurons
and prunes the insignificant neurons using a probability criterion.
Pruning prevents the exponential growth of the ANNs and avoids
long-term training for complex ANNs. In addition, ABSS first
deletes the old individuals likely to have complex structures
and then provides an opportunity to introduce new individuals
with simple structures generated via Step 1). Section 4.4 demon-
strates that ABSS is useful for developing a compact ANN
architecture and avoiding the design of complex ANNs. The
highest-quality ANN with well-trained weights is then attained
using construction via crossover and mutation operations and
destruction via CBP and ABSS. The resulting ANNs do not have
fully connected topologies; less than 80% of the synapses are
connected in the Mackey-Glass time series, 50% are connected in
the sunspot time series, and 40% are connected in the vehicle
count time series. Furthermore, the evolved ANNs do not connect
to all the inputs, e.g., the evolved ANN does not connect to x(t�7)
in the sunspot time series, and the evolved ANN does not connect
to x(t�5) and x(t�10) in the vehicle count time series. Thus, ECPA
has the ability to select the inputs required to accurately perform
predictions. These results imply that more connections do not
necessarily result in superior fitness. In other words, an appro-
priately connected topology is the key to improving fitness, not
the number of connections.
4. Conclusions

A novel structural learning algorithm, called ECPA, is proposed
for the design of ANNs based on an evolutionary constructive and
pruning algorithm. ECPA evolves the ANNs starting with a mini-
mal structure: one hidden neuron connected to an input node.
The crossover and mutation operations make the ANN structures
more complex, whereas CBP and ABSS make the ANN structures
more compact. The results of the numerical simulations show
that the use of CBP and ABSS operations indeed generates
compact ANNs. Moreover, ECPA adopts variable-length chromo-
somes to represent the ANNs so that memory is used efficiently.
In the time series prediction problems, ECPA not only evolved
partially connected ANNs with sufficient prediction accuracy but
also demonstrated the ability to select the proper inputs. The
numerical results demonstrate that an appropriately connected
topology, rather than the number of connections, is the key to
improving ANN performance.

There are three future research directions suggested by this
paper for the improvement of ECPA. First, the computational cost
of ECPA is still expensive according to Table 4 due to the use of BP.
Therefore, a scheme to make the weight training algorithm more
efficient and reduce the computational complexity of ECPA could
be investigated. Second, the two user-specified parameters, i.e., pc,
and pm, could be devised as self-adaptive to increase the hidden
neurons and connections more efficiently. Furthermore, it would
be of great interest to make Np self-adaptive so that Np could be
sometimes small and thus the computational complexity would
be reduced. Third, ECPA has been applied to prediction problems.
ECPA adopts BP as the weight training algorithm; however, BP
may be not applicable in certain control problems when gradient
information of the plants is not available. It would be interesting
to study how to cooperate reinforcement learning into ECPA
to design both parameter and structure for nonlinear control
problems.
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