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Quantum criticality out of equilibrium in the pseudogap Kondo model
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Quantum phase transitions out of equilibrium are outstanding emergent subjects in condensed matter physics
with great fundamental importance and challenges. We theoretically investigate here the nonequilibrium quantum
phase transition in a generic nano-setup: the pseudogap Kondo model where a Kondo quantum dot couples to
two—left (L) and right (R)—voltage-biased fermionic leads with power-law density of states (DOS) with
respect to their Fermi levels μL/R , ρc,L(R)(ω) ∝ |ω − μL(R)|r with 0 < r < 1. In equilibrium (μL − μR = 0) and
for 0 < r < 1/2, with increasing Kondo correlations this model exhibits a quantum phase transition from a
unscreened local moment (LM) phase to the Kondo screened phase. At finite bias voltages and near criticality,
we discover new nonequilibrium universal scaling behaviors in conductance, conduction electron T matrix,
and local spin susceptibility via a controlled frequency-dependent renormalization group (RG) approach. The
current-induced decoherence is key to understanding these distinct universal nonequilibrium quantum critical
regimes. The relevance of our results to experiment is discussed.
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I. INTRODUCTION

Quantum phase transitions (QPTs),1 the continuous phase
transitions that occur at zero temperature due to quantum fluc-
tuations, in strongly correlated electron systems have attracted
much attention over the last three decades. Near the quantum
critical points (QCPs) associated with QPTs, thermodynamic
properties exhibit non-Fermi liquid properties and universal
scalings. Recently, due to high tunability, nano-devices such
as quantum dots in the Kondo regime2,3 offer an opportunity to
study new aspects in QPTs under nonequilibrium conditions,
which has become one of the outstanding emergent subjects
in condensed matter physics, with great fundamental impor-
tance. Examples include the distinct nonlinear steady-state
conductance compared to its equilibrium counterpart in a two-
dimensional superconductor-insulator transition,4 in itinerant
magnetism,5 and in Kondo quantum dots coupled to dissipative
environments (e.g., spin6–8 and charge9 fluctuations as well
as electron-electron interactions in the leads10). Outstanding
issues include the following: Do universal nonequilibrium
scaling functions near QCPs exist? If so, how are they different
from their equilibrium counterparts and how can they be
realized experimentally? In Ref. 9, the authors discovered the
distinct nonequilibrium profile in transport near the localized-
delocalized QPT of the Kosterlitz-Thouless (KT) type in a
generic voltage-biased dissipative resonance level (quantum
dot) from its equilibrium properties at finite temperatures. The
current-induced decoherence rate smearing out the transition
shows highly nonlinear voltage dependence, resulting in these
distinct behaviors.

In this paper, we theoretically address the above issues
by investigating the nonequilibrium quantum criticality in a
different class of generic nano-setup: the pseudogap Kondo
(PGK) model11–15 in a quantum dot.16 We consider a Kondo
quantum dot coupled to two—left (L) and right (R)—
fermionic leads with a power-law (pseudogap) density of states
(DOS) which vanishes at the Fermi level μL(R) = ±V/2,
ρc,L(R)(ω) ∝ |ω − μL(R)|r with 0 < r < 1. Possible realiza-
tions of the pseudogap leads include d-wave superconductors
(r = 1),14 graphene17 (r = 1), one-dimensional Luttinger sys-

tems (r > 0),12 quantum dots embedded in an Aharonov-Bohm
ring (r = 2),18 and Kondo quantum dots coupled to magnetic
metal leads (0 < r < 1).6–8 In equilibrium (V = 0) and for 0 <

r < 1/2, with decreasing Kondo couplings the particle-hole
(p-h) symmetric PGK model exhibits a “true” QPT (distinct
from a QPT of the KT type19) from the Kondo screened phase
to the unscreened local moment (LM) phase.12,14 Near QCP
separating these two phases, all observables in equilibrium
exhibit universal power-law scalings and have been extensively
studied.14,15 Nevertheless, there is lack of understanding
regarding their corresponding out-of-equilibrium quantum
critical properties. We shall address below this issue and focus
on universal nonequilibrium scaling behavior near the QCP.

II. THE MODEL AND THE RG APPROACH

The Hamiltonian of the particle-hole (p-h) symmetric PGK
model reads

H =
∑
kα

(εkα − μα)c†kck +
∑

α,α′,k,k′,σ,σ ′
Jα,α′Sdot · Se

α′α (1)

where Sdot = f
†
σ ′τσ ′σ fσ , Se

αα′ = c
†
α′,k′,σ ′τσ ′σ cα,k,σ are the spin-

1/2 operators of the electron on the dot and in the leads,
respectively, τ are Pauli matrices, and α,α′ = L/R, σ,σ ′ =↑↓
are the lead and spin indices, respectively. c

†
α,k,σ is the

electron creation operator for the lead α with Fermi energies
being μL/R = ±V/2, and fσ is the pseudofermion operator.
The conduction electron leads show the above-mentioned
power-law (pseudogap) DOS with respect to their Fermi levels
μL/R . In the Kondo regime, the single-occupancy constraint
of the pseudofermions is imposed:

∑
σ f †

σ fσ = 1. Here, the
dimensionless interlead and intralead Kondo couplings are de-
noted by gLR = N0JLR and gLL = gRR = N0JLL = N0JRR ,
respectively, where N0 = 1

2D0
and D0 is the bandwidth cutoff

of the leads. For simplicity, we consider here the symmetrical
Kondo couplings: gαβ = g.

In equilibrium, the one-loop RG scaling equation for g

reads ∂g

∂ ln D
= rg − 2g2.14 The critical Kondo coupling gc =

r
2 separates the Kondo (g > gc) from the unscreened local
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moment (LM) phase (g < gc). Much of the equilibrium critical
properties can be obtained from the cutoff dependence of the
renormalized Kondo coupling: geq(D) = gc

1+(D/T ∗)−r with the

crossover energy scale being T ∗ = D0( |gc−g0|
g0

)
1
r ∝ |gc − g|ν

and the correlation length exponent being ν = 1/r .
At a finite bias voltage, however, the system is under steady-

state nonequilibrium condition; the Fermi levels of the two
leads are shifted by ±V/2. Under various RG approaches, the
Kondo interaction vertices under nonequilibrium condition in
general depend not only on the cutoff scale D, but also on
the electron energy (frequency).20,21 We employ here a weak
coupling one-loop frequency-dependent nonequilibrium RG
approach of Refs. 9 and 20 which keeps track of energy of the
incoming conduction electrons in the Kondo scattering.

To emphasize the generic features of nonequilibrium
scaling near the QCP of our system, we focus here (without
the loss of generality) on the p-h symmetric pseudogap Kondo
model with 0 < r < r∗ = 0.375, where the QCP is stable
against the p-h asymmetry.12–14 Experimentally, it is feasible to
realize a p-h symmetric Kondo dot by controlling gate voltages.
Note, however, that our approach is in general valid for any
r < 1, though it works better for r being small. For r > r∗, this
QCP is unstable toward a different QCP with p-h asymmetry,14

which exceeds the scope of this paper and will be addressed
elsewhere. The nonequilibrium scaling equation for the Kondo
couplings of our model under the approaches in Refs. 20 and 22
reads

∂gαα′ (ω)

∂ ln D
=

∑
β=L,R

[ r

2
gαα′ (ω) − gαβ(ω)gβα′(ω)

]

× tanh

(
D

2T

)
�

(
D −

∣∣∣∣ω + βV

2
+ i�

∣∣∣∣
)

,

(2)

� = π
∑

αα′=L,R

∫
dωf α

ω

(
1 − f α′

ω

)
[gαα′]2(ω), (3)

where α,α′ = L,R, � is the current-induced decoherence
rate obtained from the imaginary part of the pseudofermion
self-energy,20 f α

ω = 1

e
ω−μα

T +1
is the Fermi function of the

α lead, and kB = h̄ = e = 1. Note that in equilibrium at a
finite temperature T the RG flows of the Kondo couplings
are cut off by T . Note that within the nonequilibrium RG
approach, however, there are two cutoff scales: The couplings
involving transferring electrons from one lead to the other
[gLR(ω = V/2)] are cut off by the bias voltage V through
�(D − V ); while as the ones involving electrons on the same
lead [gαα(ω = V/2)] are cut off by the decoherence rate � �
V , a much lower energy scale than V (Ref. 20) via �(D − �)
[see Eq. (2)]. Hence, the RG flows are not completely stopped
until a much lower energy scale D � � � V is reached. We
shall focus below on the distinct nonequilibrium quantum
critical behaviors due to this peculiar nonequilibrium RG flow.

We have numerically and analytically solved Eqs. (2)
and (3) self-consistently at T = 0 in the limit of D → 0
for a symmetrically coupled single-channel Kondo dot with
gαβ(ω) = gαα(ω) = g(ω).20 Note that our results are robust
against the parity (left-right) asymmetry.20 As shown in Fig. 1,
for g > (<) gc, the renormalized Kondo couplings exhibit

peaks (dips) at ω = ±V/2, indicating Kondo (local moment)
phase; while g(ω) is completely flat at criticality g = gc. The
qualitative nature of these peaks (dips) in g(ω) agree well
with Refs. 9 and 10 as signatures of conducting (insulating)
behavior. The height (depth) of the peaks (dips) get shorter
(shallower) as one reaches to QCP from the Kondo (LM)
phase. Here, we focus on the LM phase (g � gc) where the
perturbative RG approach is controlled. The full analytical and
numerical solutions for g(ω) in the LM phase in the limit of
D → 0 are found to be

g(ω) = g0 + g1(ω) + g2(ω),

g1(ω) = g0(1 + Ṽ r )
(∣∣ω̃ − Ṽ

2

∣∣r − 1
)

2(1 + Ṽ r )
(
1 + ∣∣ω̃ − Ṽ

2

∣∣r) �

(
D̃0 −

∣∣∣∣ω̃ − Ṽ

2

∣∣∣∣
)

+ gc

(
Ṽ r − ∣∣ω̃ − Ṽ

2

∣∣r)
2(1 + Ṽ r )

(
1 + ∣∣ω̃ − Ṽ

2

∣∣r)�

(
Ṽ −

∣∣∣∣ω̃ − Ṽ

2

∣∣∣∣
)

+ (ω → −ω),

g2(ω) =
(

gcṼ
r
2

1 + Ṽ r

) {
Ṽ

r
2 − ∣∣ω̃ − Ṽ

2

∣∣ r
2

1 + Ṽ
r
2

∣∣ω̃ − Ṽ
2

∣∣ r
2

×
[
�

(
�̃ −

∣∣∣∣ω̃ − Ṽ

2

∣∣∣∣
)

− �

(
Ṽ −

∣∣∣∣ω̃ − Ṽ

2

∣∣∣∣
)]

+ �̃
r
2 − Ṽ

r
2

1 + (Ṽ �̃)
r
2
�

(
�̃ −

∣∣∣∣ω̃ − Ṽ

2

∣∣∣∣
) }

+ (ω → −ω), (4)

with Ṽ = V
T ∗ , ω̃ = ω

T ∗ , D̃0 = D0
T ∗ , �̃ = �

T ∗ , and g0 being the
bare Kondo coupling. As shown in Fig. 1, The peaks (dips) of
g(ω) near ω = ±V/2 shows a power-law behavior: |g(ω) −
g(ω = ±V/2)| ∝ |ω ∓ V

2 | r
2 with a width of �. We furthermore

find analytically the universal scaling forms for g(ω = 0,V )
and g(ω = ±V/2,V ). These properties will be used in the
following analysis to determine various novel nonequilibrium
scaling behaviors in the LM phase:

g(ω = 0) = gc

1 + (
V

2T ∗
)−r

, g

(
ω = V

2

)
= gc

1 + (
V �

T ∗2

)− r
2
.

(5)

III. UNIVERSAL SCALING OF NONEQUILIBRIUM
DECOHERENCE

The current-induced decoherence � which cuts off the RG
flow is the key to understanding the nonequilibrium quantum
criticality of our model, as all nonequilibrium observables
depend crucially on the scaling behavior of �. As shown
in Fig. 1 (inset), �/V in the LM phase exhibits perfect
universal V/T ∗ scaling over a wide range 10−6 < V/T ∗ <

106. The discovery of this generic universal scaling behavior
for the nonequilibrium decoherence rate carries fundamental
importance in the nonequilibroum quantum phase transition in
Kondo systems. This also constitutes a surprising result since
the highly nonlinear universal scaling of �/V in Kondo-related
models was either absent in Refs. 9 and 10 or has not been
reported.6 We believe this slow crossover is related to the
large correlation length exponent ν = 1/r of the model. To
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FIG. 1. (Color online) Renormalized Kondo coupling g(ω) for various bare couplings (in units of D0) for r = 0.2 (gc = 0.1). The bias
voltage is V = 0.3. Inset: Universal scaling of �/V as a function of V/T ∗ with � being the decoherence rate.

gain more insight, we obtain the analytical approximated form
�/π ≈ (1 − π

4 )Vg2(ω = V
2 ) + π

4 Vg2(ω = 0), where g(ω) is
well approximated by a semiellipse for −V/2 < ω < V/2
[see the perfect agreement in Fig. 2(c) between dotted and
dashed lines].9 Via Eq. (5) the decoherence � at T = 0 is
approximated as

�

πV
≈

(
1 − π

4

) g2
c[

1 + (
V 2

T ∗2
�
V

)− r
2
]2

+ π

4

g2
c[

1 + (
V

2T ∗
)−r]2 .

(6)

It is clear from Eq. (6) that �/V is a universal scaling
function of V/T ∗. This well explains the scaling behavior
obtained numerically (see Fig. 1 inset). We extract further
the asymptotic power-law behaviors of �/V as a function

of V/T ∗. For � � V � T ∗, we have �
πV

≈ πg2
c

4 ( V
2T ∗ )2r . For

V � � � T ∗, however, we find �
πV

≈ πg2
c

4 [1 − 2( V
2T ∗ )−r ]. At

criticality, � = πg2
cV . The scaling behavior of the decoher-

ence � [Fig. 2 and Eq. (6)], leading to distinct nonequilibrium
scaling behaviors of all the observables discussed below, is our
central result.

IV. CRITICAL PROPERTIES

A. The conduction electron T matrix

First, we analyze nonequilibrium critical proper-
ties on the conduction electron T matrix, defined
by GR

α,α′,σ = GR(0)
α,σ δα,α′ + GR(0)

α,σ Tα,α′,σ (ω)GR(0)
α′σ (ω),14,15 with

GR
α,α′,σ , G

R(0)
α,α′,σ being the full and bare conduction electron

Green’s functions, respectively. The imaginary part of the
T matrix Im[T (ω)] ≡ T

′′
(ω) is directly proportional to the

experimentally measurable tunneling density of states (TDOS)
of our setup. Via renormalized perturbation theory up to second
order [see Fig. 2(b) inset], we have

T <
αα′ (ω) =

∑
β=L,R

∫
d�g(ω)g(ω + �)

× [
χR(�)G̃<

β + χ<(�)G̃A
β

]
, (7)

where χ (�) = ∫ ∞
−∞ dt ei�tχ (t) with χ (t) ≡ −〈Tc{Sdot(t) ·

Sdot(0)}〉 being the impurity susceptibility, G̃
<(A)
β corresponds

to the lesser (advanced) component of the conduction electron
Green’s functions with constant DOS [the effect of the pseu-
dogap leads has been taken into account by the renormalized
coupling g(ω)], and T >

αα′ (ω) = T <
αα′ (−ω). The imaginary part

of the T matrix at T = 0 is hence given by, at T = 0,

−πT
′′
αα′ (ω) = 3π2

8N (0)
g2(ω), (8)

in agreement with the result in Ref. 23.
For V = T = 0, T

′′
(ω)αα′ in the LM phase exhibits a

power-law dip near ω = 0, T
′′
(ω) ∝ |ω| r

2 . For V > 0, this
dip is split into two at ω = ±V

2 with the same power law:
T

′′
(ω) − T

′′
(ω = V/2) ∝ |ω − V

2 | r
2 . At the dips of T

′′
(ω =

±V/2), we find T
′′
(ω = V/2) ∝ g2(ω = V/2) shows a dis-

tinct nonequilibrium scaling behavior in V/T ∗ compared to
that in equilibrium form T

′′
(ω = 0) ∝ g2(ω = 0). To extract

this distinct scaling behavior more clearly, we define the
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FIG. 2. (Color online) (a) The imaginary part of the T matrix T
′′
(ω) (in units of −3π

8N(0) ) versus V/T ∗ at T = 0. (b) h(V ) defined in Eq. (9)

versus V/T ∗. Inset: the diagram for the T matrix. (c) The T = 0 nonequilibrium conductance G(V ) (solid lines) normalized to 3πg2
c

4 in the LM
phase versus V/T ∗ shows distinct scaling from the equilibrium counterpart, Geq(T → V ) (dashed lines). The dotted line is the analytical form
via Eq. (11). (d) The scaling of V χloc versus V/T ∗, with χloc being the local impurity susceptibility. The bare Kondo couplings in (a)–(d) are
in units of D0, and r = 0.2.

effective depth of the dips for T
′′
(ω = ±V/2), estimated as

h(V ) ≡
∣∣∣∣∣T

′′
(ω = V/2) − T

′′
(ω = 0)

T
′′ (ω = 0)

∣∣∣∣∣
≈

∣∣∣∣1 − g2(ω = V/2)

g2(ω = 0)

∣∣∣∣ . (9)

Hence, h(V ) in the LM phase follows a universal scaling
function of V/T ∗ [see Fig. 2(b)] with the asymptotic
behaviors h(V ) ≈ 1 − ( 4�

V
)r for � � V � T ∗; while for

T ∗ � � � V , h(V ) ≈ 2[( V �
T ∗2 )−

r
2 − ( V

2T ∗ )−r ]. This new
nonequilibrium scaling function h(V ) can be detected via the
STM measurement on the leads.

B. The nonequilibrium conductance

Next, we turn our attention to transport properties. The
nonequilibrium current I via the Fermi-Golden rule reads9,20

I = 3π

4

∫
dω

[ ∑
σ

gLR(ω)2f L
ω (1 − f R

ω )

]
− (L ↔ R).

(10)

The current I is computed numerically by Eq. (10), and is
approximated as9 I ≈ 3π

4 [(1 − π
4 )Vg2(ω = V

2 ) + π
4 Vg2(ω =

0)]. The differential conductance is readily obtained numer-
ically via G = ∂I

∂V
. In the LM phase, it can be analytically

approximated by

G(V ) ≈ 3πg2
c

4

(
1 − π

4

) [
1 + (1 + r)

(
V �

T ∗2

)− r
2
]

[
1 + (

V �

T ∗2

)− r
2
]3

+ 3π2g2
c

16

[
1 + (1 + 2r)

(
V

2T ∗
)−r]

[
1 + (

V
2T ∗

)−r]3 . (11)

As shown in Fig. 2(c), for T ∗ � V � D0, G(V ) approaches
the equilibrium scaling form

Geq(V → T ) ≈ 3π

4
geq(T )2 =

3π
4 g2

c

[1 + (T/T ∗)−r ]2
, (12)

while for V/T ∗ � 1 it exhibits a distinct universal scaling
behavior of V/T ∗. The perfect scaling behavior of G(V/T ∗)
is a direct consequence of the perfect V/T ∗ scaling in �/V .
By contrast, the universal V/T ∗ scaling for G(V ) is absent
in Ref. 9 as �/V is not a universal function of V/T ∗
there. For � � V � T ∗, the conductance behaves as G(V ) ≈
[a( V

2T ∗ )2r + b( V
T ∗ )2r+2r2

] with a = 3π2r2

64 and b = 3πr2

16 (1 −
π
4 )( r2

8 )r , which shows a prefactor reduction with respect to its

equilibrium form Geq(V → T � T ∗) ≈ 3πr2

16 ( T
T ∗ )2r and a sub-

leading anomalous power law ∝ V 2r+2r2
. For V � � � T ∗,

however, we find G(V ) ≈ 3π2r2

64 [1 − p( V
2T ∗ )−r − q( V

T ∗ )−2r ]

with p = 1 − r and q = 8
π

(1 − π
4 )(1 − r)( r2

8 )−
r
2 , which
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deviates significantly from its equilibrium form Geq(V →
T � T ∗) ≈ 3πr2

16 [1 − 2( T
T ∗ )−r ]. It is worthwhile emphasizing

that, due to the very different role played by the bias V and
temperature T , G(V ) follows a completely different scaling
function from its equilibrium form Geq(V → T ) over the full
range of V/T ∗, though it tends to converge with its equilibrium
form for V � T ∗.

C. Local spin susceptibility

Finally, we analyze the scaling behaviors of the local spin
susceptibility χloc(V ) ≡ ∂M

∂h
|h→0 in the LM phase, with h

being a small magnetic field and M being the magnetization
M = n↑−n↓

n↑+n↓
. The occupation number of the pseudofermion nσ

is obtained by solving the Keldysh component of the Dyson
equation for the pseudofermion self-energy.9,20 Following
Refs. 9, 10, and 20 for V � h → 0, we find [see Fig. 2(d)]24

M ≈
∫ −V +h

2
−V −h

2
dω g2(ω)∫ V

2
−V

2
dω g2(ω)

.

The approximated form for V χloc reads [see Fig. 2(d)]24

V χloc ≈ g(ω = V/2)2

π
4 g(ω = 0)2 + (

1 − π
4

)
g(ω = V/2)2

.

For � � V � T ∗, χloc exhibits an anomalous power-law
behavior, χloc ∝ 1

V 1−ηχ
with ηχ = 2r2, distinct from its equi-

librium constant behavior T χloc(T � T ∗) ∝ (gc − g)r .15 For
V � � � T ∗, however, we find χloc acquires a power-law
correction to the Curie behavior: V χloc ≈ 1 − V �χloc and
�χloc ∝ 1

V 1−�ηχ
with an anomalous exponent �ηχ = −r;

while its corresponding equilibrium form shows a different
anomalous power-law behavior: χloc(T � T ∗) ∝ 1

T 1−ηχ
with

ηχ = r2.14,15 At criticality (g = gc), χloc shows perfect Curie
law behavior: χloc ∝ 1/V . These distinct nonequilibrium
signatures near the QCP are detectable in local susceptibility
measurements.

V. DISCUSSIONS AND CONCLUSIONS

Before we draw conclusions, we would like to make a few
remarks here. First, our general approach and generic results

open up the study of a fundamentally important new subject
on the nonequilibrium quantum phase transitions in the PGK
model. Meanwhile, though there has been no direct realization
of the pseudogap fermionic leads with small r < r∗ reported
so far, our results are relevant for describing the QPT out
of equilibrium of a realistic Kondo quantum dot coupled to
magnetic metal leads (r = 0), the so-called Bose-Fermi Kondo
(BFK) model.6–8 In this system, the spin fluctuations in the
leads (magnons) act as vector bosons (�) coupled to the local
spin on the dot via HSB = γ Sdot · � + ∑

q ωq�
†
q · �q , where

the bosonic bath exhibits sub-Ohmic spectral density: ρb(ω) ∝
|ω|1−ε with ε = 1

2 . The equilibrium RG scaling equations read7

dg

d ln D
= γ 2g − 2g2 and dγ

d ln D
= ε

2γ − γ 3. One may study the
effective Kondo model by fixing the spin-boson coupling at its
critical value: γ = γc = √

ε/2. This leads to the change in the
scaling dimension of the local spin operator to [Sdot] = ε

2 ,7 and
in that of the Kondo coupling g: [g] = 1 + ε

2 . The equilibrium
RG scaling equation for the effective Kondo coupling of the
BFK model (with γ = γc) hence reads dg

d ln D
= ε

2g − 2g2,
which is equivalent to that for the PSG Kondo model with an
effective pseudogap power-law exponent r̃ = ε

2 = 1
4 < r∗.25

In conclusion, via a controlled frequency-dependent renor-
malization group approach we have investigated the quantum
phase transition out of equilibrium in the pseudogap Kondo
quantum dot. At zero temperature and finite bias voltage,
we discovered in the local moment phase new quantum
critical behaviors in the T matrix, conductance, and local spin
susceptibility that are distinct from those in equilibrium and
at finite temperatures. The key to explaining these differences
is the nonequilibrium current-induced decoherence at a finite
bias voltage, which acts quite differently from its equilibrium
(zero bias but finite temperature) counterpart. This leads to
distinct nonequilibrium behavior near the quantum phase
transition. Our predictions offer a general and new perspective
both theoretically and experimentally on the nonequilibrium
quantum phase transitions in Kondo dots.
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