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Energy consumption is an important index of the economic development of a country. Rapid changes in
industry and the economy strongly affect energy consumption. Although traditional statistical
approaches yield accurate forecasts of energy consumption, they may suffer from several limitations such
as the need for large data sets and the assumption of a linear formula. This work describes a novel hybrid
dynamic approach that combines a dynamic grey model with genetic programming to forecast energy
consumption. This proposed approach is utilized to forecast energy consumption because of its excellent
accuracy, applicability to cases with limited data sets and ease of computability using mathematical soft-
ware. Two case studies of energy consumption demonstrate the reliability of the proposed model.
Computational results indicate that the proposed approach outperforms other models in forecasting
energy consumption.
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1. Introduction

Energy-related issues are a priority owing to the major role that
energy sources, such as coal, oil, gas, and wind, play in daily life
and the global economy. Energy consumption has greatly increased
owing to a burgeoning population growth and elevated living stan-
dards [1,2]. For instance, the Energy Information Administration
(EIA) of the United States has forecast that global energy consump-
tion will increase by 49% from 2007 to 2035 [3]. Also, the energy
consumption of public buildings is increasing in proportionate to
overall national use [4]. In economics, energy consumption has
significantly and positively affected Asian economic growth [5].
Accordingly, a highly precise model for forecasting energy con-
sumption must be developed. Based on such a model, energy policy
makers can either implement an energy conservation policy or
allocate a certain amount of energy to public buildings.

The autoregressive integrated moving average (ARIMA) model is
extensively used to forecast time-series data [6]. However, the fore-
casting accuracy of the ARIMA model is poor when data are few or
nonlinear [7]. Forecasting models (such as the ARIMA model) that
are based on conventional statistical methods are limited because real-
world data are commonly few or fail to satisfy statistical assumptions.

Forecasting models can also be developed using data-mining
approaches such as artificial neural networks (ANNs), evolutionary
algorithms (EAs), and mixed-integer programming [8,9]. However,
012 Published by Elsevier Ltd. All r
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the hidden layers in ANNs are difficult to explain, and the relation-
ship between input and output variables in ANNs is difficult to
express as a clear forecasting equation. To solve this problem and
compare the forecasting accuracy with ANNs, some studies [7]
have applied genetic programming (GP) to construct a clear fore-
casting equation and compared the forecasting accuracy with other
models. GP is more accurate than ANNs in forecasting or classifica-
tion problems [7,10,11]. In forecasting energy consumption, Togun
and Baysec [12] found that GP performs as well as ANNs. In con-
trast to the ANNs model, GP uses symbolic regression to derive a
clear forecasting equation [7,10,12–14].

The grey model (GM) of grey system theory has been adopted in
many forecasting studies [15–18] with only four or more observa-
tions. Real-word data sets are often difficult to collect and data sets
include a few observations. Although linear regression (such as the
ARIMA model) is often utilized to forecast time-series data, it is
inaccurate when observations are few or do not satisfy statistical
assumptions. GM(1,1), the first-order one-variable GM, has been
widely applied in various fields [15–18]. Although capable of fore-
casting using small time-series data accurately, GM(1,1) may fail to
do so for nonlinear time-series data.

Many researchers have been developed GM models to increase
their forecasting accuracy. For instance, Hsu and Wang [17] esti-
mated the parameters of a grey differential function using the
Bayesian method to increase the accuracy of GM(1,1). Wang and
Hsu [18] estimated the parameters of grey differential function
using genetic algorithms (GAs) to increase the forecasting accuracy
of GM(1,1). To improve further the performance of GM(1,1) models,
ights reserved.
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some studies have developed innovative approaches to forecast
the residual series of GM(1,1). For instance, Hsu and Chen [15]
combined residual modification with residual ANN sign estimation
to forecast the residual series of GM(1,1). Hsu [16] combined resid-
ual modification with residual Markov-chain sign estimation to
forecast residual series of GM(1,1). To increase the predictive accu-
racy of the method of Hsu and Chen [15], Lee and Tong [10] com-
bined residual modification with residual GP sign estimation to
increase the effectiveness of ANN in estimating the residual signs
of GM(1,1). When the time-series data are nonlinear, the forecast-
ing accuracy of GM(1,1) or an improved GM(1,1) may be poor.
Hence, Zhou and Hu [19] developed a hybrid GM(1,1) model that
combines GM(1,1) modeling in original time-series data with
ARIMA modeling in residual series to increase forecasting accuracy
of GM(1,1). However, their approach adopts a linear model (ARIMA)
to forecast the residual series. Small or nonlinear residual-series
data may obtain inaccurate outcomes using ARIMA model.

GM(1,1) is normally constructed using a entire data set. Akay
and Atak [20] developed a grey predictive model with a rolling
mechanism (GPRM), in which only a minimal amount of recent
data are used, to increase forecasting accuracy. Based on the struc-
ture of GM(1,1), GPRM can be used efficiently to increase the fore-
casting accuracy of GM(1,1) in each rolling process when applied to
exponential or chaotic data sets. Although capable of increasing the
forecasting accuracy of GM(1,1), GPRM does not model the residual
series in each rolling process to increase forecasting accuracy.
Furthermore, improved forecasting models [10,15,16,19] fail to en-
hance significantly the accuracy of GM(1,1) modeling [10,15,16] or
ARIMA modeling [19] in forecasting the residual series. To enhance
the accuracy of the residual series, heuristic methods, such as sym-
bolic regression, must be utilized since they perform well in fore-
casting [13]. Lee and Tong [7] claimed that the conventional
linear time-series model (ARIMA model) cannot easily be used to
fit nonlinear time-series data and therefore developed a heuristic
approach to improve the accuracy of residual series.

To increase the accuracy of GM(1,1) applied to original time-
series data and to prevent inaccurate forecasting using conven-
tional linear time-series models when residual series are complex
patterns (such as nonlinear patterns), this work develops a novel
hybrid dynamic forecasting model in which dynamic grey predic-
tion is applied to the time-series data and GP prediction is applied
to the residual-series data of the dynamic grey prediction, to
ensure high forecasting accuracy.

The rest of this paper is organized as follows. Section 2 reviews
available models for forecasting energy consumption. Section 3
then describes the proposed novel hybrid dynamic GM for fore-
casting energy consumption. Next, based on real-world examples,
Section 4 evaluates the forecasting accuracy of the proposed mod-
el, and compares it to other energy consumption models. Section 5
draws conclusions.
2. Energy consumption models

This section describes three models that are used in forecasting
energy consumption. The first one, the GM(1,1) model, is com-
monly adopted when only a few time-series data are available.
The second one, the dynamic GM(1,1) model, is known for its
robustness in forecasting each rolling time-series data. The third
one, the GP model, is often used either to forecast nonlinear
time-series data [12,14] or to elucidate a complex data-structure.
2.1. GM(1,1) forecasting model

GM(1,1) has been applied in many fields [10,16,17,21,22]
such as energy distribution [10] and the integrated circuit
industry [16,17,21,22]. This model can be constructed as follows
[10,15–18,20–23].

Step 1: Obtain positive time-series data as follows.

yð0Þ ¼ ½yð0Þð1Þ; yð0Þð2Þ; yð0Þð3Þ; . . . ; yð0ÞðnÞ�; n � 4 ð1Þ

Step 2: Apply the accumulated generating operator (AGO) to the
original time-series data (i.e. y(0)) to obtain the accumulated
time-series y(1) as follows.
yð1Þ ¼ ½yð1Þð1Þ; yð1Þð2Þ; yð1Þð3Þ; . . . ; yð1ÞðnÞ� ð2Þ

where yð1Þð1Þ ¼ yð0Þð1Þ and yð1ÞðnÞ ¼
Pn

m¼1yð0ÞðmÞ.
Step 3: Construct GM(1,1) using a grey differential equation,
yð0ÞðtÞ þ azð1ÞðtÞ ¼ u; where a and u denote the grey parameters
of the GM(1,1) model, and zð1ÞðtÞ represents the average of
yð1Þðt � 1Þ and yð1ÞðtÞ. Also, the grey parameters of the grey
differential equation can be estimated using the ordinary least
squares (OLS) method.
Step 4: Replace the estimated parameters (â and û) in the grey
differential equation and then obtain the GM(1,1) forecasting
equation using the inverse AGO (IAGO) technique, in the follow-
ing exponential form.

ŷð0ÞðtÞ¼ ŷð1ÞðtÞ� ŷð1Þðt�1Þ¼ yð0Þð1Þ� û
â

� �
ð1�eâÞe�âðt�1Þ; t¼2;3; .. . ; ð3Þ
2.2. Dynamic GM(1,1) model

Most works have constructed GM(1,1) using an entire data set
[15–18,21]. However, GM(1,1) should be applied using only recent
data to increase its forecasting accuracy [20]. Akay and Atak [20]
developed GPRM, a dynamic forecasting method, in which the fore-
casting accuracy of a grey prediction scheme was increased using
recent data when the time-series data were exponential or chaotic
in a rolling mechanism. Some studies [20,23] have developed
dynamic GM(1,1) models (DGM(1,1)) to increase the forecasting
accuracy of GM(1,1). In the DGM(1,1) model, y(0)(k + 1) is predicted
using GM(1,1) and yð0Þ ¼ ½yð0Þð1Þ; yð0Þð2Þ; yð0Þð3Þ; . . . ; yð0ÞðkÞ�; where
k < n. Following the determination of yð0Þðkþ 1Þ; yð0Þðkþ 1Þ is added
to the original time-series, and y(0)(1) is removed from the original
time-series to yield a new series yð0Þ1 ¼ ½yð0Þð2Þ; yð0Þð3Þ; yð0Þð4Þ;
. . . ; yð0Þðkþ 1Þ�: The predicted value of y(0)(k + 2) can be
obtained using the new series yð0Þ1 . The evaluation procedure is con-
tinued to obtain y(0)(k + l) for l ¼ 3;4;5; :::;n� k� 1. The index of
forecasting accuracy in the (k + 1) period of GM(1,1) is defined as
follows [20]:

eðkþ 1Þ ¼ yð0Þðkþ 1Þ � ŷð0Þðkþ 1Þ
yð0Þðkþ 1Þ

����
����� 100%; ð4Þ

Furthermore, the average rolling error of GM(1,1) can be deter-
mined using Eq. (4) as follows [20].

e ¼ 1
n� 4

Xn�1

k¼4

eðkþ 1Þ � 100%: ð5Þ

Based on Eq. (5), the accuracy of DGM(1,1) can be evaluated as
ð100� eÞ%:

2.3. GP model

Koza [24] developed GP as a novel automatic programming
algorithm that exploits the concept of evolution to identify the
structure of forecasting model. GP constructs a forecasting model
by symbolic regression [12,13]. The basic concepts of GP resemble
those of GAs, including mutation, crossover and reproduction
[10–12,14]. Parkins and Nandi [25] described how GAs and GP
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differ in creating solutions, indicating that GP does not depend on a
feature selection method. GP uses parse-tree representation rather
than GAs on bit strings, to construct a mathematical equation. GP
has become a conventional forecasting method because it can be
utilized to solve complex nonlinear problems. For instance, Muttile
and Lee [26] constructed an accurate model of coastal algal blooms
using GP. Togun and Baysec [12] also adopted GP to predict the
torque and brake-specific fuel consumption of a gasoline engine.
3. Hybrid dynamic grey forecasting

This section describes a novel nonlinear hybrid dynamic fore-
casting model that combines the dynamic grey model with GP.
The proposed model is derived as follows.

Step 1: Assume that original time-series of energy consumption
data is yt (n data points), and that ŷt is predicted using a novel
DGM(1,1) model (NDGM(1,1)). Because GM(1,1) requires at
least four data points to construct the forecasting model, the
NDGM(1,1) model utilizes the most recent four data points to
predict the next data point: k = 4 is used in each rolling cycle
for the dynamic forecasting process.
Therefore, in the first rolling, y(0)(k + 1) can be determined
from the series (yð0ÞðkÞ; yð0Þðk� 1Þ; yð0Þðk� 2Þ; yð0Þðk� 3Þ); in the
second rolling, yð0Þðkþ 2Þ can be determined from (yð0Þðkþ 1Þ;
yð0ÞðkÞ; yð0Þðk� 1Þ; yð0Þðk� 2Þ). Moreover, in each rolling cycle,
the newly predicted values of original data ðŷð0Þðkþ 1Þ; ŷð0Þ
ðkþ 2Þ; . . .Þ are determined using the GM(1,1) model. The resid-
ual series of the NDGM (1,1) model can be expressed as
et ¼ yt � ŷt .
Step 2: In each rolling cycle of NDGM(1,1), construct the model
for forecasting the error (ri;j) using the nonlinear function,
determined by GP as follows:
r̂i;j ¼ f ðri;j�1; ri;j�2; ri;j�3; ri;j�4Þ þ ei;j; ði; jÞ
¼ ð1;5Þ; ð2;6Þ; . . . ; ðn� 4;nÞ: ð6Þ

where r̂i;j denotes the jth point estimate of NDGM(1,1) that is condi-
tioned in the ith rolling cycle; the series (ri;j�1; ri;j�2; ri;j�3; ri;j�4Þ rep-
resents the errors of the ith rolling cycle and can be obtained
using the GM(1,1) model in the four periods; ei,j represents a ran-
dom error. Therefore, during the first rolling cycle of the NDGM(1,1)
model, the forecasted error ri,j can be written as r̂1;5 ¼ f ðr1;4; r1;3;

r1;2; r1;1Þ þ e1;5. In the GP model, the input variables are the lagging
residual series (ri;j�1; ri;j�2; ri;j�3; ri;j�4Þ and the output variable is ri,j.
To reduce the forecasting error, the fitness function in GP is defined
as follows [10]:

Minimize :
Xn

j¼5

jr̂i;j � ri;jj; i ¼ 1;2; . . . ;n� 4: ð7Þ

Some studies [26] had adopted the minimization of root mean
square error (RMSE) as the fitness function of GP. Adoption of
the heuristic method (described by Eq. (7)) can prevent the prob-
lems of conventional optimization, such as the setting of initial
values and the use of a differential function. The settings of initial
values in conventional optimization approaches affect forecasting
performance. In practice, the heuristic method can be conveniently
applied in various engineering problems (given a clear fitness func-
tion). The function in GP utilizes operators {+, �, �, �, log, sin, cos,
exp, constant}. The parameters of GP, population size, maximum
number of generations, crossover rate and mutation rate are set
to 150, 1000, 0.9, and 0.01, respectively. The values of the GP
parameters are determined by trial-and-error.
Step 3: Express the hybrid dynamic forecasting model that com-
bines the NDGM(1,1) model and the GP model as follows.
ŷ ¼ ŷt þ êt; ð8Þ

where ŷ denotes the forecasted value of y; ŷt represents the
series ðŷð0Þð5Þ; ŷð0Þð6Þ; . . . ; ŷð0ÞðnÞÞ; and êt represents the series
(r̂1;5; r̂2;6; . . . ; r̂n�4;n).
Notably, the proposed model differs from the model in the liter-

ature [10] as follows:

1. The proposed model combines the dynamic GM(1,1) model in
time-series data with the GP model in the residual series of
dynamic GM(1,1). The energy consumption model [10] (GPGM
(1,1) model) is constructed using GM(1,1) (both in observations
and residual values); GP is used to predict the residual sign (0 or
1) rather than residual values in the GPGM(1,1) model [10].
Strictly, the GPGM(1,1) model [10] is not a hybrid forecasting
model since only GM(1,1) is applied to observations and residual
values.

2. When the absolute residual series has complex patterns, the
forecasting accuracy of GM(1,1) is unsatisfactory. Hence, the
proposed model increases the forecasting accuracy by using
GP to construct the forecasting equation of the absolute residual
series.

This work adopts MATLAB software and DTREG software [27] to
construct the proposed forecasting model. The matrix operation of
MATLAB is utilized to determine the results of Step 1 (ŷð0Þðkþ 1Þ;
ŷð0Þðkþ 2Þ; . . . ; k ¼ 4;5; . . .). The gene expression programming
(GEP) package of DTREG software is utilized to determine the
results of Step 2 (r̂i;j; i ¼ 1;2; . . . ;n� 4; j ¼ 5;6; . . . ;n). Hence, the
forecasts of hybrid dynamic model can be obtained from the out-
comes of Steps 1 and 2.
4. Computational results

To demonstrate the effectiveness of the proposed hybrid dy-
namic GM, two energy consumption data sets from the United
States [28] and China [29] are used to evaluate the accuracy of
the proposed model. Energy consumption data from the United
States from 1970 to 2008 provide a total of 39 observations. Annual
energy consumption data from the US from 1974 to 1998 form a
training set (25 observations), and data from 1999 to 2008 form
a testing set (10 observations). The China energy consumption data
range from 1957 to 2007, providing a total of 51 observations. The
annual energy consumption data for China from 1961 to 1998 form
the training set (38 observations), and data from 1999 to 2007
form a testing set (9 observations).

This work compares the proposed model with a non-dynamic
hybrid grey forecasting model by incorporating the hybrid
GM(1,1) model as a benchmarked model. The hybrid GM(1,1)
model uses the entire data set to forecast future data points. By
assuming that the original time sequence with n data points is
y ¼ ðyð1Þ; yð2Þ; :::; yðnÞÞ; this work constructs a GM(1,1) model using
n data points. The original data that are forecasted using GM(1,1)
are denoted as ðŷð1Þ; ŷð2Þ; :::; ŷðnÞÞ: Let eðiÞ ¼ jyðiÞ � ŷðiÞj;
i ¼ 1;2; . . . ;n, be the absolute residual data points. e(i) can be esti-
mated using the GP model, in which the independent variables are
ei�1; ei�2; ei�3; ei�4 and the dependent variable is ei. The estimated
value of ei is represented as êðiÞ. Finally, the non-dynamic forecast-
ing model can be expressed as ŷðiÞ þ cðiÞ � êðiÞ, where c(i) denotes
the residual sign (cðiÞ ¼ 1 if the ith residual is positive and
cðiÞ ¼ �1 if the ith residual is negative). Additionally, the method
in the literature [10] is also used as a benchmark model.
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The accuracy of the proposed forecasting model is compared
with other models using four indices. The first index is the RMSE,
which compares the forecasted time-series data with the real
time-series data. The RMSE is defined as,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1

ðft � otÞ2

N

vuut ; ð9Þ

where ft denotes the forecasted value for the tth year, and ot denotes
the real value for the tth year. The second index is the mean abso-
lute percentage error (MAPE). This index statistically specifies the
accuracy of the fitted time-series data. The MAPE is defined as,

MAPE ¼ 1
N

XN

t¼1

ft � ot

ot

����
����� 100%; ð10Þ

Lewis [30] developed MAPE criteria for evaluating the effective-
ness of a forecasting model. The third index is the mean absolute
error (MAE), which is defined as,

MAE ¼
XN

t¼1

jft � otj
N

: ð11Þ

The fourth index is the percentage error (PE), which compares
the forecasted and real of the time-series data. The PE is defined as,
E
ne

rg
y 

co
ns

um
pt

io
n 

(u
ni

t: 
Q

ua
dr

ill
io

n 
B

tu
)

Fig. 1. The distributions of forecast values an

Fig. 2. The percentage of predicting error for fo
PE ¼ jf ðtÞ � oðtÞj
oðtÞ � 100%: ð12Þ

Fig. 1 summarizes the US energy consumption data from 1974
to 2008, and the data fitted using GM(1,1), NDGM(1,1), the ARIMA
model, the GP model, the method of Lee and Tong [10], the hybrid
GM(1,1) model, and the hybrid dynamic GM (proposed). Fig. 2 dis-
plays the PE obtained when these models are used to forecast the
US energy consumption data set. Table 1 summarizes the forecasts
and errors for all forecasting models in US energy consumption
data. Based on the MAPE index, the proposed hybrid dynamic
GM has the lowest forecasting error (0.062%) among all of the fore-
casting models when applied to the US energy consumption data.

Fig. 3 summarizes the China energy consumption data from
1961 to 2007, and the corresponding results obtained using differ-
ent forecasting models. Fig. 4 displays the PE obtained when these
models are used to forecast the China energy consumption data
set. Table 2 summarizes the forecasts and errors for all models in
the China data. According to the MAPE index, the proposed model
has the lowest forecasting error (0.4%) among all of the models.

Using the proposed model to forecast the residual series greatly
increases the predictive accuracy over other models. Accordingly,
the hybrid dynamic GM forecasts energy consumption more
accurately than the other models. Moreover, the proposed hybrid
dynamic GM outperforms the hybrid GM(1,1) model and has
lower prediction errors. The proposed model adopts dynamic
d real values from 1974 to 2008 in US.

recasting models from 1999 to 2008 in US.



Table 1
Forecasted values and errors of various forecasting models in US energy consumption (unit: Quadrillion Btu).

Year Actual
value

GM(1,1) NDGM(1,1) ARIMA GP Lee and Tong [10] Hybrid GM(1,1) Hybrid dynamic
GM

Model
value

Errora Model
value

Errora Model
value

Errora Model
value

Errora Model
value

Errora Model
value

Errora Model
value

Errora

1999 96.82 93.97 2.94 95.71 1.14 96.06 0.78 91.88 5.10 95.24 1.63 97.40 0.60 96.78 0.04
2000 98.98 95.01 4.01 96.17 2.84 96.95 2.06 93.90 5.13 96.21 2.80 98.51 0.48 98.89 0.09
2001 96.33 96.06 0.28 96.68 0.36 97.83 1.56 96.05 0.29 97.19 0.90 99.34 3.13 96.11 0.23
2002 97.86 97.12 0.76 97.16 0.72 98.71 0.87 98.06 0.20 98.19 0.34 95.88 2.03 97.89 0.03
2003 98.21 98.19 0.02 97.66 0.56 99.59 1.41 98.13 0.08 99.21 1.02 98.23 0.02 98.22 0.01
2004 100.35 99.28 1.07 98.15 2.19 100.48 0.13 98.54 1.81 100.24 0.11 99.66 0.69 100.35 0.00
2005 100.48 100.38 0.1 98.66 1.81 101.36 0.88 98.62 1.85 101.29 0.80 102.22 1.73 100.48 0.00
2006 99.88 101.49 1.61 99.16 0.72 102.24 2.37 100.36 0.48 100.63 0.75 100.40 0.52 99.86 0.02
2007 101.55 102.61 1.04 99.66 1.86 103.13 1.55 101.31 0.23 101.79 0.24 100.90 0.64 101.51 0.04
2008 99.3 103.74 4.47 100.17 0.87 104.01 4.74 103.43 4.16 102.97 3.70 101.68 2.40 99.16 0.14

RMSE 2.22 1.52 2.02 2.73 1.64 1.53 0.092
MAPE (%) 1.63 1.31 1.63 1.93 1.23 1.21 0.062
MAE 1.61 1.30 1.62 1.90 1.21 1.21 0.06

a ER = jŷt�yt j
yt
� 100%.
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Fig. 3. The distributions of forecast values and real values from 1961 to 2007 in China.

Fig. 4. The percentage of predicting error for forecasting models from 1999 to 2007 in China.
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Table 2
Forecasted values and errors of various forecasting models in China energy consumption (unit: SCE).

Year Actual
value

GM(1,1) NDGM(1,1) ARIMA GP Lee and Tong [10] Hybrid GM(1,1) Hybrid dynamic
GM

Model
value

Error* Model
value

Error* Model
value

Error* Model
value

Error* Model
value

Error* Model
value

Error* Model
value

Error*

1999 133,831 167124.58 24.88 129752.44 3.05 135236.27 1.05 139833.09 4.48 162275.98 21.25 139397.31 4.16 134208.07 0.28
2000 138,553 176556.80 27.43 125370.41 9.51 138258.54 0.21 141541.58 2.16 171691.52 23.92 139484.05 0.67 138971.12 0.30
2001 143,199 186521.30 30.25 122428.12 14.50 141280.81 1.34 146530.37 2.33 181639.29 26.84 148676.94 3.83 143348.65 0.10
2002 151,797 197048.20 29.81 118680.57 21.82 144303.08 4.94 151438.82 0.24 192149.40 26.58 153833.38 1.34 152231.83 0.29
2003 174,990 208169.30 18.96 115621.40 33.93 147325.35 15.81 160522.68 8.27 203253.65 16.15 192074.04 9.76 175319.52 0.19
2004 203,227 219918.00 8.21 112250.59 44.77 150347.62 26.02 185026.34 8.96 214985.45 5.79 219815.53 8.16 203834.25 0.30
2005 224,682 232329.70 3.40 109231.44 51.38 153369.89 31.74 214859.09 4.37 227380.18 1.20 215781.56 3.96 223769.88 0.41
2006 264,270 245442.00 7.12 106117.90 59.84 156392.16 40.82 237526.64 10.12 250408.54 5.25 242668.05 8.17 263469.97 0.30
2007 265,583 259294.30 2.37 103203.93 61.14 159414.43 39.98 279352.07 5.18 264277.92 0.49 276938.52 4.28 261743.86 1.45

RMSE 30384.99 93230.75 59271.76 13325.14 26143.77 12054.78 1383.11
MAPE (%) 16.94 33.33 17.99 5.12 14.16 4.93 0.40
MAE 26945.07 73052.80 41890.49 10631.51 22029.23 9949.13 874.19

* ER = jŷt�yt j
yt
� 100%.
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programming in predicting both original observations and residual
series. It differs from the hybrid GM(1,1), which adopts non-
dynamic programming to predict both original observations and
residual values. Similarly, the proposed model is more precise than
the methodology of Lee and Tong [10]. Computational results fur-
ther demonstrate that combining two forecasting methods (hybrid
dynamic GM(1,1) and hybrid GM(1,1)) to forecast observations and
residual values, yields a higher forecasting accuracy than adopting
just one of them during the construction of the energy consump-
tion model (GM(1,1), GP, the methodology of Lee and Tong [10],
or NDGM(1,1)). The proposed hybrid dynamic GM model is practi-
cally applicable when the structure of the energy consumption
data is complex.

5. Conclusions

Developing a high-precision energy consumption model is
rather complex owing to various uncertain factors that affect it.
Methodologies in the literature often use whole data sets to con-
struct an energy consumption model. However, many uncontrolled
factors affect annual energy consumption. The use of available data
to construct a forecasting model may be unreliable when historical
observations of energy consumption vary significantly. This work
develops a novel hybrid dynamic GM which combines the dynamic
grey model with an improved residual equation using GP to forecast
energy consumption. Computational results indicate that the
hybrid dynamic GM is more accurate and reliable than other fore-
casting models. Moreover, the proposed model can accurately
predict annual energy consumption because it uses dynamic
programming. In energy field applications, the proposed method
can handle situations in which energy consumption varies greatly
in certain years. Additionally, the proposed algorithm can be used
to forecast energy consumption using mathematical software. The
proposed approach can be used by energy utilities for accurate
forecasting.
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