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Effect of size and shape dispersion on the averaged magnetic response of ensembles
of semiconductor quantum rings
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In this paper a theoretical study was made of the conditional averages of the magnetization and magnetic
susceptibility of dispersive ensembles of nano-objects with a very complex geometry—self-assembled wobbled
semiconductor quantum rings. Using the multivariate statistics approach and previously proposed mapping
method the impact of the dispersion of the ring geometry parameters on the static magnetic response of the
ensembles has been investigated near the first Aharonov-Bohm oscillation. The description is suited to clarify
the important question of which geometrical parameters’ dispersions are crucial for the formation and properties
of the magnetic response of ensembles. We theoretically show that for the dispersive ensembles of InGaAs/GaAs
capped wobbled quantum rings the actual value and temperature dependence of the differential magnetic
susceptibility can be optimized by an appropriate control of the conditional parameters of the ensembles.
The ring rim radius variations play a crucial role in this dependence. We have managed to simulate in detail
the temperature behavior of the meaningful averages of the magnetization and positive peak of the differential
magnetic susceptibility for ensembles of the rings known from the experiment. The simulated temperature
dependence, position, and magnitude of the positive peak in the differential magnetic susceptibility are in a good
agreement with the experimental observations.
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I. INTRODUCTION

Recent advances in lithography, colloidal chemistry, and
epitaxial growth have made it possible to produce semicon-
ductor nano-objects (quantum dots, quantum dot molecules,
quantum dot posts, quantum rings, etc.) within a wide range
of material parameters and geometrical shapes, investigate
their properties in details, and use them for various novel
applications (see, e.g., Refs. 1–5 and references therein).
It is well known that the effectiveness of applications of
the nano-objects is limited by their material and structural
uniformity. At the same time, geometrical and material param-
eters’ dispersion (shapes, sizes, and material compositions)
is the inherent property of the contemporary self-assembled
semiconductor nano-objects (see, e.g., Refs. 6–9). The dis-
persion leads to fluctuations in the demanded properties of
macrosystems (ensembles) combined from the nano-objects.
For instance, to perform large-scale quantum information
processing we have to assemble macrosystems from many
uniform and regular nanosized elements. The dispersion in the
nano-objects’ parameters results in the noncontrollable deco-
herence in the entanglement of multiquantum bits. The same
requirements are of the paramount importance in nano-optics
and nanomedicine. The dispersion leads to the inhomogeneous
broadening in optical spectra which can drastically decrease
applicability of the integrated optical systems. In this respect
the most interesting and challenging goal is to formulate
statistical models (“portraits”) of dispersive ensembles of
interest, which can be used for optimization of physical
characteristics of the ensembles.

Up to now most of simulations of the statistical physical
characteristics of dispersive ensembles of semiconductor
nano-objects were devoted to the inhomogeneous broadening
in optics of ensembles of semiconductor quantum dots. The
simulations were performed for simple spherical or cubic
shapes of the dots6–9 and the broadening was attributed to

the dot-size (volume) primitive univariate (single-parameter,
for instance the dot radius) dispersion. This approach allows
for simple analytical expressions and nonextensive numerical
simulations. However, it is obviously not applicable to most
of the nano-objects. The general approach to the realistic
theoretical description of dispersive ensembles of semicon-
ductor nano-objects with complex material parameters and
geometrical shapes is to consider a multivariate (multidi-
mensional) distribution function10–12 including dispersions of
all appropriate physical parameters (subsets of parameters of
interest10,13). This requires computational methods those can
optimize extensive simulations of the physical properties of
semiconductor nano-objects within wide ranges of variations
of their parameters. The mapping method recently proposed by
us14–16 allows one to efficiently simulate quantum-mechanical
properties of ensembles of three-dimensional semiconductor
nano-objects with complicated geometries and flexible mate-
rial parameters.

In this theoretical study, using the mapping method we
address the issue of the statistical description of the static mag-
netic response of dispersive ensembles of three-dimensional
InxGa1−xAs/GaAs self-assembled quantum rings (SAQRs)—
nano-objects with a very complex geometry. According to
recent experimental results the SAQRs demonstrate control-
lable flexibility of geometrical and material characteristics
(see, e.g., Refs. 5 and 17–34 and references therein). The most
intriguing property of the SAQRs, that has attracted much
attention, is their three-dimensional nonsimply connected
topology. The property enables topological quantum effects
for charged particles confined in the SAQRs (similar to the
Aharonov-Bohm effect35). This results in a very specific
static magnetic response of the rings: when the external
magnetic field is applied in the SAQR growth direction, the
nonsimply connected topology enables the Aharonov-Bohm
oscillations of the ring’s magnetization and generates a positive
peak in the differential magnetic susceptibility.36–40 This
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effect has to be addressed to the crossing between the two
lowest-energy states of the electron confined in the ring.36–42

The effect was recently experimentally confirmed at low
temperatures for InxGa1−xAs/GaAs self-assembled capped
wobbled quantum rings.40 It was shown that for one-electron
rings the wobbling asymmetry can have a strong effect
on the magnitude of the first magnetization oscillation and
susceptibility peak as well as their positions.39,41 However,
the actual experimental magnitude of the peak’s height and
its temperature dependence remain in a contradiction to
the conventional expectations.38,40–42 Unlike the conventional
simulations, the experimental peak demonstrates a negligible
temperature effect. In Refs. 40 and 41 the importance of the
ring size variations was emphasized and it was demonstrated
that the negligible temperature effect on the static magnetic
response is due to the ring ensemble averaging.

In this paper we develop a “multivariate statistical por-
trait” of the static magnetic response for the most popu-
lar model of the geometry of three-dimensional wobbled
InxGa1−xAs/GaAs SAQRs.21,40 Using our mapping method
we analyze conditional and simultaneous impacts of the
multivariate dispersion of different geometrical properties
(parameters) of the SAQRs on the first oscillation in the
magnetic response of the rings’ ensembles. We show that our
approach makes it possible to verify which specific parameter
can play a crucial role in the unusual magnetic response. In
addition, we address the issue of the temperature stabilization
of the static magnetic response of the dispersive ensemble of
SAQRs.

II. MODEL AND SIMULATION METHODS

To make this paper more self-contained, we first briefly
explain the multivariate statistics approach and its application
to the simulation of the magnetic response of dispersive
ensembles of nano-objects of complex geometrical shapes.
We also describe the application of our mapping method to the
simulation of the energy states of a single electron confined
in a three-dimensional SAQR with flexible size and geometry
parameters.

The geometrical and material parameters’ dispersions
in ensembles of nano-objects can be described by a
multivariate (multidimensional) joint distribution function
P ({x1,x2, . . . ,xn}).10–12 The function presents the dispersions
of all appropriate parameters {xi} (such as sizes, parameters’
characterizing anisotropy in geometry, composition, etc.). This
gives the number of nano-objects dN with the values of {xi}
inside the domain {xi,xi + dxi} as13

dN =
∏

i

P ({xi})dxi. (1)

The cumulative expectation (meaningful average) of a physical
quantity Q({xi}) characterizing the ensemble then is written
as

Q̄ =
∫
xi

P ({xi})Q({xi})
∏

i

dxi . (2)

Most of the ensembles can be characterized satisfactorily
when only a subset of the parameters in {xi} is of any

interest. Therefore, we can consider the conditional distribu-
tions for subsets of the parameters of interest: {xj }C ⊆ {xi}.
Accordingly, when it is possible to neglect dispersions of the
other (“nuisance”) parameters we can define the appropriate
conditional expectation as

Q̄C =
∫

xj ∈{xj }C

P ({xj }C)Q({xj }C)
∏
j

dxj . (3)

In our consideration we assume that the parameters in
a typical nano-objects’ ensemble follow the noncorrelated
normal distribution which is presented by

P ({xi}) = PG(x1) · PG(x2) . . . , (4)

where the standard normal distribution for each parameter x

is written as

PG(x) = AG

(
x − x̄

�x

)
. (5)

A stands for the normalization coefficient, x̄ is a mean value,
�x is the standard deviation of the parameter x, and G(y)
is the Gaussian function. Therefore, a conditional expectation
(average) is

Q̄C =
∫

xj ∈{xj }C

Q({xj }C)
∏
j

PG(xj )
∏
j

dxj . (6)

As an implementation of this statistical approach we present
in this paper a conditional “statistical portrait” of the static
magnetic response for the most popular model of the geometry
of three-dimensional wobbled InxGa1−xAs/GaAs SAQRs. We
start from the simulation of an individual ring and we vary the
object geometrical parameters of interest within a wide range.
To reach this crucial goal we use our mapping method, which
allows us to map realistic geometrical shapes, strains, and
material compositions of semiconductor nano-objects (known
from experiments) to smooth three-dimensional effective
potentials for electrons confined in the objects and very
efficiently simulate the energy states of the electrons. Then
we compute conditional averages of the magnetization and
differential magnetic susceptibility of the rings’ ensemble by
using the multivariate distribution function P ({xi}C).

Now we assume that a SAQR was grown on a flat substrate
parallel to the x-y plane and we can model the ring’s shape
by a function h(x,y), which reproduces the local ring’s height
(along the z direction) at the actual position on the x-y plane
[see Fig. 1(a)]. Using the experimental structural and compo-
sition data obtained from atomic force microscopy and cross-
sectional scanning tunneling microscopy measurements21,40

the function h(x,y) can be analytically approximated. For the
wobbled (asymmetrical) SAQR the height h(x,y) was obtained
according to a fitting of the experimental data21 and it can
be written as the following (the most popular model of the
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ring’s geometry):

h(x,y) =

⎧⎪⎨
⎪⎩

h0 +
[
hr

(
1 + ξ

x2−y2

x2+y2

)
− h0

]
γ 2

0
R2

r

R2
r −(

√
x2+y2−Rr )2

(
√

x2+y2−Rr )2+γ 2
0

,
√

x2 + y2 � Rr

h∞ +
[
hr

(
1 + ξ

x2−y2

x2+y2

)
− h∞

]
γ 2

∞
(
√

x2+y2−Rr )2+γ 2∞
,

√
x2 + y2 > Rr

, (7)

where Rr is the ring’s rim radius; h0,hr , and h∞ corre-
spondingly stand for the height at the center of the rings,
at the rim, and far outside of the ring; γ0 and γ∞, re-
spectively, determine the inside and outside slopes near the
ring’s rim. The wobbling parameter ξ defines the anisotropy
(asymmetry) of the ring height on the x-y plane. The
three-dimensional smooth confinement potential for elec-
trons V (r) we describe by the composition- and geometry-
dependent profile of the local conduction-band offset:14,16

V (r) = �Ec(r) = �E0
c

(
1 − 1

4

[
1 + tanh

(
z

a

)]

×
{

1 − tanh

[
z − h(x,y)

a

]})
. (8)

In this expression, r = (x,y,z) is the three-dimensional
radius vector, �Ec(r) is the local value of the conduction-
band offset, �Ec

0 = Ec
out − Ec

in is the overall band offset
between the inner and outer semiconductor materials in the
InGaAs/GaAs heterostructure, and superscripts “in” and “out”
denote the actual material parameters inside and outside the
rings. The slope and range (the degree of smoothness) of the
potential change at the boundaries of the ring are controlled
by a parameter a. The expression (8) obviously describes a
rigorous full three-dimensional hard wall potential when the
parameter a goes to 0. We should note that several smooth
confinement potential models have been already proposed
and used in simulations of semiconductor nano-objects.43–47
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FIG. 1. (Color online) (a) Capped wobbled InxGa1−xAs/GaAs
self-assembled quantum ring. Two projections of the electronic con-
finement potential on (b) (x,0,z) and (c) (0,y,z) planes (Rr = 11.5 nm,
ξ = 0.2).

Specifically, following the actual three-dimensional geomet-
rical shape of the ring, the three-dimensional confinement
potential (8) reflects in a very obvious and natural way
the smooth variations of the material parameters across the
boundaries of the wobbled ring [see Figs. 1(b) and 1(c)].

Using the potential (8) we define the mapping function

M(r) = 1 − V (r)

�E0
c

, (9)

which accumulates experimental information about the ring
shape and local material content. For instance, we present the
position-dependent band gap Eg(r), spin-orbit splitting �(r),
the electron effective mass at the bottom of the conducting
band mb(r) as

Eg(r) = Ein
g M(r) + Eout

g [1 − M(r)],

�(r) = �inM(r) + �out[1 − M(r)], (10)

mb(r) = min
b M(r) + mout

b [1 − M(r)].

Now the energy (E) and position (r) dependent electron
effective mass m(E,r) and Landé factor g(E,r) in the ring
can be written as36,37,48

1

m(E,r)
= 2P 2(r)

3h̄2

[
2

E + Eg(r) − V (r)

+ 1

E + Eg(r) + �(r) − V (r)

]
, (11)

g(E,r) = 2

{
1 − m0

m(E,r)

× �(r)

3[E + Eg(r) − V (r)] + 2�(r)

}
, (12)

where

P 2 (r) = 3h̄2

2
m−1

b (r)

{
2�(r) + 3Eg(r)

Eg(r)[Eg(r) + �(r)]

}−1

presents the position-dependent momentum matrix element
and m0 is the free-electron mass.

Energy states of a single electron confined in the SAQR we
can obtain in the one electronic band envelope function approx-
imation by solving the nonlinear Schrödinger equation36,37,48

Ĥ (E,r)F (r) = EF (r) (13)

with the effective energy-dependent Hamiltonian

Ĥ (E,r) = 1

2
�r

1

m(E,r)
�r+μB

2
g(E,r)σ · B + V (r), (14)

where �r = −ih̄∇r+eA(r) is the electron momentum opera-
tor, ∇r is the spatial gradient, A(r) is the vector potential of the
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magnetic field B = ∇ × A, σ is the vector of the Pauli matri-
ces, μB is the Bohr magneton, and e is the elementary charge.

To determine the ring’s static magnetic response we first
calculate the magnetic moment M (magnetization) of an
electron localized in a ring. The standard approach for arbitrary
temperature T is to use the free energy F of the system in the
presence of the external magnetic field B:49,50

F = −kBT ln Z, (15)

where the single-particle partition function Z is defined to be

Z =
∑

n

exp

(
− En

kBT

)
, (16)

and the energy states are numerated by {n}—an appropriate
set of quantum numbers must be obtained by the solution of
Eq. (13). Then, the single-electron magnetization M and differ-
ential magnetic susceptibility χ of a ring are correspondingly

M = 1

Z

∑
n

(
−∂En

∂B

)
exp

(
− En

kBT

)
(17)

and

χ = ∂M

∂B
. (18)

At low temperatures the magnetization and susceptibility
of a ring are defined by the magnetic-field dependencies of the
lowest-energy states. It is known36–40 that the first oscillation
of the magnetization and correspondingly the first positive
peak of the susceptibility appear at the crossing of the ground
E0 and first excited E1 electron energy levels (manifesting the
Aharonov-Bohm effect). Therefore, for clarity in this paper we
concentrate on the first oscillation of the magnetic parameters
of the rings. At the neighborhood of the crossing point Bc we
can suggest that (see also as an illustration Fig. 2)

E0(1)(B) ≈ Ec + C0(1)(B − Bc),
(19)

Ec = E0(Bc) = E1(Bc).

FIG. 2. (Color online) Two lowest electron energy levels for the
ring with Rr = 11.5 nm and ξ = 0.2. Inset: crossing region.

We stress that at low temperatures near the crossing point
Bc the two lowest levels can be properly separated from the
higher-energy levels36,37,39,40 and we can keep in Z only two
terms. In this approximation, the magnetization Eq. (17) and
differential magnetic susceptibility Eq. (18) can be written as

M ≈ −C0 − C1 exp δ

1 + exp δ
(20)

and

χ ≈ (C0 − C1)2

kBT
· exp δ

(1 + exp δ)2 , (21)

where

δ = (C0 − C1) (B − Bc)

kBT
.

Actual values of the electronic energies near the first
crossing, amplitudes of the magnetization oscillation, and
susceptibility peak [defined in Eqs. (20) and (21) by Bc

and C0(1)] strongly depend on the actual geometrical and
material parameters of the rings such as effective radii, heights,
material content, strain, etc.21,36,37,39,40 Therefore, in general,
within our approach we can characterize them by a set of
parameters {xi} ⇒ {Rr,ξ,h0,hr . . . ,�E0

c ,E
in(out)
g ,m

in(out)
b . . .}

[see, e.g., Eqs. (1)–(10)]. From an experiment one actually
obtains values of the magnetic characteristics averaged over
an ensemble of the rings with dispersions of certain selected
parameters combined into the conditional set {xi}C . The
meaningful averages for the magnetization and differential
magnetic susceptibility characterizing the ensemble can be
written as

M̄C =
∫

xj ∈{xj }C

M({xj }C)
∏
j

PG(xj )
∏
j

dxj , (22)

χ̄C =
∫

xj ∈{xj }C

χ ({xj }C)
∏
j

PG(xj )
∏
j

dxj . (23)

We note that in our description near the crossing point
the ring parameter variations within an ensemble of the rings
are obviously connected with the variations of Bc ({xi}) and
C0(1) ({xi}); those according to Eqs. (21) and (22) we have to
model in the first place.

III. SIMULATION RESULTS AND DISCUSSION

The larger the conditional set of varying parameters
{xi}C ⇒ {Rr,ξ,h0,hr ...,�E0

c ,E
in(out)
g ,m

in(out)
b ...}C , the more

complete “statistical portrait” of the magnetic response of
the rings’ ensemble can be drawn and the more complete
description for M and χ can be proposed. According to
the general scheme we have to simulate multidimensional
dependencies of the coefficients Bc({xi}C) and C0(1)({xi}C).
However, it is already a tedious problem itself to solve
many times the three-dimensional nonlinear Schrödinger
equation (13) for varying combinations of the values of the
parameters from a conditional subset and changing magnetic
field (which is parallel to the z direction). Therefore, we con-
sider only InxGa1−xAs/GaAs SAQRs and use realistic semi-
conductor material parameters {�E0

c ,E
in(out)
g ,m

in(out)
b . . .}C for
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InGaAs/GaAs heterostructures known from Refs. 51–53 and
adjusted according to the actual composition and strain.21,39,40

We take them as fixed parameters without dispersion and
focus on the pure geometry dispersion. To decrease the
problem complicity we consider the magnetic-field range
corresponding to the first oscillation of the magnetization and
the first positive peak of the susceptibility. For this reason
we should select from the conditional geometrical subset
{Rr,ξ,h0,hr . . .}C only those parameters whose variations are
relevant to the main changes in the position of the crossing
point and values of C0 and C1. We have to keep the parameters’
variations within certain bars to guarantee the appearance
of the crossing and oscillations. Therefore, in this paper we
confine ourselves to a bivariate (two-dimensional) distribution
for the variations in Eq. (1) when only the parameters Rr

and ξ vary (the conditional subset {Rr,ξ}C). According to
Refs. 39 and 41 and our calculation experience, dispersions
(up to 20%) of these two parameters for the wobbled rings
with geometry Eq. (1) are most relevant for the deviation in the
crossing point Bc position. With conditions described above
the dispersion of other geometrical parameters plays a less
important role and will be considered elsewhere. Using Eq. (1)
and solving Eq. (13) we first simulate E0(1)(B; {Rr,ξ}C) in the
vicinity of the crossing point. The energy states are obtained
numerically from solutions of the full three-dimensional
eigenvalue problem Eq. (13) using the nonlinear iterative
method54 and the COMSOL finite element analysis, solver, and
simulation software.55

B
c
(T

)
C

0 
(*

10
-4

eV
T

-1
)

C
1 
(*

10
-4

eV
T

-1
)

(a)

(b)

(c)

FIG. 3. (Color online) Dependencies of the electronic energy
characteristics on the rim radius Rr and wobbling parameter ξ : (a)
crossing point Bc, (b) coefficient C0, and (c) coefficient C1. Dots,
simulation data; surface plots, appropriate fitting functions.

TABLE I. Fitting parameters.

k 0 1 c

ak 1.209 × 10−3 2.131 × 10−3 0
bk −9.164 × 10−4 1.659 × 10−4 1.058
ck −4.743 × 10−3 3.059 × 10−3 36.96
dk 1.069 × 10−3 −5.115 × 10−3 0
ek −6.544 × 10−5 −1.247 × 10−3 5222.2
βk 0.722 0.206 −2.491

By adjusting the model presented by Eq. (1), we adopt
the experimental data21,40 and choose a basic geometrical
shape of the rings (known from the experiment) as follows:
h0 = 1.6 nm, hr = 3.6 nm, and h∞ = 0.4 nm, γ0 = 5 nm,
and γ∞ = 2 nm. The slope parameter of the potential change
at the boundaries of the rings is chosen to be a = 0.4 nm.
As an example, two different projections of the smooth
three-dimensional confinement potential of the ring with
Rr = 11.5 nm, ξ = 0.2 are shown in Figs. 1(b) and 1(c),
and the first crossing of the electronic energy levels for this
ring is presented in Fig. 2. In our simulations the parameters
Rr and ξ are varied within the ranges 7−17 nm and 0−0.4,
correspondingly. Values of Bc({Rr,ξ}C) and C0(1)({Rr,ξ}C) are
reproduced from the calculation results for the corresponding
sets {Rr,ξ}C (see Fig. 3). The results of those simulations
we fit to the two-dimensional functions C0(1)({Rr,ξ}C) and
Bc({Rr,ξ}C) using the following guess:

Xk(Rr,ξ ) = ak + bkξ + ckξ
2 + dkξ

3 + ekR
βk

r , (24)

where k = 0,1,c and Xk(Rr,ξ ) = (C0,C1,Bc). According to
our experience, the best fit can be achieved with the fitting
parameters in Eq. (24) given in Table I (in appropriate
International System units).

It is clear from Fig. 3 that the fitting functions Bc(Rr,ξ )
and C0(1)(Rr,ξ ) accurately reproduce results of our direct
simulation within the chosen wide range of variations of the
parameters. Clearly, within the fitting range the variations of
the ring rim radius strongly affect the position of the crossing
point, which also demonstrates a relatively weak dependence
on the wobbling parameter ξ [Fig. 3(a)]. We should note that
according to Eqs. (20) and (21) for a particular individual
ring at low temperatures the magnitudes of the magnetization
and susceptibility oscillations are defined by the difference
C0 − C1 that we show in Fig. 4. Although the coefficients C1

C
0-

C
μ

1
(

B
)

FIG. 4. (Color online) Two-dimensional dependence of the fitted
difference C0 − C1 on the rim radius Rr and wobbling parameter ξ .
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M
 (

B
)

(a)

M
 

μ
μ

(
B
)

(b)

FIG. 5. (Color online) Dependence of the magnetization M on
the temperature and magnetic field for (a) individual ring (Rr =
11.5 nm, ξ = 0.2) and (b) rings’ ensemble (R̄r = 11.5 nm, ξ̄ = 0.2,
dispersion 5%).

and C2 separately vary substantially as functions of both Rr

and ξ [Figs. 3(b) and 3(c)], it is clear that the difference of
the coefficients is very stable upon the rim radius changes, but
it can be seriously affected by variations of ξ . This suggests
the same tendency for the magnetization oscillations for an
individual ring at low temperatures.

Substituting Bc(Rr,ξ ) and C0(1)(Rr,ξ ) from Eq. (24) to
Eqs. (20)–(23) we are now able to simulate the conditional
meaningful averages for the magnetization and differential
magnetic susceptibility characterizing dispersive ensembles
of one-electron InxGa1−xAs/GaAs SAQRs and compare that
with magnetic properties of an individual ring and the actual
experimental data.

Figures 5 and 6 show results of our simulation for the
temperature-dependent magnetization and differential mag-
netic susceptibility of an individual InxGa1−xAs/GaAs ring
with Rr = 11.5 nm and ξ = 0.2 and the same values averaged
within the ensembles of the rings with the mean values R̄r =
11.5 nm, ξ̄ = 0.2 when the geometrical parameter dispersions
are taken to be 5% both for Rr and ξ (like it was suggested in
Ref. 40). Clearly, for the individual SAQR at very low temper-
atures the magnetization rapidly oscillates [Fig. 5(a)] and the
differential magnetic susceptibility demonstrates a very sharp
symmetrical positive peak [Fig. 6(a)] near the crossing point.
The magnetization oscillation and magnetic susceptibility
peak amplitudes are controlled by the difference C0 − C1

and the temperature fluctuations (homogeneous broadening).

(
B
·T

-1
)

(a)

(b)

(
B
·T

μ
χ

μ
χ

-1
)

FIG. 6. (Color online) Dependence of the differential magnetic
susceptibility χ on the temperature and magnetic field for (a)
individual ring (Rr = 11.5 nm, ξ = 0.2) and (b) ring ensemble
(R̄r = 11.5 nm, ξ̄ = 0.2, dispersion 5%).

The oscillation and peak become wider and disappear very
rapidly when the temperature increases. This is in contrast
to the experimental data from Ref. 40, where the relatively
wide peak reveals itself even when the temperature increases.
The temperature stable magnetization oscillation and temper-
ature stable wide peak (inhomogeneous broadening) of the

FIG. 7. (Color online) Temperature dependence of the height of
the peak of the magnetic susceptibility (inset: small temperature
region). DRξ , DR, Dξ , and Ir correspondingly stand for conditional
bivariate dispersion of Rr and ξ (R̄r = 11.5 nm, ξ̄ = 0.2, dispersion
5%), univariate dispersion of Rr (R̄r = 11.5 nm, dispersion 5%, ξ =
0.2), univariate dispersion of ξ (Rr = 11.5 nm, ξ̄ = 0.2, dispersion
5%), and individual ring with Rr = R̄r , ξ = ξ̄ .
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differential magnetic susceptibility indeed can be explained
only by the geometry dispersion in the ring ensembles even if
the dispersions are taken to be only 5%. To demonstrate that,
in Figs. 5(b) and 6(b) we present the simulation results for
the conditional averages of the magnetization and magnetic
susceptibility of the ensemble of the rings with R̄r = 11.5 nm
and ξ̄ = 0.2. Our conditional multivariate approach allows us
to clarify which parameter’s fluctuations are most relevant to
the temperature stabilization of the differential magnetic sus-
ceptibility of the chosen model of the geometry of the wobbled
InxGa1−xAs/GaAs SAQRs. In Fig. 7 we show the temper-
ature dependence of the conditional averages of the height
of the positive peak of the magnetic susceptibility (at the
crossing point Bc) when two parameters (Rrand ξ ) are
varying separately and simultaneously while R̄r = 11.5 nm
and ξ̄ = 0.2. Clearly, within the low-temperature range, in
this ensemble the broadening due to the ring’s rim radius
variation [the crossing point deviations; see Fig. 3(a)] plays
a crucial role in the overall inhomogeneous broadening and
temperature stability of the positive peak of the differential
magnetic susceptibility. At relatively high temperatures, both
the homogeneous and inhomogeneous broadenings equiva-
lently contribute to the peak height’s temperature dependence.

FIG. 8. (Color online) Dependence of the height of the peak of the
averaged magnetic susceptibility on R̄r for different ξ̄ (normalized to
the corresponding height of the individual ring χI with Rr = R̄r

and ξ = ξ̄ , dispersion 5%, T = 1.2 K). For descriptions of the
abbreviations DRξ , DR, Dξ , see Fig. 7.

χ 1
.2
/χ

4.
2

FIG. 9. (Color online) Dependence of the height-to-height ratio
for the averaged peaks of the magnetic susceptibility at 1.2 K (χ̄1.2)
and 4.2 K (χ̄4.2) on δR = �Rr/R̄r and δξ = �ξ/ξ̄ (R̄r = 11.5 nm
and ξ̄ = 0.2).

Now we discuss the roles of variations of the conditional
parameters in the formation of the conditional average of the
magnetic susceptibility near the peak position for different
ensembles of the rings. Using the appropriate data shown in
Figs. 3 and 4 we present in Fig. 8 the normalized conditional
averages of the peak height at T = 1.2 K within a wide range
of the ring’s parameters. This information clearly suggests
that for relatively small mean values of the ring radius and
wobbling parameter the dispersion of the rim radius plays a
major role and strongly suppresses the peak magnitude. At the
same time the average height becomes closer to that for the
individual ring when R̄r and ξ̄ increase. We note that according
to Fig. 4 the response of the individual ring for relatively large
ξ̄ is small. However, the joint conditional average of the peak
magnitude can be optimized with an appropriate control of R̄r

and ξ̄ .
Finally, in Fig. 9 we present a wider view of the Rr

and ξ dispersions’ impact on the temperature stabilization of
the magnetic response of dispersive ensembles of the ring
for conditional R̄r = 11.5 nm and ξ̄ = 0.2. For both δR =
�Rr/R̄r and δξ = �ξ/ξ̄ the dispersion interval expansion
obviously stabilizes the temperature characteristics of the
response. In general, for a large dispersion the stabilization
is achieved at small values of the peak magnitudes. At the
same time an appropriate δξ can make the ensemble magnetic
characteristics more tolerant to the deviations of Rr (see
Fig. 9). The optimization of the ensemble characteristics by a
proper control of R̄r and ξ̄ gives us an opportunity to design
an ensemble of the rings with a large enough and temperature
stable peak in the collective magnetic response.

IV. CONCLUSIONS

In conclusion, using the multivariate (multidimensional)
statistics approach and our mapping method we simulated
the static magnetic response of dispersive ensembles of self-
assembled semiconductor quantum rings with complicated
(wobbled) shapes. The approach can be used for systems
with large sets of varying parameters. In this paper we
obtained conditional averages of the magnetization and differ-
ential magnetic susceptibility near the first Aharonov-Bohm
oscillation and analyzed the averaged properties within a
wide range of changes of rings’ geometrical parameters. We

205419-7



L. M. THU, W. T. CHIU, AND O. VOSKOBOYNIKOV PHYSICAL REVIEW B 85, 205419 (2012)

should note that, using our multivariate approach, we are able
to draw a conditional “statistical portrait” of the magnetic
response of the ensembles. This makes it possible to clarify
the important question of which geometrical parameters’
dispersions are crucial for the formation and properties of
the magnetic response of ensembles of self-assembled semi-
conductor quantum rings. Therefore, our simulation results for
the InxGa1−xAs/GaAs SAQRs within a bivariate geometrical
dispersion model suggest directions to the optimization of the
unusual static magnetic response for dispersive ensembles of
the rings.

In addition, we addressed in detail the issue of the
temperature stable behavior of the meaningful averages of the
magnetization and positive differential magnetic susceptibility
known from the experiment.40 The simulated position and the
magnitude of the positive peak in the differential magnetic
susceptibility are in good agreement with the experimental
observations. The negligible temperature effect on the mag-
netic response of the rings is preferably caused by dispersion

of the ring’s rim radius in the ensemble. We suggest that the
optimization of the rings’ characteristics can help to design
ensembles of the rings with large enough and temperature
stable unusual collective magnetic response. This can be
potentially useful for further fabrication of composite systems
(metamaterials) with principally new magnetic properties.

More generally, the conditional multivariate approach can
be applied for the realistic modeling of the meaningful
averages of the response functions for dispersive ensembles
of semiconductor nano-objects with arbitrary shapes.
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