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Abstract In this paper, we find a basis for the space Sk(Γ0(4)) of cusp forms of
even weight k for the congruence subgroup Γ0(4) in terms of Eisenstein series. As
an application, we obtain formulas for r4s(n), the number of ways to represent a
nonnegative integer n as a sum of 4s integral squares.
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1 Introduction and statements of results

Throughout the paper, we assume that k is an even positive integer. Let Γ be a con-
gruence subgroup of SL2(Z), and let Mk(Γ ) and Sk(Γ ) be the space of modular
forms and the space of cusp forms of weight k on Γ , respectively.
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For Sk(Γ0(2)), we have given in [4] a basis {Ei∞
2j E0

k−2j | j = 2, . . . , d +1}, where

Ei∞
n and E0

n are normalized Eisenstein series of weight n for the cusps i∞ and
0, respectively, and d = dimSk(Γ0(2)) = �k/4� − 1. The existence of such a basis
was suggested in [1, 6]. In this paper, we will find a basis for Sk(Γ0(4)). The main
motivation is to obtain formulas for rs(n), the number of ways to represent a non-
negative integer n as a sum of s integral squares.

To state our main results, let us first recall that the group Γ0(4) has 3 cusps, rep-
resented by i∞, 0, and 1/2. To each cusp α and each even integer k ≥ 4, we may
associate an Eisenstein series

E α
k (τ ) :=

∑

d/c∼α

1

(cτ − d)k
,

where the sum runs over all cusps d/c equivalent to α under Γ0(4). More explicitly,
we have

E i∞
k (τ ) = 1

2

∑

(c,d)=1,4|c

1

(cτ − d)k
= 1

2k − 1

(
2kEk(4τ) − Ek(2τ)

)
,

E 0
k (τ ) = 1

2

∑

(c,d)=(c,4)=1

1

(cτ − d)k
= 2k

2k − 1

(
Ek(τ) − Ek(2τ)

)
,

E 1/2
k (τ ) = 1

2

∑

(c,d)=1,2|c,4�c

1

(cτ − d)k

= 1

2k − 1

(−Ek(τ) + (
2k + 1

)
Ek(2τ) − 2kEk(4τ)

)
,

(1.1)

where

Ek(τ) = 1 + (2πi)k

Γ (k)ζ(k)

∞∑

n=1

σk−1(n)qn = 1 − 2k

Bk

∞∑

n=1

σk−1(n)qn, q = e2πiτ ,

is the Eisenstein series of weight k on SL2(Z) and Bk is the kth Bernoulli number;
see Lemma 3.2 of [10] for calculation of Fourier expansions of the Eisenstein series.
In fact, the series Sk(0,1), Sk(1,0), and Sk(1,1) in Lemma 3.2 of [10] are essentially
our Ei∞

k , E0
k , and E

1/2
k here, respectively. This is because Γ0(4) is conjugate to Γ (2)

by
( 2 0

0 1

)
. These Eisenstein series have the property that

lim
τ→i∞

(
E α

k

∣∣
k
γ
)
(τ ) =

{
1 if a/c ∼ α,

0 if a/c �∼ α,

for all γ = (
a b
c d

) ∈ SL2(Z). In particular, if α �∼ β , then Eα
k1

E
β
k2

is a cusp form of
weight k1 + k2 on Γ0(4).

In order to simplify the expressions in the statements of our theorems, we rescale
the Eisenstein series and define

Ei∞
k (τ ) = E i∞

k (τ ), E0
k (τ ) = (

Ei∞
k

∣∣
k
W4

)
(τ ) = 2−k E 0

k (τ ), (1.2)
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where W4 denotes the Atkin–Lehner involution on Mk(Γ0(4)). In addition, for k = 2,
we also define the Eisenstein series Eα

2 (τ ) using the Fourier expansions given in (1.1).
These Eisenstein series Eα

2 (τ ) are not modular forms, but using the transformation
property of E2(τ ), it can be easily verified that for any modular form f of weight k

on Γ0(4), the functions

Ei∞
2 (τ )f (τ ) − 1

πik
f ′(τ ), E0

2(τ )f (τ ) − 1

πik
f ′(τ )

are modular forms of weight k + 2 on Γ0(4). (See (3.6) and (3.7) below.) Now we
can give our basis for Sk(Γ0(4)).

Theorem 1.1 Let k ≥ 6 be an even integer. Then the sets
{
Ei∞

2 E0
k−2 − 1

πi(k − 2)
E0

k−2
′
}

∪ {
Ei∞

n E0
k−n | n = 4,6, . . . , k − 4

}

and
{
E0

2Ei∞
k−2 − 1

πi(k − 2)
Ei∞

k−2
′
}

∪ {
E0

nE
i∞
k−n | n = 4,6, . . . , k − 4

}

are both bases for Sk(Γ0(4)).

As mentioned earlier, our motivation to study Sk(Γ0(4)) is to obtain exact formulas
for rs(n), the number of ways to represent a nonnegative integer n as a sum of s

integral squares. (See [2, 5] for surveys of the long and rich history of this problem.)
To see the connection between Sk(Γ0(4)) and rs(n), let us recall that the generating
function for rs(n) is

Θ(τ)s =
(∑

n∈Z

qn2
)s

, q = e2πiτ .

When s is even, we have

Θ(γ τ)s =
(−1

d

)s/2

(cτ + d)s/2Θ(τ)s

for all γ = (
a b
c d

) ∈ Γ0(4), where (−1
d

) is the Legendre symbol. Thus, for a positive

integer s, the function Θ(τ)4s is a linear combination of Eisenstein series Ei∞
2s (τ ),

E0
2s(τ ), E

1/2
2s (τ ), and the functions in Theorem 1.1. In fact, we can do a little better.

The theta function Θ(τ) satisfies

Θ

(
− 1

4τ

)
=

√
2τ

i
Θ(τ).

It follows that

Θ4s |2sW4 = (−1)sΘ4s .
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In other words, Θ4s ∈ M2s(Γ0(4), (−1)s), the (−1)s -Atkin–Lehner eigensubspace of
M2s(Γ0(4)). Moreover, Θ(τ) vanishes at the cusp 1/2. (This is because Θ(τ) has the
infinite product representation η(2τ)5/η(τ)2η(4τ)2. Thus, the zeros of Θ(τ) must be
at cusps. From the above transformation, we conclude that Θ(τ) must vanish at 1/2.)
Therefore, we have

Θ(τ)4s ∈ C
(
Ei∞

2s (τ ) + (−1)sE0
2s(τ )

) ⊕ S2s

(
Γ0(4), (−1)s

)
.

Now we have

dimSk

(
Γ0(4),+) =

⌊
k

4

⌋
− 1, dimSk

(
Γ0(4),−) = k

2
−

⌊
k

4

⌋
− 1.

From the dimension formulas and Theorem 1.1, we easily obtain bases for
Sk(Γ0(4),±1).

Corollary 1.2 If k ≥ 8 is an even integer, then

{
Ei∞

n E0
k−n + E0

nEi∞
k−n | n = 4,6, . . . ,2�k/4�}

is a basis for Sk(Γ0(4),+). In particular, if k ≡ 0 mod 4, then Θ(τ)2k is a linear
combination of Ei∞

k (τ ) + E0
k (τ ) and the functions above.

Corollary 1.3 If k ≥ 6 is an even integer, then

{
Ei∞

2 E0
k−2 − E0

2Ei∞
k−2 − 1

πi(k − 2)

(
E0

k−2
′ − Ei∞

k−2
′)
}

∪ {
Ei∞

n E0
k−n − E0

nE
i∞
k−n | n = 4,6, . . . , k − 2�k/4� − 2

}

is a basis for Sk(Γ0(4),−). In particular, if k ≡ 2 mod 4, then Θ(τ)2k is a linear
combination of Ei∞

k (τ ) − E0
k (τ ) and the functions above.

We remark that since Γ +
0 (4) is conjugate to Γ0(2) by

( 1 1/2
0 1

)
, we can first obtain a

basis for Sk(Γ0(2)) and apply τ �→ τ +1/2 to the basis to get a basis for Sk(Γ0(4),+),

and consequently exact formulas for rs(n). This is the approach adopted in [6]. How-
ever, this method only work for the cases 8|s. Also, the basis for Sk(Γ0(4),+) ob-
tained in this way is different from the basis in Corollary 1.2.

Another result of similar nature is given by K. Kilger. In his Ph.D. thesis [7],
K. Kilger obtained bases for Sk(Γ0(N)), N = 1, . . . ,4, using modular symbols. His
bases in the case N = 4 are similar, but different from ours.

Example 1.4 Here we give some formulas for r4s(n). In the following, we let

fs,0 := Ei∞
2s + (−1)sE0

2s ,

fs,2 := Ei∞
2 E0

2s−2 + (−1)sE0
2Ei∞

2s−2 − 1

πi(2s − 2)

(
E0

2s−2
′ + (−1)sEi∞

2s−2
′)
,
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fs,n := Ei∞
n E0

2s−n + (−1)sE0
nE

i∞
2s−n (n ≥ 4, n even).

By comparing suitably many Fourier coefficients, we find

Θ8 = f2,0,

Θ12 = f3,0 + f3,2,

Θ16 = f4,0 + 17

16
f4,4,

Θ20 = f5,0 + 17

31
f5,2 − 134

93
f5,4,

Θ24 = f6,0 + 43928

18657
f6,4 − 6848

18657
f6,6,

Θ28 = f7,0 + 2073

5461
f7,2 − 1561873

737235
f7,4 + 460309

245745
f7,6,

Θ32 = f8,0 + 11379631232

4392213525
f8,4 − 13142016

6506983
f8,6 + 967923424

627459075
f8,8,

Θ36 = f9,0 + 929569

3202291
f9,2 − 2997123429668

1165073523075
f9,4 + 817033178804

317747324475
f9,6

− 130045826398

35305258275
f9,8.

We now indicate how Theorem 1.1 is proved. We shall see that Theorem 1.1 is,
in fact, a consequence of linear independence of certain period polynomials of cusp
forms on Sk(Γ0(4)).

For convenience, let us set w = k − 2. Assume that N is an integer with N > 1.
For a cusp form f ∈ Sw+2(Γ0(N)) and an integer n with 0 ≤ n ≤ w, we let

rn(f ) :=
∫ i∞

0
f (z)zn dz (1.3)

be the nth period of f . Since rn : Sw+2(Γ0(N)) → C is a linear functional, there
exists a unique cusp form RΓ0(N),w,n(z) ∈ Sw+2(Γ0(N)) such that

rn(f ) = cw(f,RΓ0(N),w,n), cw := 2−1(2i)w+1 (1.4)

for all cusp forms f of the same weight on Γ0(N). Here

(f, g) :=
∫∫

Γ0(N)\H
f (z)g(z)yw dx dy, z = x + iy, (1.5)

denotes the Petersson inner product of f and g. We now explain the relation between
RΓ0(4),w,n and Ei∞

n E0
k−n.

Using Rankin’s method [12] and following the argument in the proof of Proposi-
tion 2 of [6], we can show that if f is a newform of weight k on Γ0(4), then for even
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integers n > k/2, we have
(
f,Ei∞

n E0
k−n

) = ck,nL(f, k − 1)L(f,n),

where L(f, s) denotes the L-function associated to f and ck,n is a constant depend-
ing on k and n. (See Proposition 3.1 below.) For oldforms from Sk(SL2(Z)) and
Sk(Γ0(2)), there are also similar formulas. On the other hand, from the definitions
(1.3) and (1.4) of rn and RΓ0(4),w,n, it is easy to see that

(f,RΓ0(4),w,n) = c′
k,nL(f,n + 1)

for some constant c′
k,n independent of f . Therefore, even though Ei∞

n E0
k−n is not

precisely a multiple of RΓ0(4),w,n−1, we can still deduce linear independence among
Ei∞

n E0
k−n from that among RΓ0(4),w,n.

To obtain linear independence among RΓ0(4),w,n, we consider period polynomials
r(f ) which for cusp forms f ∈ Sk(Γ0(N)) for general N are defined by

r(f )(X) :=
∫ i∞

0
f (z)(X − z)w dz.

Furthermore, even and odd period polynomials r+(f ) and r−(f ) are defined by

r±(f )(X) := 1

2

{
r(f )(X) ± r(f )(−X)

}
.

The period polynomials for RΓ0(N),w,n are computed in [4] and will be crucial in
our proof of Theorem 1.1. To state the formula, we let Bm(x) (resp., Bm) denote the
mth Bernoulli polynomial (resp., number). By B0

m(x), we denote the mth Bernoulli
polynomial without its B1-term (see [9, page 208]):

B0
m(x) :=

∑

0≤i≤m
i �=1

(
m

i

)
Bix

m−i =
∑

0≤i≤m
i even

(
m

i

)
Bix

m−i .

For an integer n with 0 < n < w, let

ñ = w − n

and define a polynomial SN,w,n in X by

SN,w,n(X) := NñXw

ñ + 1
B0

ñ+1

(
1

NX

)
− 1

n + 1
B0

n+1(X).

Then the period polynomials r±(RΓ0(N),w,n) are given as follows [4].

Theorem 1.5 [4, Theorem 1.1] Let N be an integer greater than 1. For an even
integer n with 0 < n < w, we have

r−(RΓ0(N),w,n)(X) = SN,w,n(X).
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Also, for an odd integer n with 0 < n < w, we have

r+(RΓ0(N),w,n)(X)

= SN,w,n(X)

− (w + 2)Bn+1Bñ+1

(n + 1)(ñ + 1)Bw+2

(
Xw

N

∏

p|N

1 − p−(n+1)

1 − p−(w+2)
− 1

Nn+1

∏

p|N

1 − p−(ñ+1)

1 − p−(w+2)

)
,

where p runs over all prime divisors of N .

In the sequel, we focus on the case N = 4. Furthermore, we consider only vector
spaces over C, and linear independence means that of over C. First, we will prove the
following theorem:

Theorem 1.6 The polynomials

S4,w,n(X) (n = 2,4, . . . ,w − 2)

are linearly independent.

Note that an analogous result for Γ0(2) was obtained in [4], where explicit eval-
uation of Hankel determinants formed by Bernoulli numbers is the main ingredient.
Here the key to our proof of Theorem 1.6 is the 2-adic ordinal of the coefficients of
S4,w,n(X). The method used here is not applicable to the case Γ0(2). (This is due to
the fact that ord2(4) = 2, but ord2(2) = 1.)

By the similar argument as for proving Theorem 1.6, we can derive the following
result.

Theorem 1.7

(1)

{RΓ0(4),w,n | n = 1,3, . . . ,w − 3}
form a basis for Sw+2(Γ0(4)).

(2)

{RΓ0(4),w,n | n = 2,4, . . . ,w − 2}
form a basis for Sw+2(Γ0(4)).

Remark 1.8 We now recall the formula

RΓ0(N),w,n|w+2WN = (−1)n+1Nw/2−nRΓ0(N),w,ñ

in [4, page 330] for the Atkin–Lehner involution WN . In Theorem 1.7(1), the basis
can be replaced by

{RΓ0(4),w,n | n = 3,5, . . . ,w − 1},
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deleting n = 1 and adding n = w − 1. These correspond to each other by the Atkin–
Lehner involution.

Now, by Theorem 1.7, we know that f = 0 if (f,RΓ0(4),w,n) = 0 for all n =
1,3, . . . ,w − 3 (or n = 2,4, . . . ,w − 2, respectively). This leads us to the follow-
ing Γ0(4)-version of the Eichler–Shimura–Manin theorem (see [3, 9, 11, 13]).

Corollary 1.9 Let f ∈ Sw+2(Γ0(4)).

(1) If r1(f ) = r3(f ) = · · · = rw−3(f ) = 0, then f = 0.
(2) If r2(f ) = r4(f ) = · · · = rw−2(f ) = 0, then f = 0.

The proof of Theorems 1.6 and 1.7 will be given in Sect. 2. Then in Sect. 3, we
will deduce Theorem 1.1 from Theorem 1.7.

2 Proofs of Theorems 1.6 and 1.7

In this section, we give proofs for Theorems 1.6 and 1.7. First, we recall 2-adic ordinal
of a rational number.

Definition 2.1 For a rational number x, let us express x as

x = 2a q

p
,

where a,p, q are integers such that (p, q) = 1 and p,q are odd. Then the 2-adic
ordinal ord2(x) of x is defined by

ord2(x) := a.

We need the following elementary properties of 2-adic ordinal.

Lemma 2.2 For x, y ∈ Q, it holds that

ord2(xy) = ord2(x) + ord2(y), (2.1)

ord2(x + y) = ord2(x), if ord2(x) < ord2(y), (2.2)

ord2(x + y) ≥ ord2(x) + 1, if ord2(x) = ord2(y), (2.3)

ord2(B2n) = −1, if n ≥ 1. (2.4)

Proof Proofs of (2.1), (2.2) and (2.3) are straightforward and we omit them. We note
that (2.4) follows from the well-known Clausen–von Staudt Theorem on the Bernoulli
numbers (see, e.g., [8]). �

Here we recall the polynomial S4,w,n(X) for an integer n with 0 < n < w:

S4,w,n(X) = 4ñXw

ñ + 1
B0

ñ+1

(
1

4X

)
− 1

n + 1
B0

n+1(X).
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We set

aij := the coefficient of X2j−1 in S4,w,2i (X) (i, j = 1,2, . . . ,w/2 − 1).

We will show in Lemma 2.4 that

det
1≤i≤w/2−1
1≤j≤w/2−1

[aij ] �= 0. (2.5)

To do so, we need the following lemma:

Lemma 2.3 The 2-adic ordinal ord2(aij ) of aij satisfies the following:

ord2(ai,i ) = −2, for i = 1,2, . . . ,w/2 − 1,

ord2(ai,i+1) = 0, for i = 1,2, . . . ,w/2 − 2,

ord2(ai,i+k) ≥ 4(k − 1) + 1, for i = 1,2, . . . ,w/2 − 1; k = 2,3, . . . ,w/2 − 1 − i,

ord2(ai,j ) ≥ −1, for j < i.

Proof We expand S4,w,2i (X) as

S4,w,2i (X) = 4w−2iXw

w − 2i + 1
B0

w−2i+1

(
1

4X

)
− 1

2i + 1
B0

2i+1(X)

= 1

w − 2i + 1

w−2i+1∑

�=0, � even

4�−1
(

w − 2i + 1

�

)
B�X

2i−1+�

− 1

2i + 1

2i+1∑

�=0, � even

(
2i + 1

�

)
B�X

2i+1−�

= 1

w − 2i + 1

w/2∑

j=i

42j−2i−1
(

w − 2i + 1

2j − 2i

)
B2j−2iX

2j−1

− 1

2i + 1

i+1∑

j=1

(
2i + 1

2i − 2j + 2

)
B2i−2j+2X

2j−1.

Then we know

aii = 1

w − 2i + 1
4−1

(
w − 2i + 1

0

)
B0 − 1

2i + 1

(
2i + 1

2

)
B2,

and we have ord2(aii) = ord2(4−1) = −2. We also know

aii+1 = 1

w − 2i + 1
41

(
w − 2i + 1

2

)
B2 − 1

2i + 1

(
2i + 1

0

)
B0,

and we have ord2(aii+1) = ord2(−1/(2i + 1)) = 0.
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Now, for aii+k and aij (j < i), we see

aii+k = 1

w − 2i + 1
42k−1

(
w − 2i + 1

2k

)
B2k,

aij = − 1

2i + 1

(
2i + 1

2i − 2j + 2

)
B2i−2j+2.

Hence we have ord2(aii+k) ≥ ord2(42k−1/2) = 4k − 3 for k = 2,3, . . . ,w/2 − 1 − i,
and ord2(aij ) ≥ ord2(B2i−2j+2) = −1 for j < i.

This completes the proof. �

The following lemma is crucial in our proofs of Theorems 1.6 and 1.7.

Lemma 2.4 Set

D = det
1≤i≤w/2−1
1≤j≤w/2−1

[aij ].

Then

ord2(D) = −w + 2.

In particular, we have

det
1≤i≤w/2−1
1≤j≤w/2−1

[aij ] �= 0.

Proof Let us set d = w/2−1, and let id denote the identity element of the symmetric
group Sd of degree d .

From Lemma 2.3, we know that

ord2(aii) = −2 and ord2(aij ) ≥ −1 if i �= j.

Therefore, for an element σ in Sd , we have

ord2(a1σ(1)a2σ(2) · · ·adσ(d)) = −2d = −w + 2 if σ = id,

ord2(a1σ(1)a2σ(2) · · ·adσ(d)) ≥ −w + 1 if σ �= id.

Noting that the determinant D is given by

D =
∑

σ

ε(σ )a1σ(1)a2σ(2) · · ·adσ(d),

where the sum runs over all elements in the permutation group Sd , and ε(σ ) denotes
+1 or −1 according to whether the permutation σ is even or odd, we have

ord2(D) = ord2(a11a22 · · ·add) = −w + 2.

This proves the lemma. �
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Now we are ready to give proofs of Theorems 1.6 and 1.7.

Proofs of Theorems 1.6 and 1.7 In Lemma 2.4, we proved that

det
1≤i≤w/2−1
1≤j≤w/2−1

[aij ] �= 0. (2.6)

Since

aij = the coefficient of X2j−1 in S4,w,2i (X) (i, j = 1,2, . . . ,w/2 − 1),

the inequality (2.6) shows that S4,w,2i (i = 1,2, . . . ,w/2 − 1) are linearly indepen-
dent. This implies Theorem 1.6.

Next we note that

aij = the coefficient of X2j−1 in S4,w,2i (X)

= the coefficient of X2j−1 in r−(RΓ0(4),w,2i )(X)

= −
(

w

2j − 1

)
rw−2j+1(RΓ0(4),w,2i )

= −
(

w

2j − 1

)
cw(RΓ0(4),w,2i ,RΓ0(4),w,w−2j+1).

Then, from (2.6), we have

w/2−1∏

j=1

(
−

(
w

2j − 1

)
cw

)
det

1≤i≤w/2−1
1≤j≤w/2−1

[
(RΓ0(4),w,2i ,RΓ0(4),w,w−2j+1)

] �= 0.

From this, it follows that

det
1≤i≤w/2−1
1≤j≤w/2−1

[
(RΓ0(4),w,2i ,RΓ0(4),w,w−2j+1)

] �= 0. (2.7)

This implies that RΓ0(4),w,2i , i = 1,2, . . . ,w/2 − 1, are linearly independent, and
so are RΓ0(4),w,w−2j+1, j = 1,2, . . . ,w/2 − 1. Now taking into account the dimen-
sion of Sw+2(Γ0(4)), we conclude that both {RΓ0(4),w,n | n = 2,4, . . . ,w − 2} and
{RΓ0(4),w,n | n = 3,5, . . . ,w − 1} are bases of Sw+2(Γ0(4)). By applying the Atkin–
Lehner involution, we know that {RΓ0(4),w,n | n = 1,3, . . . ,w − 3} also form a basis
for Sw+2(Γ0(4)). This completes the proof of Theorem 1.7. �

3 Proof of Theorem 1.1 and Corollaries 1.2 and 1.3

In the following proposition, a newform in Sk(Γ0(N)) means a normalized Hecke
eigenform in the newform subspace of Sk(Γ0(N)). Also, the Petersson inner product
of two cusp forms f and g in Sk(Γ0(4)) is defined as (1.5).
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Proposition 3.1 Analogue of [6, Proposition 2] Let k ≥ 6 be an even integer. For an
integer � with 2 ≤ � ≤ k/2 − 2, let E0

2� and Ei∞
k−2� be the Eisenstein series defined in

(1.2), and set

ck,� = (k − 2)!
(4π)k−1

· 4�

B2�

· 1

1 − 22�
· 1(

1 − 22�−k
)
ζ(k − 2�)

.

(1) If f is a newform in Sk(Γ0(4)), then we have

(
f,E0

2�E
i∞
k−2�

) = ck,�L(f, k − 1)L(f, k − 2�).

(2) If f is a newform in Sk(Γ0(2)) with f |kW2 = εf f , then for g(τ) = f (τ) or
f (2τ), we have

(
g,E0

2�E
i∞
k−2�

) = ck,�

(
1 + εf 2−k/2)L(f, k − 1)L(g, k − 2�).

(3) If f is a Hecke eigenform in Sk(SL2(Z)) with T2f = λf f , then for g(τ) = f (τ),
f (2τ), or f (4τ), we have

(
g,E0

2�E
i∞
k−2�

) = ck,�

(
1 + 2−k+1(1 − λf )

)
L(f, k − 1)L(g, k − 2�).

Moreover, the same formulas hold for � = 1 or k/2 − 1 if E0
2�E

i∞
k−2� is replaced by

E0
2(τ )Ei∞

k−2(τ ) − 1

πi(k − 2)

d

dτ
Ei∞

k−2(τ ),

Ei∞
2 (τ )E0

k−2(τ ) − 1

πi(k − 2)

d

dτ
E0

k−2(τ ),

respectively.

Proof The proof follows the argument in [6, Proposition 2], so parts of the proof will
be sketchy.

We first consider the case 2 ≤ � < (k − 1)/4. Let f (τ) = ∑
anq

n ∈ Sk(Γ0(4)).
According to (1.1),

E0
2�(τ ) = 4�

B2�(1 − 22�)

∞∑

n=1

(
σ2�−1(n) − σ2�−1(n/2)

)
qn =

∞∑

n=1

e2�(n)qn.

By Rankin’s method, we have

(
f,E0

2�E
i∞
k−2�

) = (k − 2)!
(4π)k−1

Lf,�(k − 1), (3.1)

where

Lf,�(s) =
∞∑

n=1

e2�(n)a(n)n−s . (3.2)
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(See [12] and [14, pages 144–146] for more details.)
Now assume f (τ) is a newform in Sk(Γ0(4)). Then

Lf,�(s) = 4�

B2�(1 − 22�)

( ∞∑

n=1

σ2�−1(n)a(n)n−s −
∞∑

n=1

σ2�−1(n/2)a(n)n−s

)
.

Following the computation in [6, page 822], we find that the first sum above is equal
to

L(f, s)L(f, s − 2� + 1)

ζ (2)(2s − 2� − k + 2)
,

where ζ (2)(s) := (1 − 2−s)ζ(s). Also, because f is assumed to be a newform on
Γ0(4), we have a(2n) = 0 for all n and the second sum above is simply 0. Upon
setting s = k − 1, we get the formula in Part (1) for the case 2 ≤ � < (k − 1)/4.

We next assume that f is a newform in Sk(Γ0(2)). For the case g = f , aside
from a difference in the scalars, the proof is exactly the same as the proof of (i) of
Proposition 2 in [6] and we find

Lf,� = 4�

B2�(1 − 22�)

L(f, s)L(f, s − 2� + 1)

ζ (2)(2s − 2� − k + 2)
,

from which we obtain the formula in the case g = f . We now consider g(τ) = f (2τ).
Letting b� = 4�/B2�(1 − 22�), by (3.2), we have

Lg,�(s) = b�

∞∑

n=1

σ2�−1(n)a(n/2)n−s − b�

∞∑

n=1

σ2�−1(n/2)a(n/2)n−s

= 2−sb�

∞∑

n=1

σ2�−1(2n)a(n)n−s − 2−sb�

∞∑

n=1

σ2�−1(n)a(n)n−s . (3.3)

Inserting the identity

σ2�−1(2n) = (
1 + 22�−1)σ2�−1(n) − 22�−1σ2�−1(n/2)

into the equation, we obtain

Lg,�(s) = 2−s+2�−1b�

( ∞∑

n=1

σ2�−1(n)a(n)n−s −
∞∑

n=1

σ2�−1(n/2)a(n)n−s

)

= 2−s+2�−1 Lf,�(s) = 2−s+2�−1b�

L(f, s)L(f, s − 2� + 1)

ζ (2)(2s − 2� − k + 2)

= b�

L(f, s)L(g, s − 2� + 1)

ζ (2)(2s − 2� − k + 2)
. (3.4)

Setting s = k − 1, we get the formula in Part (2) for the case 2 ≤ � < (k − 1)/4.
We now consider the case when f is a normalized Hecke eigenform in Sk(SL2(Z)).

Again, when g = f , the proof of the formula is almost the same as the proof of (ii) of
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Proposition 2 in [6]. Then when g(τ) = f (2τ), a computation analogous to (3.3) and
(3.4) gives us the claimed formula. The proof of the case g(τ) = f (4τ) is similar.
This completes the proof of the case 2 ≤ � < (k − 1)/4.

We next consider the case (k + 1)/4 < � ≤ k/2 − 2. Using the fact that the Atkin–
Lehner involution W4 is a Hermitian operator with respect to the Petersson inner
product, we have

(
f,E0

2�E
i∞
k−2�

) = (
f |W4,E

0
k−2�E

i∞
2�

)
.

When f is a newform in Sk(Γ0(4)) with f |kW4 = εf f , by the formula in Part (1)
with � replaced by k/2 − �, this is equal to

(
f,E0

2�E
i∞
k−2�

) = εf

(
f,E0

k−2�E
i∞
2�

) = εf ck,k/2−�L(f, k − 1)L(f,2�).

Then from the functional equation

(
2π√

4

)−s

Γ (s)L(f, s) = εf (−1)k/2
(

2π√
4

)−(k−s)

Γ (k − s)L(f, k − s)

and the identity

ζ(2n) = − (2πi)2n

Γ (2n)

B2n

4n
(3.5)

for integers n ≥ 1, we get
(
f,E0

2�E
i∞
k−2�

) = ck,k/2−�L(f, k − 1)L(f,2�) = ck,�L(f, k − 1)L(f, k − 2�).

Now assume that f is a newform in Sk(Γ0(2)) with f |kW2 = εf f . Then

(f |kW4)(τ ) = (2τ)−kf (−1/4τ) = εf (2τ)−k
(
2
√

2τ
)k

f (2τ) = εf 2k/2f (2τ),

and consequently, for g(τ) = f (τ),
(
g,E0

2�E
i∞
k−2�

) = εf 2k/2(h,E0
k−2�E

i∞
2�

)

with h(τ) = f (2τ). Applying the formula in Part (2) with � replaced by k/2 − �, we
get

(
g,E0

2�E
i∞
k−2�

) = εf 2k/2ck,k/2−�

(
1 + εf 2−k/2)L(f, k − 1)L(h,2�)

= 2−2�ck,k/2−�

(
1 + εf 2k/2)L(f, k − 1)L(g,2�).

Then from the functional equation for L(f, s) and (3.5), we establish the formula in
Part (2) for the case g(τ) = f (τ). The proof of the case g(τ) = f (2τ) is similar.

Now assume that f is a Hecke eigenform in Sk(SL2(Z)) with T2f = λf f .
We have

(f |kW4)(τ ) = (2τ)−kf (−1/4τ) = 2kf (4τ),

and thus, for g(τ) = f (τ),
(
g,E0

2�E
i∞
k−2�

) = 2k
(
h,E0

k−2�E
i∞
2�

)
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with h(τ) = f (4τ). Using the formula in Part (3), we derive that

(
g,E0

2�E
i∞
k−2�

) = 2kck,k/2−�

(
1 + 2−k+1(1 − λf )

)
L(f, k − 1)L(h,2�)

= 2k−4�ck,k/2−�

(
1 + 2−k+1(1 − λf )

)
L(f, k − 1)L(f,2�).

Then, by the functional equation for L(f, s) and (3.5) again, we see that the formula
in Part (3) holds for g(τ) = f (τ). The proof of the cases g(τ) = f (2τ) and g(τ) =
f (4τ) is similar. This completes the proof of the formulas for 2 ≤ � ≤ k/2 − 2.

Finally, let us consider the cases � = 1 and � = k/2 − 1. Assume that � = 1. We
first recall the well-known transformation formula

E2

(
aτ + b

cτ + d

)
= 6

πi
c(cτ + d) + (cτ + d)2E2(τ ),

which can be proved easily by considering the logarithmic derivative of the two sides
of η((aτ + b)/(cτ + d))24 = (cτ + d)12η(τ)24, where η(τ) is the Dedekind eta func-
tion. It follows that the Eisenstein series E0

2(τ ) = (E2(τ ) − E2(2τ))/3 satisfies

E0
2

(
aτ + b

cτ + d

)
= 1

πi
c(cτ + d) + (cτ + d)2E0

2(τ ) (3.6)

for all
(

a b
c d

) ∈ Γ0(2). Also, since Ei∞
k−2(τ ) is a modular form of weight k − 2, we

have

Ei∞
k−2

′
(

aτ + b

cτ + d

)
= (k − 2)c(cτ + d)k−1Ei∞

k−2(τ ) + (cτ + d)kEi∞
k−2(τ ). (3.7)

Thus,

h(τ) = E0
2Ei∞

k−2(τ ) − 1

πi(k − 2)
Ei∞

k−2
′
(τ )

is a cusp form of weight k on Γ0(4). Now we have

Ei∞
k−2(τ ) =

∑

γ∈Γ∞\Γ0(4)

1

(cτ + d)k−2
,
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where Γ∞ is the subgroup generated by
( 1 1

0 1

)
and for γ ∈ Γ∞\Γ0(4), we write γ =(

a b
c d

)
. It follows that, for f ∈ Sk(Γ0(4)),

(f,h) =
∑

γ∈Γ∞\Γ0(4)

∫∫

Γ0(4)\H
f (τ)

(
E0

2(τ )

(cτ + d)k−2
+ 1

πi

c

(cτ + d)k−1

)
yk dx dy

y2

=
∑

γ∈Γ∞\Γ0(4)

∫∫

γ (Γ0(4)\H)

f
(
γ −1τ

)

×
(

E0
2(γ −1τ)

(cγ −1τ + d)k−2
+ 1

πi

c

(cγ −1τ + d)k−1

)

× (
Imγ −1τ

)k dx dy

y2
,

where we write τ = x + iy. From the transformation formula (3.6), we get

E0
2(γ −1τ)

(cγ −1τ + d)k−2
+ 1

πi

c

(cγ −1τ + d)k−1
= (cτ − a)kE0

2(τ ).

Consequently, if f (τ) = ∑
a(n)qn and E0

2(τ ) = ∑
e2(n)qn, we have

(f,h) =
∑

γ∈Γ∞\Γ0(4)

∫∫

γ (Γ0(4)\H)

f (τ )E0
2(τ )yk dx dy

y2

=
∫ ∞

0

∫ 1

0

∞∑

m,n=1

a(m)e2(n)e2πi(n−m)xe−2π(m+n)yyk−2 dx dy

= Γ (k − 1)

(4π)k−1

∞∑

n=1

a(n)e2(n)n−(k−1) = (k − 2)!
(4π)k−1

Lf,1(k − 1),

and we are back to (3.1). Therefore, the formulas in the statement of the proposition
hold if we replace E0

2Ei∞
k−2 by h = E0

2Ei∞
k−2 − Ei∞

k−2
′
/πi(k − 2). Finally, the case

Ei∞
2 E0

k−2 − E0
k−2

′
/πi(k − 2) can be proved by applying the Atkin–Lehner involu-

tion, as what we did for the case (k + 1)/4 < � ≤ k/2 − 2. This completes the proof
of the proposition. �

We now prove Theorem 1.1 and Corollaries 1.2 and 1.3.

Proof of Theorem 1.1 Let k ≥ 6 be an even integer and let

d = dimSk

(
Γ0(4)

) = k

2
− 2.

Let h1 = E0
2Ei∞

k−2 − Ei∞
k−2

′
/πi(k − 2) and hj = E0

2jE
i∞
k−2j for j = 2, . . . , d . As in

Proposition 3.1, by a newform in Sk(Γ0(N)), we mean a normalized Hecke eigenform
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in the newform subspace of Sk(Γ0(N)). We first choose a basis for Sk(Γ0(4)) to be
{
f (τ), f (2τ), f (4τ) : f a Hecke eigenform in Sk

(
SL2(Z)

)}

∪ {
f (τ), f (2τ) : f a newform in Sk

(
Γ0(2)

)}

∪ {
f (τ) : f a newform in Sk

(
Γ0(4)

)}

and label the functions by g1, . . . , gd . We also let fi denote the corresponding new-
form from which gi originates. Consider the d × d matrix

A = [
(gi, hj )

]
i,j=1,...,d

formed by the Petersson inner product of gi and hj . Since {gi} is a basis for
Sk(Γ0(4)), {hj } is a basis if and only if detA �= 0. Now by the formulas in Proposi-
tion 3.1, we have

detA =
(

d∏

j=1

ck,j

)(
d∏

i=1

biL(fi, k − 1)

)
det

[
L(gi, k − 2j)

]
i,j=1,...,d

,

where

bi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + 2−k+1(1 + λfi
) if fi is a Hecke eigenform in Sk(Γ (1))

with T2fi = λfi
fi,

1 + εfi
2−k/2 if fi is a newform in Sk(Γ0(2)) with fi |kW2 = εfi

fi,

1 if fi is a newform in Sk(Γ0(4)).

The numbers ck,j are clearly nonzero. Also, since fi are assumed to be normal-
ized Hecke eigenforms, we know that biL(fi, k − 1) �= 0. Therefore, to show that
detA �= 0, it suffices to show that det[L(gi, k − 2j)] �= 0.

Now by (1.3), we have

L(gi, k − 2j) = (−2πi)k−2j

Γ (k − 2j)

∫ i∞

0
gi(τ )τ k−2j−1 dτ = (−2πi)k−2j

Γ (k − 2j)
rk−2j−1(gi)

= (−2πi)k−2j

2Γ (k − 2j)
(2i)k−1(gi,Rk−2j−1),

where Rn = RΓ0(4),k−2,n is the cusp form in Sk(Γ0(4)) characterized by the property
(1.4). Thus, det[L(gi, k − 2j)] �= 0 if and only if det[(gi,Rk−2j−1)] �= 0. However,
{Rk−2j−1}dj=1 is a basis of Sk(Γ0(4)) by Theorem 1.7 and Remark 1.8, and so is

{gi}di=1 by the assumption. Hence we know that det[(gi,Rk−2j−1)] �= 0, and we can
conclude that the set

{
E0

2Ei∞
k−2 − 1

πi(k − 2)
Ei∞

k−2
′
}

∪ {
E0

nE
i∞
k−n | n = 4,6, . . . , k − 4

}

is a basis for Sk(Γ0(4)). Applying the Atkin–Lehner involution to this basis, we see
that the other set in the statement of theorem is also a basis. �



42 S. Fukuhara, Y. Yang

Proofs of Corollaries 1.2 and 1.3 Let W : Sk(Γ0(4)) → Sk(Γ0(4)) be defined by
W(f ) = f |kW4 for any f in Sk(Γ0(4)). Let I denote the identity automorphism of
Sk(Γ0(4)). Since W 2 = I , we have

Sk

(
Γ0(4),+) = Ker(I − W) = Im(I + W),

Sk

(
Γ0(4),−) = Ker(I + W) = Im(I − W).

Now, from Theorem 1.1, we know
{
Ei∞

2 E0
k−2 − 1

πi(k − 2)
E0

k−2
′
}

∪ {
Ei∞

n E0
k−n | n = 4,6, . . . , k − 4

}

is a basis for Sk(Γ0(4)). Then the set
{
Ei∞

2 E0
k−2 − 1

πi(k − 2)
E0

k−2
′
}

∪ {
Ei∞

n E0
k−n + E0

nEi∞
k−n | n = 4,6, . . . ,2�k/4�}

∪ {
Ei∞

n E0
k−n | n = 2�k/4� + 2,2�k/4� + 4, . . . , k − 4

}

is also a basis for Sk(Γ0(4)). In particular,
{
Ei∞

n E0
k−n + E0

nEi∞
k−n | n = 4,6, . . . ,2�k/4�}

is linearly independent. Furthermore, since Ei∞
n E0

k−n +E0
nE

i∞
k−n ∈ Sk(Γ0(4),+) and

dimSk(Γ0(4),+) = � k
4� − 1, we know

{
Ei∞

n E0
k−n + E0

nEi∞
k−n | n = 4,6, . . . ,2�k/4�}

is a basis for Sk(Γ0(4),+).
Next, from Theorem 1.1, we know that Sk(Γ0(4),−) = Im(I − W) is spanned by

{
Ei∞

2 E0
k−2 − E0

2Ei∞
k−2 − 1

πi(k − 2)

(
E0

k−2
′ − Ei∞

k−2
′)
}

∪ {
Ei∞

n E0
k−n − E0

nEi∞
k−n | n = 4,6, . . . , k − 4

}
.

Then Sk(Γ0(4),−) is also spanned by the set
{
Ei∞

2 E0
k−2 − E0

2Ei∞
k−2 − 1

πi(k − 2)

(
E0

k−2
′ − Ei∞

k−2
′)
}

∪ {
Ei∞

n E0
k−n − E0

nE
i∞
k−n | n = 4,6, . . . , k − 2�k/4� − 2

}
.

Now, noting that dimSk(Γ0(4),−) = k/2 − �k/4� − 1, we conclude the set above is
a basis of Sk(Γ0(4),−). �
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