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a  b  s  t  r  a  c  t

The  clustering  phenomenon  of  defects  usually  occurs  in  semiconductor  manufacturing.  However,  previ-
ous studies  did  not  pay  much  attention  to  the  influence  of  clustering  phenomenon  for  estimating  fraction
nonconforming  of  a wafer.  Thus,  this  paper  presents  a systematic  estimation  model  with  considering  rel-
evant variables  about  clustering  defects  for  fraction  nonconforming  of a wafer.  The  method  combines
back-propagation  neural  network  (BPNN)  with  genetic  algorithm  (GA)  to  obtain  an  estimation  model.
eywords:
emiconductor manufacturing
stimation for fraction nonconforming
ack-propagation neural network
enetic algorithm

In  this  study,  GA  aims  to optimize  the  parameters  of BPNN.  Five  relevant  variables:  number  of  defects
(ND),  squared  coefficient  of  angle  variation  (SCVA) for defects,  squared  coefficient  of  distance  variation
(SCVD)  for  defects,  defect  cluster  index  (CIM), and  the  number  of  cluster  groups  (NCG)  for  defects  by  self-
organized  map  (SOM)  are  utilized  as inputs  for GA–BPNN.  Finally,  a simulation  case  and  a  real-world  case
are used  to  confirm  the  effectiveness  of proposed  method.
elf-organized map

. Introduction

Semiconductor manufacturing has become the major industry
orldwide, and all electrical appliances are closely linked with inte-

rated circuits (ICs). The fraction nonconforming of a wafer is a
ey index for IC manufacturers to evaluate their process capability.
he fraction nonconforming of a wafer is defined as the proba-
ility that a chip on a wafer has defects. Accurate estimation for
raction nonconforming of a wafer is very useful to decrease man-
facturing costs for products still under development [1],  which
an offer a reasonable and acceptable price to customers. In many
erformance technologies [2],  estimating for fraction nonconform-

ng of a wafer is one of the most widely researched approaches in
emiconductor manufacturing.

As the wafer size increases, the clustering phenomenon of
efects becomes significant. In previous literatures, the negative
inomial yield model [3] includes a clustering index (˛), but the
alue of  ̨ can be scattered and negative that leads to unhandy anal-
sis [4].  Tyagi and Bayoumi [5,6] proposed a variance/mean ratio
V/M) to measure the strength of defects clustered. The values of
V/M) depend on how the grids are selected and cannot indicate
he gradualness of cross-wafer defect density variations [5,6]. Jun

t al. [7] proposed a cluster index (CI)  to evaluate the strength of
efects clustered on a wafer. In some cases, CI values calculated
rom different defect patterns may  be insensitive. For the purpose

E-mail address: junsoon1@hotmail.com

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2012.01.019
©  2012  Elsevier  B.V.  All rights  reserved.

of overcoming above-mentioned drawbacks, this study uses the
cluster index (CIM) of defects to measure the strength of cluster-
ing defects. The advantage of CIM is sensitive to the percentage of
defects in the clustering area and can be generalized to any wafer
size.

In addition to cluster index of defects, various clustering pat-
terns of defects and the number of cluster groups (NCG) for defects
can also influence the fraction nonconforming of a wafer, respec-
tively. Therefore, this study considers one random pattern and
three common clustering patterns (i.e., bull eye pattern, bottom
pattern, and crescent moon pattern) [8] for estimating fraction non-
conforming of a wafer. The self-organized map  (SOM) [9,10] is used
to determine the NCG for defects. Concurrent consideration for clus-
tering defects, clustering patterns, and cluster groups is the novelty
of this study different from others.

Previous studies did not pay much attention to the influence of
clustering phenomenon for estimating fraction nonconforming of
a wafer. Thus, this paper presents a systematic estimation model
with considering relevant variables about clustering defects for
fraction nonconforming of a wafer. The methodology combines
back-propagation neural network (BPNN) [11,12] with genetic
algorithm (GA) [13] to obtain an estimation model. In this study,
the GA aims to optimize the parameters of BPNN. The advantages
of this methodology and outperforming other approaches are that
the GA–BPNN model may  enhance the likelihood of global optimum

solution to have better accuracy for estimating fraction noncon-
forming of a wafer. Five relevant variables: number of defects (ND),
squared coefficient of angle variation (SCVA) for defects, squared
coefficient of distance variation (SCVD) for defects, defect cluster

dx.doi.org/10.1016/j.asoc.2012.01.019
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:junsoon1@hotmail.com
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ndex [14], and the NCG are utilized as inputs for the GA–BPNN.
he actual value of fraction nonconforming of a wafer is utilized as
utput for the GA–BPNN.

In summary, the research aim of this paper is to construct a
ystematic estimation model with high accuracy to support IC man-
facturers monitoring the production status of wafers. Finally, a
imulation case and a real-world case are used to confirm the effec-
iveness of proposed method. Comparisons are also made among
he BPNN model, radial basis function neural network (RBFNN)

odel, and the proposed GA–BPNN model to demonstrate that this
roposed method is indeed superior.

. Related literature

The strength of clustering phenomenon for defects on a wafer
an be measured by a cluster index of defects. Therefore, the cluster
arameter (˛) of the negative binomial model, the variance/mean
atio (V/M), and the non-parameters assumption cluster index are
espectively introduced. The negative binomial yield model can be
xpressed as follows:

 = 1

(1 + �/˛)
˛ (1)

here  ̨ is the cluster parameter and �̄ is the mean number of
efects per chip. Cunningham [4] reported that, cluster parameter

 in the negative binomial model may  be quite scattered and may
ven have a negative value when the model is used to forecast yield.

Tyagi and Bayoumi [5,6] utilized various grid sizes superim-
osed on a wafer map  to measure the strength of defects distributed
n a wafer. The defects contained within each grid can be used
o judge the spatial distribution of defects. The distribution of
efects follows a Poisson distribution if the defects are randomly
istributed. Because both variance (V) and mean (M)  are equal in
he Poisson distribution, the value of (V/M) equals 1 if the wafer
efects are randomly scattered. The value of (V/M) exceeds 1 if the
efects distributed on a wafer are clustered. The (V/M) values can
e proven to possess a t distribution with n − 1 degrees of freedom,
nd it can be expressed as follows:

n−1 = (V/M − 1)√
2/(n − 1)

(2)

here n denotes the number of squares, V and M represent the
ariance and mean, respectively. The values of (V/M) depend on
ow the grids are selected and cannot indicate the gradualness of
ross-wafer defect density variations.

Jun et al. [7] proposed a cluster index of defects by the projected
 and y coordinates of defect locations on a wafer. The clustering
f defects tends to show clumps in the x and the y coordinates,
hich result in a large variance in defect intervals. However, show-

ng clumps either on the x-axis or on the y-axis does not necessarily
epresent the clustering defects. The value of CI is close to 1 when
he defects are randomly scattered, and the value of CI is expected
o be greater than 1 when clustering of defects appears.

. The proposed method

.1. GA–BPNN model scheme

The GA [13,15–17] is probabilistic heuristic search processes
ased on natural selection. And its modern form is derived mainly
rom Holland’s work [13] and the second edition of Holland’s classic

992 book “Adaptation in Natural and Artificial Systems” [18]. GA

s capable of solving wide range of complex optimization problems
nly using three simple genetic operations (selection, crossover
nd mutation) on coded solutions (strings, chromosomes) for the
Fig. 1. Using the GA to optimize parameters of BPNN.

parameter set, not the parameters themselves in an iterative fash-
ion. GA considers several points in the search space simultaneously,
which reduces the chance of convergence to a local optimum
[19,20]. Adopting the GA to create the initial value of parameters for
BPNN and select the initialized BP weights, the hybrid of GA–BPNN
model improves the accuracy of estimation.

The hybrid network learning process consists of two stages:
firstly employing GA to search for optimal or approximate optimal
connection weights and thresholds for the BPNN, then using the BP
to adjust the final weights, in which the sigmoid function is used as
the activation function. The steps of learning optimal value for net-
work weights are achieved using the hybrid of GA–BP algorithm as
shown in Fig. 1. At first, the populations initialization is done; then
performance of tournament selection; followed by crossover with
probability Pc and mutation with probability Pm. Inverse value of
the learning error is taken as the fitness function that is calculated
to find the best fitness population member. If the GA terminating
condition is false, the program returns for tournament selection;

otherwise, it continues to select potential candidates and compute
holdout sample weights.
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.2. Cluster index (CIM) of defects

This study uses the cluster index [14] of defects to measure
he strength of the clustering phenomenon on a wafer. The CIM
s developed by the rotating axis technique from multivariate anal-
sis to overcome the drawbacks of CI. Some points are located in a
wo-dimensional space (that is, x1 and x2) and a new coordinate x∗

1
s obtained by rotating the x1 axis counterclockwise using � angle,

here 0◦ ≤ � ≤ 180◦. Accordingly, these points in two-dimensional
pace can be projected into the new axis x∗

1. The corresponding
oordinates are determined as follows.

∗
1 = cos �x1 + sin �x2 (3)

he detailed descriptions of obtaining CIM are listed as the following
ve steps.

Step 1: Project the defect coordinates (Xi, Yi) into a new axis
obtained by rotating the x-axis counterclockwise using �◦. Sup-
pose that a wafer has n defects, and (Xi, Yi) denotes the x and y
coordinates of the ith defect location in a two-dimensional space,
i = 1, . . .,  n. These n defects then can be projected onto a new axis
X∗

i,�
obtained by rotating the x-axis counterclockwise using �◦. The

new coordinates for the ith defect with respect to � then can be
calculated as follows.

X∗
i,� = cos �Xi + sin �Yi (4)

where i denotes the ith defect and � represents a rotating angle,
where 0◦ ≤ � ≤ 180◦.
Step 2: Sort the X∗

i,�
values in ascending order and calculate the

intervals between each adjacent coordinate value X∗
i,�

. The inter-
vals between each adjacent coordinate value X∗

i,�
then can be

calculated as follows.

Vi,� = X∗
(i,�) − X∗

(i−1,�) (5)

where Vi,� represents the ith interval between X∗
(i,�) and X∗

(i−1,�).
Step 3: Calculate the squared coefficient of variation (SCV) for Vi,� .
The SCV for Vi,� can be determined as follows.

SCV� =
S2

v,�

V
2
�

(6)

where SCV� represents the squared coefficient of variation for Vi,� ,

V̄� =
(

n∑
i=1

Vi,�

)
/n,  and S2

V,�
=
(

n∑
i=1

(Vi,� − V̄�)
2

)
/(n − 1).

Step 4: Change the angle of � and calculate the corresponding � = 1◦

value. The number of 180 SCV� values with respect to �, increased
by � = 1◦, can be obtained through Steps 1–3.
Step 5: According to the SCV� values obtained from Step 4, the
average SCV� value determines the clustering index, as follows:

CIM =

180◦∑
�=0◦

SCV�

180◦ (7)

where CIM represents defect cluster index. A larger CIM value indi-
cates a stronger degree of defect clustering formed on a wafer.

.3. The variation of angle and distance for defects
Further, squared coefficient of angle variation and squared coef-
cient of distance variation are also utilized as relevant variables.
he SCVA and SCVD can be derived as follows:
g 12 (2012) 1733–1740 1735

(1) Calculate the positive included angle (�i) between each defect
coordinate and the first quadrant on X-axis. � = tan−1(Yi/Xi),
i = 1, 2, . . .,  n; where Xi is the coordinate for the ith defect on
X-axis, Yi is the coordinate for the ith defect on Y-axis, and n
is the number of defects. Then, arrange �i in increasing order
and define Ai = �(i) − �(i−1), i = 1, 2, . . .,  n; where �(i) is the ith
smallest included angle, n is the number of defects, and �(0) = 0.
Finally, the SCVA can be obtained by follows:

SCVA =
(

SA

Ā

)2

(8)

where SA and Ā denote the sample standard deviation and mean
value of Ai, respectively.

(2) Calculate the distance (Li) between each defect coordinate and

the origin on the coordinate axis. Li =
√

Xi
2 + Yi

2, i = 1, 2, . . .,
n; where Xi is the coordinate for the ith defect on X-axis, Yi is
the coordinate for the ith defect on Y-axis, and n is the number
of defects. Then, arrange Li in increasing order and define Di =
L(i) − L(i−1), i = 1, 2, . . .,  n; where L(i) is the ith smallest distance,
n is the number of defects, and L(0) = 0. Finally, the SCVD can be
obtained by follows:

SCVD =
(

SD

D̄

)2

(9)

where SD and D̄ denote the sample standard deviation and mean
value of Di, respectively.

3.4. Verify the proposed model

The performance of neural networks can be evaluated by a root-
mean squared error (RMSE). When the value of RMSE is smaller, the
prediction accuracy of neural networks is higher. The RMSE can be
obtained as follows:

RMSE =
√∑n

i=1(Ai − Oi)
2

n
(10)

where n represents the number of data, Ai represents the actual
value of output, and Oi represents the predicted value. Another
indicator for measuring the strength of the relationship between
the actual and predicted outputs is the Pearson’s linear correla-
tion coefficient r. In addition to the RMSE and the Pearson’s linear
correlation coefficient r, the mean absolute deviation (MAD) and
the mean absolute percentage error (MAPE) are also considered for
comparing the results of neural networks. The MAD can be obtained
as follows:

MAD  = 1
n

n∑
i=1

|Ai − Oi| (11)

where n represents the number of data, Ai represents the actual
value of output, and Oi represents the predicted value. Subse-
quently, the MAPE can be obtained as follows:

MAPE = 1
n

∑n

i=1

∣∣Ai − Oi

∣∣
Ai

× 100% (12)

where n represents the number of data, Ai represents the actual
value of output, and Oi represents the predicted value. In summary,
there are four measures (RMSE, r, MAD, and MAPE) to evaluate the
estimation performance of neural network models in this study.
4. Simulation

The computer software, Matlab 7.0, is used to simulate the
coordinates of defect points and the four defect patterns (i.e.,
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Fig. 2. The fo

andom pattern, bull eye pattern, bottom pattern, and cres-

ent moon pattern) on 8 in. wafer are generated. The four
efect patterns are shown in Fig. 2. Five relevant variables
re utilized as inputs for the GA–BPNN. The actual value of
raction nonconforming of a wafer is utilized as output for the

Fig. 3. The SOM plot of cluster group
ect patterns.

GA–BPNN. The actual value of fraction nonconforming of a wafer

can be obtained by the number of defective chips divided by the
total number of chips.

For example, there are hypothetically 104 defect counts on a
simulation wafer, shown in Table 1. This study uses the computer

s for these 104 defect counts.
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Table  1
The 104 defect counts on a simulation wafer.

No. X coordinate Y coordinate Distance Angle

1 −3 −3 4.24 45.00
2 −3  2 3.61 −33.69
3 −2  2 2.83 −45.00

.  . . . . . . . . . . . . . .
102 4 1 4.12 14.04
103  4 2 4.47 26.57
104  4 3 5.00 36.87

s
t
f
F
F
c
o

4

e
d
s

(

(

T
T

Fig. 4. The scatter plot of 4 cluster groups for 104 defect counts.

oftware, SOMine, to obtain the SOM of these 104 defect counts on
his simulated wafer. Fig. 3 shows the SOM plot of cluster groups
or these 104 defect counts on this simulated wafer. According to
ig. 3, the number of cluster groups for defects by SOM is equal to 4.
ig. 4 shows the scatter plot of 4 cluster groups for these 104 defect
ounts on this simulated wafer. This study uses the same way to
btain the NCG of 500 simulation wafer data in Section 4.2.

.1. Simulation study

This section presents a simulation study to demonstrate the
ffectiveness of the proposed method. The followings are brief
escriptions of these three design factors for this simulation
tudy:

1) The three clustering patterns (i.e., bull eye pattern, bottom pat-
tern, and crescent moon pattern) are designed to have three
levels (50%, 70%, and 90%) of clustering percentage degree,
respectively. Therefore, 9 (3 × 3 = 9) kinds of the simulated clus-
tering patterns are generated.

2) The defect counts for one random pattern and 9 kinds of the
simulated clustering patterns are designed to have five lev-

els (50, 100, 150, 200, and 250), respectively. Therefore, 50
((1 × 5) + (9 × 5) = 50) kinds of simulated wafer data are gener-
ated.

able 2
he 500 simulated wafer data in this simulation study.

No. ND SCVA SCVD CIM NCG Clustering pattern

1 48 3.24 1.12 1.59 2 Bull eye pattern (50%)
2  102 3.58 1.27 2.81 2 Bull eye pattern (70%)
3  137 3.93 2.01 3.12 3 Bull eye pattern (90%)
4  95 2.02 1.23 2.24 2 Bottom pattern (50%)
5 203 2.87 1.29 3.13 3 Bottom pattern (70%)
6  234 2.98 2.39 3.88 4 Bottom pattern (90%)

.  . . . . . . . . . . . . . . . . . . . .
498 140 1.18 0.79 0.13 1 Random pattern
499  171 1.52 0.85 0.10 1 Random pattern
500 266 1.81 0.73 0.11 1 Random pattern
Fig. 5. The setting parameters of GA.

(3) Each simulated wafer data is replicated ten times. Therefore, it
generates 500 (50 × 10 = 500) simulated wafer data totally. In
each replication, I change the setting of random number seed.
Then, 400 simulation wafer data are randomly selected as train-
ing samples, the remaining 100 simulation wafer data are the
testing samples.

4.2. Simulation result

Assume that each wafer is divided into 396 chips, and there
are 500 simulated wafer data generated by Matlab 7.0 totally.
These 500 simulated wafer data are listed in Table 2. The com-
puter software, Pythia 1.02, is used to perform GA–BPNN. According
to the study of Ting et al. [21], it is reported that the better set-
ting for mutation rate is between 0.01 and 0.2; cross over rate
is between 0.8 and 1.0. Further, by try and error method, we
find that the parameters (population size is 50, evolution steps
are under 1000, mutation rate is 0.01, and cross over rate is
0.8) can obtain the best outcome in this study. Fig. 5 shows the
setting parameters of GA. Fig. 6 shows the evolutionary opti-
mization of BPNN topology. From Fig. 6, the BPNN architecture
determined by GA is 5–7–5–1 (i.e., the number of neurons in the

input layer is 5, the number of neurons in the first hidden layer
is 7, the number of neurons in the second hidden layer is 5, and
the number of neurons in the output layer is 1). The network

Table 3
Comparisons (simulation study) of RMSE, MAD, MAPE, and r between estimative
and  actual value.

Estimation method RMSE MAD  MAPE r

BPNN model 0.0412 0.0205 0.13% 0.8124
RBFNN model 0.0283 0.0097 0.08% 0.8526
Proposed GA–BPNN model 0.0102 0.0013 0.04% 0.9132
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Fig. 6. The evolutionary optimization of BPNN topology.

p
t
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Fig. 7. The scatter plot of BPNN model.
arameters of BPNN are given: learning rate is 0.25; momen-
um is 0.88, and train the data through 2500 times. Besides, the
igmoid function is used as activation function in the training pro-
ess.

Fig. 8. The scatter plot of RBFNN model.
Fig. 9. The scatter plot of GA–BPNN model.

The scatter plots for the BPNN model, the RBFNN model, and
the proposed GA–BPNN model are shown from Figs. 7–9.  Finally,
comparisons (simulation study) made among the BPNN model, the
RBFNN model, and the proposed GA–BPNN model are listed in
Table 3. From Table 3, it shows that the proposed GA–BPNN model
in this study has the smallest value of RMSE, MAD, and MAPE;
the largest value of correlation coefficient r. Therefore, the esti-
mation accuracy of the proposed method in this study is indeed
superior.

5. Case study

In this section, a real-world case (without simulation) obtained
in a DRAM company in Taiwan is utilized to demonstrate the effec-
tiveness of proposed method. There are totally 113 data of 8 in.

wafer in this case, and each wafer is divided into 400 chips. In this
case, the four defect patterns (i.e., random pattern, bull eye pattern,
bottom pattern, and crescent moon pattern) are also considered,
and the five relevant variables are also calculated by the same way
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Table  4
The 113 real wafer data with relevant variable values in case study.

No. ND SCVA SCVD CIM NCG Clustering pattern

1 92 3.07 1.35 1.13 2 Bull eye pattern
2 85 3.01 1.63 1.91 2 Bull eye pattern
3 104 3.24 2.27 3.03 2 Bull eye pattern
4  156 2.34 1.46 2.56 2 Bottom pattern
5  197 2.56 1.98 3.52 3 Bottom pattern
6  215 2.89 2.54 3.78 3 Bottom pattern

.  . . . . . . . . . . . . . . . . . . . .
111 167 1.25 0.77 0.11 1 Random pattern
112 188 1.34 0.61 0.13 1 Random pattern
113 254 1.68 0.54 0.06 1 Random pattern

Fig. 10. The scatter plot of BPNN model (case study).

Fig. 11. The scatter plot of RBFNN model (case study).

o
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Table 5
Comparisons (case study) of RMSE, MAD, MAPE and r between estimative and actual
value.

Estimation method RMSE MAD MAPE r

BPNN model 0.1013 0.0876 0.15% 0.7938
Fig. 12. The scatter plot of GA–BPNN model (case study).

f Section 4. The 113 data with relevant variable values are listed
n Table 4. Comparisons are also made among the BPNN model,
BFNN model, and the proposed GA–BPNN model to demonstrate
hat the proposed method is indeed superior for estimating fraction
onconforming of a wafer.

These 113 wafer data are divided into two parts: one part con-
ains 90 wafers which are used to train the GA–BPNN model; the

econd part contains 23 wafers which are employed to test the
ccuracy of the GA–BPNN model. The scatter plots (case study) for
he BPNN model, the RBFNN model, and the proposed GA–BPNN

odel are shown from Figs. 10–12. Finally, comparisons (case
RBFNN model 0.0627 0.0438 0.12% 0.8436
Proposed GA–BPNN model 0.0214 0.0102 0.08% 0.9254

study) made among the BPNN model, the RBFNN model, and the
proposed GA–BPNN model are listed in Table 5. From Table 5, it
shows that the proposed GA–BPNN model in this study has the
smallest value of RMSE, MAD, and MAPE; the largest value of cor-
relation coefficient r. Therefore, the estimation accuracy of the
proposed method in this study is indeed superior.

6. Results and discussions

According to the outcome of Sections 4 and 5, the estimation
accuracy of GA–BPNN model is better than BPNN (without GA)
model or RBFNN model. Although the BPNN and RBFNN are promi-
nent on nonlinear forecasting and pattern recognition, they still
have the problems of setting parameters and local optimum on
convergence. Therefore, this study uses GA to optimize the param-
eters (e.g., the connection weight for each layer; the best topology
of neural networks) of BPNN. Because the GA is a global optimum
searching algorithm, it may  make BPNN to enhance the likelihood
of global optimum solution, and so this GA–BPNN model can have
better accuracy of estimation.

In the aspect of estimating fraction nonconforming of a wafer,
the Poisson yield model is inaccurate when the clustering phe-
nomenon of defects is significant. Moreover, the negative binomial
model also lacks the accuracy when the clustering phenomenon
of defects occurs on a wafer. Thus, it can be seen that the cluster-
ing phenomenon of defects is significantly relative to the fraction
nonconforming of a wafer. In order to give careful consideration
to the influence of clustering phenomenon for estimating fraction
nonconforming of a wafer, this study synchronously utilizes the
variation of angle-distance, defect cluster index, and number of
cluster groups to feature the characteristics of clustered defects and
patterns. These relevant variables may  aid this GA–BPNN model to
estimate fraction nonconforming of a wafer more closely.

The self-organized map  is used to determine the NCG for defects
in this study. SOM is very suitable for the analysis and visualization
of high dimensional data. It converts complex nonlinear relation-
ships between high dimensional input data into simple geometric
relationships. SOM learns to find regularities and correlations of
input, and roughly preserves the most important relationships
and topological of the original data, and clusters future input data
accordingly. SOM includes two  layers: the input layer and the out-
put layer. The input layer is fully connected to the output layer of
map nodes. The learning process is competitive and unsupervised.
When an input is presented the output nodes compete to repre-
sent the pattern. The node whose vector of weights is closest to the
input pattern wins the competition. The winner is then updated by
moving its weight vector closer to the input pattern. Units near the
winner are also moved, as training progresses units that are neigh-
bors tend to come to represent similar patterns, while nodes far
from each other in the map  represent dissimilar patterns. The nods
within a cluster tend to activate the same output unit, while nods
from other clusters will be represented by separate units. Therefore,
SOM can effectively identify the NCG for defects.
For the purpose of improving drawbacks of previous studies,
this paper presents a systematic estimation model with considering
relevant variables about clustering defects for fraction noncon-
forming of a wafer. By the demonstration of simulation and case
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tudy, the five relevant variables (ND, SCVA, SCVD, CIM, and NCG)
ied in with the GA–BPNN model may  indeed have superior accu-
acy for estimating fraction nonconforming of a wafer. Therefore,
he methodology proposed in this study may  be suggested to be
sed in semiconductor manufacturing industry.

. Conclusions

As the wafer size increases, the defects on a wafer become clus-
ered and form specific patterns. Traditional statistical models still
ppropriately estimate the fraction nonconforming of a wafer when
he chip size is small, but they are failed to be used when the cluster-
ng phenomenon of defects is significant. In addition to clustering
efects, various clustering patterns of defects can also influence the
raction nonconforming of a wafer. In this situation, it is difficult
or engineers to estimate the fraction nonconforming of a wafer
ccurately.

In order to overcome the above-mentioned difficulty, this paper
resents a systematic estimation model with considering relevant
ariables about clustering defects for fraction nonconforming of a
afer. In addition to cluster index of defects, clustering patterns

f defects are also considered simultaneously. In this study, five
elevant variables: ND, SCVA, SCVD, CIM, and NCG are considered to
eature the characteristics of clustered defects and patterns. Then,
hey are tied in with the GA–BPNN to construct an estimation model
or fraction nonconforming of a wafer.

This paper is different from previous studies and contributes to
emiconductor manufacturing as follows:

1) Concurrent consideration for clustering defects, clustering pat-
terns, and cluster groups is the uniqueness of this paper
different from others.

2) The five relevant variables can help the GA–BPNN model to
estimate fraction nonconforming of a wafer more effectively.

3) The proposed methodology may  support the semiconductor
manufacturing industry to evaluate the process capability in
relation to profit and loss.
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