
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012 841

A Scalable High-Performance Virus Detection
Processor Against a Large Pattern Set for

Embedded Network Security
Chieh-Jen Cheng, Student Member, IEEE, Chao-Ching Wang, Member, IEEE, Wei-Chun Ku, Student Member, IEEE,

Tien-Fu Chen, Member, IEEE, and Jinn-Shyan Wang, Member, IEEE

Abstract—Contemporary network security applications gener-
ally require the ability to perform powerful pattern matching to
protect against attacks such as viruses and spam. Traditional hard-
ware solutions are intended for firewall routers. However, the solu-
tions in the literature for firewalls are not scalable, and they do not
address the difficulty of an antivirus with an ever-larger pattern
set. The goal of this work is to provide a systematic virus detection
hardware solution for network security for embedded systems. In-
stead of placing entire matching patterns on a chip, our solution
is a two-phase dictionary-based antivirus processor that works by
condensing as much of the important filtering information as pos-
sible onto a chip and infrequently accessing off-chip data to make
the matching mechanism scalable to large pattern sets. In the first
stage, the filtering engine can filter out more than 93.1% of data
as safe, using a merged shift table. Only 6.9% or less of potentially
unsafe data must be precisely checked in the second stage by the
exact-matching engine from off-chip memory. To reduce the im-
pact of the memory gap, we also propose three enhancement al-
gorithms to improve performance: 1) a skipping algorithm; 2) a
cache method; and 3) a prefetching mechanism.

Index Terms—Algorithmic attacks, embedded system, memory
gap, network security, virus detection.

I. INTRODUCTION

N ETWORK security has always been an important issue.
End users are vulnerable to virus attacks, spam, and

Trojan horses, for example. They may visit malicious websites
or hackers may gain entry to their computers and use them as
zombie computers to attack others. To ensure a secure network
environment, firewalls were first introduced to block unau-
thorized Internet users from accessing resources in a private
network by simply checking the packet head (MAC address/IP
address/port number). This method significantly reduces the

Manuscript received October 13, 2009; revised May 18, 2010 and November
20, 2010; accepted January 31, 2011. Date of publication March 28, 2011; date
of current version April 06, 2012.

C.-J. Cheng and W.-C. Ku are with the Department of Computer Science
and Information Engineering, National Chung Cheng University, Min-Hsiung
Chia-Yi, Taiwan (e-mail: jjr88u@gmail.com; rogisterku@gmail.com).

C.-C. Wang and J.-S. Wang are with the Department of Electrical Engi-
neering, National Chung Cheng University, Min-Hsiung Chia-Yi, Taiwan
(e-mail: gaspard81@gmail.com; ieegsw@ccu.edu.tw).

T.-F. Chen is with the Department of Computer Science, National Chiao Tung
University, Hsinchu 300, Taiwan (e-mail: tfchen@cs.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2119382

Fig. 1. Architecture of firewall router.

probability of being attacked. However, attacks such as spam,
spyware, worms, viruses, and phishing target the application
layer rather than the network layer. Therefore, traditional
firewalls no longer provide enough protection. Many solutions,
such as virus scanners, spam-mail filters, instant messaging
protectors, network shields, content filters, and peer-to-peer
protectors, have been effectively implemented. Initially, these
solutions were implemented at the end-user side but tend to be
merged into routers/firewalls to provide multi-layered protec-
tion. As a result, these routers stop threats on the network edge
and keep them out of corporate networks.

Fig. 1 shows a typical architecture of a firewall router. When a
new connection is established, the firewall router scans the con-
nection and forwards these packets to the host after confirming
that the connection is secure. Because firewall routers focus on
the application layer of the OSI model, they must reassemble in-
coming packets to restore the original connection and examine
them through different application parsers to guarantee a secure
network environment. For instance, suppose a user searches for

1063-8210/$26.00 © 2011 IEEE

842 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

information on web pages and then tries to download a com-
pressed file from a web server. In this case, the firewall router
might initially deny some connections from the firewall based
on the target’s IP address and the connection port. Then, the fire-
wall router would monitor the content of the web pages to pre-
vent the user from accessing any page that connects to malware
links or inappropriate content, based on content filters. When
the user wants to download a compressed file, to ensure that
the file is not infected, the firewall router must decompress this
file and check it using anti-virus programs. In summary, firewall
routers require several time-consuming steps to provide a secure
connection. However, even under numerous security constric-
tions, firewall routers are still required to provide high-speed
transmission. Fortunately, most security-guaranteed programs
use rule-based designs. Therefore, we have tried to develop a
pattern matching processor to accelerate the detection speed. We
call this design a virus detection processor because the database
size it supports has reached the antivirus software level and is
far greater than those of previous works.

The purpose of pattern matching is to check whether a text
contains at least one of a given set of patterns. There are many al-
gorithms [1]–[7] and accompanying hardware accelerators [4],
[8]–[16] for fast pattern matching. One of the typical algorithms
is the automation approach. This approach is based on Aho and
Corasick’s algorithm (AC) [1], which introduces a linear-time
algorithm for multi-pattern search with a large finite-state ma-
chine. Its performance is not affected by the size of a given
pattern set (the sum of all pattern lengths), but it requires a
significant amount of memory due to state explosion. Experi-
ments [17] have shown that the suboptimal AC algorithm re-
quires 84.15 MB memory to represent Snort’s rule set (4219
rules, as of December 2005). Even an Intel IXP2855 network
processor (512 kB on-chip memory) must store such a pattern
set in off-chip memory. Therefore, the memory hierarchy is the
main factor in performance. Many previous studies have tried
to lower memory requirements. In 2005, Lin Tan introduced a
bit-split method [9] by splitting an 8-bit character into four 2-bit
characters to construct the automaton. Their state machines are
smaller than the original, and they have fewer fan-out states for
each transaction. However, the bit-split method reads several
memory blocks in parallel when matching patterns. Thus, it can
only be implemented by on-chip memory because of its high
memory read port requirements. Piti Piyachon and Yan Luo ex-
tended this concept [4] to the Intel IXP2855 network processor.
For increasingly large pattern sets, an IBM team implemented
an optimized AC algorithm [7] on the cell processor, and they
discovered that the memory gap was the bottleneck. As a result,
they modified the algorithm and used DMA to reduce the effect
on the memory system.

In contrast, heuristic approaches are based on the
Boyer-Moore [2] algorithm, which was introduced in 1977.
Its key feature is the shift value, which shifts the algorithm’s
search window for multiple characters when it encounters a
mismatch. The search window is a range of text exactly fetched
by pattern matching algorithms for each examination. This
algorithm performs better because it makes fewer comparisons
than the naïve pattern-matching algorithm. At runtime, the
Boyer-Moore algorithm uses a pattern pointer to locate a

candidate position by assuming that a desired pattern exists
at this position. The algorithm then shifts its search window
to the right of this pattern. By default, desired patterns can
exist in any position of a text; therefore, all positions in a text
are candidate positions and must be examined. If the string of
search windows does not appear in the pattern, the algorithm
can shift the pattern pointer to the right and skip multiple
characters from the candidate position to the end of the pattern
without making comparisons. Based on this concept, Wu and
Manber (WM) [18] modified the Boyer-Moore algorithm to
search for multiple patterns. The WM algorithm is widely used
in many applications, including Unix tools such as agrep and
glimpse. However, the performance of both of these algorithms
is bounded by the pattern length.

Software-based Bloom filters [3] were first described in
1970. These filters can determine whether an element is a
non-member of a given set in a constant amount of time using
several hash functions and a bit vector. The Bloom filter method
is exceptionally space-efficient. In a typical case, the filter rate
for 30 000 patterns reaches 90% and requires only 34.76 kB of
memory. Although the Bloom filter rejects a non-member in
constant time, it does not guarantee that an element is in a given
set. False-positive problems necessitate a secondary method to
verify the match. In brief, the Bloom filter does not perform
pattern matching individually, except with an exact-matching
method.

In 2004, Sarang et al. [4] presented a pattern-matching pro-
cessor based on Bloom filters. They used multiple Bloom fil-
ters to check different-length prefixes of the pattern in parallel.
This design needs 32 memory read ports because it uses 32
hash functions. However, most commonly used memory mod-
ules only have two ports: a read port and a write port. To lower
the memory read port requirements, they divided a bit vector
into several smaller vectors implemented by 140-block RAM
of FPGA. The total memory size, then, is 70 kB for 10 038 pat-
terns. The design also includes an analyzer that isolates false
positives. The performance of this design can reach 2.46 Gb/s.

Some designs [4], [11]–[15], [19] take advantage of field-pro-
grammable gate array’s (FPGA’s) ability to be reconfigured to
improve performance. Some of these designs [14], [15] are even
based on non-deterministic finite automata (NFA) to handle
complex regular expressions. These methods provide high
throughput, but the maximum number of patterns they support
is limited by the FPGA comparators. The Xilinx Virtex2-8000
FPGAs only support about 781 ClamAV rules. In 2004, to sup-
port an unlimited pattern count, Cho presented the idea [20],
[21] of a two-phase architecture that implements a front-end
filter with an FPGA and stores its full pattern database in a large
memory. Later, Sourdi et al. implemented a perfect hashing
function [19] on an FPGA to remove redundant memory ac-
cesses caused by address collisions. Some designs [10], [22]
have used content-addressable memory (CAM) to improve
engine filtering rates and to store the entire pattern database in
a large external memory. Since then, pattern-matching designs
have tended to use a two-phase architecture, in which one
phase finds suspicious positions and the other phase precisely
identifies patterns.

CHENG et al.: SCALABLE HIGH-PERFORMANCE VIRUS DETECTION PROCESSOR 843

Fig. 2. Types of attack texts. (a) Deep-search attack; (b) sub-pattern attack;
(c) an extreme case.

All of these designs provide more than 1-Gb/s performance,
and some support even more than 10 Gb/s. However, with
increasing pattern sets, it becomes more difficult to implement
these designs in on-chip memory or dedicated circuits. Some
designs attempt to store pattern sets in external memory, which
is typically implemented by SDRAM or DDR, for their space
requirements. Although DRAM technology has greatly im-
proved over the last few decades, DRAM-based memories still
require initial cycles before pumping out their first non-con-
secutive data. The gain only appears in consecutive readings
of various sectors. A non-consecutive read operation of DDR
memory still typically costs 25 40 ns, compared to the 1

3 ns working cycle of existing processors. Unfortunately,
most pattern matching designs have irregular access to their
memories. Thus, even though the kernels of these works are
well designed, their performances are slowed dramatically by
these long memory access processes [7], [11], [23], especially
for filtering-based designs. For this reason, improving the filter
rate and overlapping the access time are the two major trends.
Some designs [5], [7], [17] try to use caches to overlap the
access time.

Because the performance of the filtering engine of a
two-phase architecture can be ten times better than the
exact-matching, attackers can forge specific strings that trigger
the architecture to launch a large number of false alarms by
its front-end module, causing it to busy itself verifying these
alarms precisely by its back-end module. Fig. 2 shows two
typical types of attacks and one extreme case.

The first, shown in Fig. 2(a), is the most common and the eas-
iest to build. This type of attack’s text is constructed by patterns
in the given pattern set, and therefore, these texts frequently
cause the filtering engine to launch alarms and require verifica-
tion of the exact-matching engine. Fig. 2(a) illustrates a typical
attack text “barrow” built by the pattern set {bar, row, ed}. Two
candidate positions cause exact-matching to take a long time to
traverse its data structure. For the ClamAV, the average pattern
length is 64 characters; thus, attack texts constructed with this
method have a 1/64 chance of launching an exact match for each
examination.

The second case shown in Fig. 2(b) is relatively rare, but it
provides a higher-density attack text than the first. If the given
pattern set includes a pattern that contains the prefix of another
pattern, the attack texts built by these patterns provide more
candidate positions in the same length. The patterns “heat” and
“eat” in Fig. 2(b) are an example. For the same length, the text
launches many more alarms than the text in Fig. 2(a).

Fig. 2(c) shows an extreme case that combines the first and
second types: a pattern is constituted by a serial of characters

“a”; the constitution of the attack text is also same as the pat-
tern but is longer. As a result, the attack text in Fig. 2(c) can
be considered to constitute a multiple of this pattern. In addi-
tion, this pattern contains the prefix of itself. Two of these pat-
terns can compose the third. Therefore, this attack text can be
considered to be a special case that combines by the first and
second types and causes exact-matching for every position of
itself. This extreme case dramatically lowers the performance.
Although it can be avoided by choosing the pattern set well, the
first type of attack text can still be built easily if the pattern sets
are known by the attackers. Thus, a two-phase architecture is
vulnerable to algorithmic attacks.

Related works have focused on algorithms and have even
developed specialized circuits to increase the scanning speed.
However, these works have not considered the interactions be-
tween algorithms and memory hierarchy. Because the number
of attacks is increasing, pattern-matching processors require
external memory to support an unlimited pattern set. This
method makes the memory system the bottleneck. However,
when the pattern set is already intractably large, a perfect
solution is unattainable. A more realistic goal is to provide high
performance in most cases while still performing reasonably
well in the worst case. With an eye toward high performance,
updatability, unlimited pattern sets and low memory require-
ments, we present a two-phase architecture that uses off-chip
memory to support a large pattern set.

Our major contribution is to propose: 1) a shift-signature
table and 2) a trie-skip mechanism to improve the performance
and cushion the blow of the impact on memory gap for this
two-phase architecture. First, we re-encode the shift table and
Bloom filter to merge them into the same space, the shift-sig-
nature table. The new table not only maintains the shift value
of properties but also avoids reducing the filter rate for a large
scale pattern set. In the same space, 32 kB SRAM in this case,
the filter rate of our approach is improved from 10.9% to 6.9%
compared to the Bloom filter. Second, the trie-skip mechanism
avoids performance reduction during malicious attacks. Our
proposed trie-skip mechanism overcomes these two attacks
by skip values and jump nodes. With these two fields, we use
the new trie structure suitable for prefetched and cached to
reduce the off-chip memory access just by rearranging the
trie structure. Experiments show that our approach still pro-
vides reasonable 0.71-Gb/s performance, as compared to 0.33
Gb/s without optimization, for 30 000 patterns under heavy
deep-search attacks.

The remainder of this paper is organized as follows. Section II
presents the design of our two-phase pattern-matching pro-
cessor. Sections III and IV detail the design of the proposed
filtering and exact-matching engines. Section V evaluates
the performance of our processor. Section VI demonstrates an
FPGA development environment and the tapeout result. Finally,
we compare our design with previous works in Section VII and
present our conclusions in Section VIII.

II. VIRUS DETECTION PROCESSOR

Our design, shown on the right side of Fig. 3, is a two-phase
pattern-matching architecture mostly comprising the filtering
engine and the exact-matching engine. The filtering engine is

844 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

Fig. 3. Virus detection processor architecture.

Fig. 4. Two-phase execution flow.

a front-end module responsible for filtering out secure data ef-
ficiently and indicating to candidate positions that patterns pos-
sibly exist at the first stage. The exact-matching engine is a
back-end module responsible for verifying the alarms caused by
the filtering engine. Only a few unsaved data need to be checked
precisely by the exact-matching engine in the second stage.

Both engines have individual memories for storing significant
information. For cost reasons, only a small amount of significant
information regarding the patterns can be stored in the filtering
engine’s on-chip memory. In this case, we used a 32-kB on-chip
memory for the ClamAV virus database, which contained more
than 30 000 virus codes and localized most of the computing
inside the chip.

Conversely, the exact-matching engine not only stores the en-
tire pattern in external memory but also provides information to
speed up the matching process. Our exact-matching engine is
space-efficient and requires only four times the memory space
of the original size pattern set. The size of a pattern set is the sum
of the pattern length for each pattern in the given pattern set; in
other words, it is the minimum size of the memory required to
store the pattern set for the exact-matching engine. In this case,
8 MB of off-chip memory was required for the ClamAV virus
database (2 MB).

The proposed exact-matching engine also supports data
prefetching and caching techniques to hide the access latency
of the off-chip memory by allocating its data structure well.
The other modules include a text buffer and a text pump that
prefetches text in streaming method to overlap the matching
progress and text reading. A load/store interface was used to
support bandwidth sharing.

This proposed architecture has six steps shown in Fig. 4 for
finding patterns. Initially, a pattern pointer is assigned to point
to the start of the given text at the filtering stage. Suppose the
pattern matching processor examines the text from left to right.
The filtering engine fetches a piece of text from the text buffer

Fig. 5. Wu-Manber matching process. (a) Matching flow; (b) shift table;
(c) hash table + prefix table; (d) matching process.

according to the pattern pointer and checks it by a shift-signa-
ture table. If the position indicated by the pattern pointer is not
a candidate position, then the filtering engine skips this piece
of text and shifts the pattern pointer right multiple characters to
continue to check the next position. The shift-signature table
combines two data structures used by two different filtering
algorithms, the Wu-Manber algorithm and the Bloom filter
algorithm, and it provides two-layer filtering. If both layers
are missing their filter, the processor enters the exact-matching
phase. The next section has details about the shift-signature
table.

After an alarm caused by the filtering engine, the
exact-matching engine precisely verifies this alarm by re-
trieving a trie structure [24]. This structure divides a pattern
into multiple sub-patterns and systematically verifies it. The
exact-matching engine generally has four steps for each check.
First, the exact-matching engine gets a slice of the text and
hashes it to generate the trie address. Then, the exact-matching
engine fetches the trie node from memory. This step causes a
long latency due to the access time of the off-chip memory.
Finally, the exact-matching engine compares the trie node
with this slice. When this node is matched, the exact-matching
engine repeatedly executes the above steps until it matches or
misses a pattern. The pattern matching processor then backs
out to the filtering engine to search for the next candidate. The
details of table generation and matching flow are explained in
the following sections.

III. FILTERING ENGINE (FE)

Designs that feature filters indicate that the action behind
these filters is costly and necessary. In this work, the overall per-
formance strongly depends on the filtering engine. Providing a
high filter rate with limited space is the most important issue. We
introduce two classical filtering algorithms for pattern matching
in the following sections. We then show how to merge their
structures in the same space to improve the filter rate.

A. Wu-Manber Algorithm

The Wu-Manber algorithm is a high-performance, multi-pat-
tern matching algorithm based on the Boyer-Moore algorithm.
It builds three tables in the preprocessing stage: a shift table, a
hash table and a prefix table. The Wu-Manber algorithm is an
exact-matching algorithm, but its shift table is an efficient fil-
tering structure. The shift table is an extension of the bad-char-
acter concept in the Boyer-Moore algorithm, but they are not
identical. The matching flow is shown in Fig. 5(a). The matching

CHENG et al.: SCALABLE HIGH-PERFORMANCE VIRUS DETECTION PROCESSOR 845

flow matches patterns from the tail of the minimum pattern in
the pattern set, and it takes a block of characters from the
text instead of taking them one-by-one. The shift table gives a
shift value that skips several characters without comparing after
a mismatch. After the shift table finds a candidate position, the
Wu-Manber algorithm enters the exact-matching phase and is
accelerated by the hash table and the prefix table. Therefore, its
best performance is for the given text with length

and the pattern set, which has a minimum length of . The
performance of the Wu-Manber algorithm is not proportional to
the size of the pattern set directly, but it is strongly dependent on
the minimum length of the pattern in the pattern set. The min-
imum length of the pattern dominates the maximum shift dis-
tance in its shift table. However, the Wu-Manber
algorithm is still one of the algorithms with the best performance
in the average case.

For the pattern set {erst, ever, there} shown in Fig. 5(d), the
maximum shift value is three characters for and

. The related shift table, hash table and prefix are shown in
Fig. 5(b) and Fig. 5(c). The Wu-Manber algorithm scans pat-
terns from the head of a text, but it compares the tails of the
shortest patterns. In step 1, the arrow indicates to a candidate
position that a wanted pattern probably exists, but the search
window (gray bar) is actually the character it fetches for compar-
ison. According to , the arrow and search window
are shifted right by two characters. Then, the Wu-Manber algo-
rithm finds a candidate position in step 2 due to .
Consequently, it checks the prefix table and hash table to per-
form an exact-matching and then outputs the “ever” in step 3.
After completing the exact match, the Wu-Manber algorithm re-
turns to the shifting phase, and it shifts the search window to
the right by one character to find the next candidate position in
step 4. The algorithm keeps shifting the search window until
touching the end of the string in step 6.

B. Bloom Filter Algorithm

A Bloom filter is a space-efficient data structure used to test
whether an element exists in a given set. This algorithm is com-
posed of different hash functions and a long vector of bits.
Initially, all bits are set to 0 at the preprocessing stage. To add an
element, the Bloom filter hashes the element by these hash func-
tions and gets positions of its vector. The Bloom filter then sets
the bits at these positions to 1. The value of a vector that only
contains an element is called the signature of an element. To
check the membership of a particular element, the Bloom filter
hashes this element by the same hash functions at run time, and
it also generates positions of the vector. If all of these bits
are set to 1, this query is claimed to be positive, otherwise it is
claimed to be negative. The output of the Bloom filter can be
a false positive but never a false negative. Therefore, some pat-
tern matching algorithms based on the Bloom filter must operate
with an extra exact-matching algorithm. However, the Bloom
filter still features the following advantages: 1) it is a space-ef-
ficient data structure; 2) the computing time of the Bloom filter
is scaled linearly with the number of patterns; and 3) the Bloom
filter is independent of its pattern length.

Fig. 6(a) describes a typical flow of pattern matching by
Bloom filters. This algorithm fetches the prefix of a pattern

Fig. 6. Bloom filter matching process. (a) Matching flow; (b) bit-vector
building; (c) matching process.

from the text and hashes it to generate a signature. Then, this
algorithm checks whether the signature exists in the bit vector.
If the answer is yes, it shifts the search window to the right
by one character for each comparison and repeats the above
step to filter out safe data until it finds a candidate position and
launches exact-matching. Fig. 6(b) shows how a Bloom filter
builds its bit vector for a pattern set {erst, ever, there} for two
given hash functions. The filter only hashes all of the pattern
prefixes at the preprocessing stage. Multiple patterns setting
the same position of the bit vector are allowed. Fig. 6(c) shows
an example of the matching process. The arrows indicate the
candidate positions. The gray bars represent the search window
that the Bloom filter actually fetches for comparison. Both the
candidate position and search window are aligned together.
Thus, the Bloom filter scans and compares patterns from the
head rather than the tail, like the Wu-Manber algorithm. In step
1, the filter hashes “He” and mismatches the signature with
the bit vector. The filter then shifts right 1 character and finds
the next candidate position. For the search window “ee”, the
Bloom filter matches the signature and then causes a false alarm
to perform an exact-matching in steps 2 and 3. The filter then
returns to the filtering stage and shifts one character to the right
in step 4, which launches a true alarm for the pattern “ever”.
Finally, the Bloom filter filters the rest of text and finds nothing.

C. Shift-Signature Algorithm

The proposed algorithm re-encodes the shift table to merge
the signature table into a new table named the shift-signature
table. The shift-signature table has the same size as the original
shift table, as its width and length are the same as the original
shift table. There are two fields, S-flag and carry, in the shift-
signature table. The carry field has two types of data: a shift
value and a signature. These two data types are used by two
different algorithms. Thus, the S-flag is used to indicate the data
type of a carry. The filtering engine can then filter the text using
a different algorithm while providing a higher filter rate.

The method used to merge these two tables is described as
follows. First, the algorithm generates two tables, a shift table
and signature table, at the preprocessing stage. The generation
of the shift table is the same as in the Wu-Manber algorithm.
The shift table is used as the primary filter. The signature table
could be considered a set of the bit vector of the Bloom filter,
and it is used for the second-level filtering. The signature table’s
generation is similar to the Bloom filter but is not identical; it
hashes the tail characters of patterns to generate their signatures
instead of the prefix. Generated signatures are mapped onto the
signature table and indexed by bad-characters, which have shift

846 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

Fig. 7. Table generation and re-encoding of shift-signature algorithm. (a) Table
generation; (b) table re-encoding.

values of zero in the shift table. In other words, a pattern is as-
signed a zero shift value in the shift table by its last characters,
and it uses the same index to locate its signature in the signa-
ture table. After the shift table and signature table are gener-
ated, the algorithm re-encodes the shift value into two fields: an
S-flag and a carry in the shift-signature table. The S-flag is a
1-bit field used to indicate the data type of the carry. Two data
types, shift value or signature, are defined for a carry. The size
and width of the shift-signature table are the same as those of
the original shift table. To merge these two tables, the algorithm
maps each entry in the shift table and signature table onto the
shift-signature table. For the non-zero shift values, the S-flags
are set, and their original shift values are cut out at 1-bit to fit
their carries. Conversely, for the zero shift values, their S-flags
are clear, and their carries are used to store their signatures. In
this method, all of the entries in the shift-signature table con-
tribute to the filtering rate at run time. Because of the address
collision of bad-characters, most entries contain less than half
of the maximum shift distance for a large pattern set. Therefore,
although this method sacrifices the maximum shift distance, the
filter rate is not reduced but rather improved.

Fig. 7(a) shows an example of generating the shift and signa-
ture tables. Suppose the length of the shortest pattern “patterns”
in the pattern set is 8 characters. The size of the bad-character is
2 characters, thus the maximum shift distance is
characters. Seven possible bad-characters (“pa”, “at”, “tt”, “te”,
“er”, “rn”, “ns”) are defined according to the Wu-Manber algo-
rithm, and their shift values are 6, 5, 4, 3, 2, 1, and 0. Before
replacement, the algorithm first builds the signature table. For
each pattern, the algorithm hashes the tail characters of a pat-
tern (blue bar) to generate its signature. The signature is then
assigned to the signature table indexed by the bad-character
“ns”. For multiple signatures mapped to the same entry, the entry
stores the results of the OR operation of these signatures. In this
work, we only use one hash function because of the space lim-
itation of the signature table. The method of merging the shift
table and signature table is shown in Fig. 7(b). The
is replaced by its signature (“010” in binary) because its shift
value is zero. In contrast, the and
keep their shift values in the shift-signature table.

The filtering flow is shown in Fig. 8(a). For the pattern set
{patterns}, Fig. 8(b) and Fig. 8(c) illustrate how the filtering
engine filters out the given text. The filtering engine fetches the

Fig. 8. Matching flow and filtering example. (a) Filtering flow; (b) shift fil-
tering; (c) signature filtering.

Fig. 9. (a) Compact Trie. (b) FSM of an AC algorithm.

text from the search window (blue bar), as shown in Fig. 8(c).
One part of the fetched text (red bar), shown in Fig. 8(b), is used
as a bad character to index the shift-signature table. If the S-flag
is set, the carry is treated as a shift value. As a result, the filtering
engine shifts the candidate position to the right by two charac-
ters for the text “overhead”, as shown in Fig. 8(b). Conversely,
if the S-flag is clear, the carry is treated as a signature. The fil-
tering engine hashes the fetched text and matches it with the
signature read from the shift-signature table. Fig. 8(c) indicates
that the fetched text “he” has the same index as the bad-char-
acter “ns”, but it fails to match the signature. Thus, the filtering
engine shifts the candidate position to the right by one character
to provide second-level filtering.

IV. EXACT-MATCH ENGINE (EME)

The EME must verify the false positives when the filtering
engine alerts. It also precisely identifies patterns for upper-layer
applications. Most exact-match algorithms use the two kinds
of trie structures shown in Fig. 9, loose and compact tries,
to establish their pattern databases. Both trie structures have
their merits. The AC algorithm uses loose tries, which check
each input character in a constant amount of time because of
their fan-out states for all possible input characters. Thus, the
input data do not affect the AC-based algorithm’s performance,
but their memory requirements increase exponentially with
pattern size. Unlike loose tries, compact tries construct pattern
databases with two pointers, sibling and child, to reduce their
memory requirements. However, this method has potential
performance problems because it may redundantly search
link lists formed by sibling pointers. Despite this limitation,
compact tries are still highly practical because, in practice,
attack texts are not easy to generate. Attacks can be avoided
by removing patterns that cause attacks before constructing
the pattern database. For this reason, we use compact tries as
our exact-matching engine’s algorithm, and we propose several
solutions to mitigate the effect of algorithmic attacks.

CHENG et al.: SCALABLE HIGH-PERFORMANCE VIRUS DETECTION PROCESSOR 847

Fig. 10. One-step hash for a single-root problem.

Fig. 11. Exact-matching flow.

A. Trie Table Generation and One-Step Hash

A traditional compact trie usually has only one entrance, as
shown in Fig. 10. However, for multiple patterns, this method
requires a significant amount of time to search the prefix node
of a pattern in the entrance’s sibling list. To reduce search time,
we divide a huge trie into several lightweight tries to generate
multiple entrances by hashing the root node of each lightweight
trie. The generated hash values are root addresses for each
lightweight trie tree. Therefore, the exact-matching engine can
easily get more entrances and have first nodes with short sibling
lists. In a DRAM, the read time for a consecutive access is
shorter than that for non-consecutive access memory. Mapping
nodes that belong to the same pattern in the neighborhood
efficiently lower access time. In this way, prefetching helps
the exact-matching engine overlap computation with memory
access time. Therefore, simply hashing the trie to generate mul-
tiple entrances and carefully arranging the data in the memory
efficiently solves the memory gap problem at the algorithmic
level.

B. Exact-Matching Flow

Fig. 11 illustrates the flow that exact-matching engine verifies
an alarm triggered by the filtering engine.
Step 1) This engine fetches a piece of text from the text pump

according to the address given by the filter engine.

Fig. 12. Exact-matching with a multiple-character compact trie.

Step 2) If this is the first reading of the trie table for this
alarm, then this engine hashes this text to generate
the root address of its trie tree. Otherwise, it chooses
the sibling pointer of the trie node that the engine last
read as the new address.

Step 3) This engine fetches the trie node from memory ac-
cording to the address provided by the above step.

Step 4) The engine compares this piece of text with the trie
node. If the content of the trie node is the same as
the piece of text, it jumps to Step 6. Otherwise, the
engine continues and checks whether this node has
a sibling pointer.

Step 5) If a sibling exists, the engine jumps to Step 3 and
fetches its sibling node, according to the pointer.
Otherwise, it jumps to Step 7 to execute the trie-skip
mechanism.

Step 6) If a pattern exists at this node, the engine reports the
pattern ID and goes to Step 7. Otherwise, it shifts the
pattern pointer right and back to Step 1 to repeatedly
examine the next piece of text.

Step 7) The pattern pointer shifts right several characters by
the skip value. If the node has a jump node, the en-
gine updates its state using this jump node and fixes
its search window by the suffix offset. The engine
then returns to Step 1. Otherwise, the engine fin-
ishes the verification and hands control back to the
filtering engine.

Fig. 12 shows an example of exact matching without the trie-
skip mechanism. After the filtering engine launches an alert, the
exact-matching engine gets a slice of the input text “ther” and
hashes this text to generate the root address. The engine then
reads the root node from memory, compares it with the text and
successfully matches the string at step 1. The exact-matching
engine continues to compare the child node “eina”, indicated by
the child pointer of the root node at step 2, but it mismatches its
child node. However, the child node “eina” has a sibling node;
thus, it keeps comparing its sibling node at step 3. The engine
then mismatches the node “rule” with the text “seto” at step 4.
The exact-matching engine then returns control to the filtering
engine to find the next candidate position. Finally, the pattern-
matching matches pattern 3 at the tail of the text.

Observing the matching flow of the exact-matching engine in
Fig. 12, we notice that the filtering engine can only shift one
character right to the next candidate position after the exact-
matching engine mismatches. This method may be vulnerable

848 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

Fig. 13. Skip value of skip mechanism.

to algorithmic attacks. The concept of a failure state, an ob-
vious solution to this problem, could not be implemented di-
rectly on the compact trie. Just like the node “rule” in Fig. 12,
the exact-matching engine cannot be sure where to jump when
the input string is not “rule.” The engine cannot enter its failure
state immediately when a mismatch occurs because the compact
trie does not contain failure states for all possible input strings.
However, the engine can still jump to its failure state based on
its previously matched nodes: “ther” and “eisa”. The following
section describes cases for the failure state and how we imple-
ment it in the compact trie.

C. Trie-Skip Mechanism for Algorithmic Attack Avoidance

There are two cases that trie-skip mechanism can remove re-
dundant comparison. The first case, shown in Fig. 13, has two
wanted patterns in its database. Pattern 2 does not exist in any
part of pattern 1. When the exact-matching engine mismatches
pattern 1, the filtering engine should restart to find the next can-
didate from the point where the exact-matching engine mis-
matched because the string (nodes 1 and 2) that has already been
compared cannot contain another pattern. To implement this
concept, our trie node contains a precalculated skip value that
lets the filtering engine find the next candidate position by skip-
ping after a mismatch occurs. In this case, the exact-matching
engine can skip eight characters to search for the next candidate
after a mismatch.

The second case contains two wanted patterns such that one
is a prefix of the other. In this case, the exact-matching engine
does not go back to the filtering engine after a mismatch occurs.
Instead, the engine launches another exact match because the
mismatched point might contain another pattern. Take Fig. 14
as an example. First, the filtering engine finds a suspicious posi-
tion and launches an exact match, but the exact-matching engine
finds a fault alert for pattern 1 after mismatching at node 4. In
the traditional approach, the exact-matching engine triggers the
filtering engine to find the next candidate position. However, the
string from node 1 to 3 contains the prefix of pattern 2 in its tail.
Therefore, exact matching would begin again at position 9 after
the exact-matching engine backs out to the filtering engine. Ac-
cording to the failure state, however, the exact-matching engine
can continue to search for pattern 2 after mismatching pattern
1. To implement this concept, we propose a trie-skip mecha-
nism. Each state in our mechanism has only a single failure state

Fig. 14. Jump node of skip mechanism.

pointing to the most suitable node rather than unrolling all pos-
sible failure states. Therefore, our method provides a failure-
state mechanism while preserving space efficiency.

The trie-skip mechanism is implemented by four major fields
(shown in Fig. 14) for each trie node. The skip value is eight,
meaning that the closest candidate pattern is behind the cur-
rent candidate by eight characters. However, because the exact-
matching engine does not always start from the beginning of
a pattern, the jump node field indicates the first node that the
exact-matching engine should compare for the new candidate
pattern after a mismatch occurs. The exact-matching engine can
continue to compare from the node “ernl” of pattern 2 because
the node “patt” of pattern 2 has already been checked. The suffix
offset fixes the search window and notifies the exact-matching
engine, which fetches characters behind the new pattern pointer
with four characters. The jump-enable bit and jump node are
used to implement this jumping idea.

V. EXPERIMENTS

We assume that the trie table is stored in DDR memory. The
latency for a random access, comprising row access (RAS),
column access (CAS) and precharge time, is typically from 25
to 40 ns [23]. We take 40 ns as our worst-case memory gap.
Our goal is to provide a pattern matching processor with per-
formance better than 1 Gb/s using memory with 40 ns access
time for the 30 000 ClamAV virus codes. The input text file is
an 8.7 MB file merged from two Windows EXE files, a PDF
file, a JPEG file, a WMA file, a MP3 file, a Word DOC file,
and a randomly generated file. To evaluate our proposed archi-
tecture, we first analyze the filtering rates of the Bloom filter,
Wu-Manber algorithm, and our proposed shift-signature table
to determine the minimum on-chip memory required to obtain
this performance. We then assess their average performance on
different numbers of patterns using this memory size. The last
experiment demonstrates their performance for two types of al-
gorithmic attacks. Based on the results of the chip implemented
by the TSMC.13- m 1P8M process, we assume pattern proces-
sors in the following experiments operate at a clock speed of
534 MHz.

A. Analysis of Shift Rate

Because the ClamAV pattern set only has about 30 000 ex-
amples and does not have many patterns of sufficient length for

CHENG et al.: SCALABLE HIGH-PERFORMANCE VIRUS DETECTION PROCESSOR 849

Fig. 15. Analysis of shift rate for random patterns. (a) Bloom filter;
(b) Wu-Manber; (c) shift-signature Table (L1); (d) shift-signature Table
������ � �� � �	
.

the Wu-Manber algorithm, we use a random pattern set in this
experiment. The -axis of Fig. 15 is the number of patterns that
we used. The -axis is the average number of characters that
were shifted for each check during the run. Fig. 15(a) indicates
that the shift rate of the Bloom filter algorithm is very stable. Its
average shift value is less than 1 character because the Bloom
filter algorithm filters texts character by character.

The results of the Wu-Manber algorithm with different table
sizes, 16 kB bits , 24 kB bits , 32 kB

bits , 40 kB bits , and 48 kB bits , are
shown in Fig. 15(b). Ideally, they would be able to shift up
to 3, 7, 15, 31, and 63 characters, respectively, for each ex-
amination, but their average shift values decrease dramatically
with the number of supplied patterns. When there are more than
30 000 patterns, their average shift values are almost the same.
Bad-character collision limits the maximum shift value actually
recorded in the shift table. Therefore, increasing the table size
does not benefit the average shift value for a large pattern set.
However, the average shift value remains higher than the Bloom
filter.

Our proposed shift-signature table, shown in
Fig. 15(c) and (d), also has this feature. Fig. 15(c) only
uses the shift concept, but Fig. 15(d) uses both the shift concept
and signature concept. Notably, the average shift value for 16
kB is lower than that in the 16-kB table of the Wu-Manber
algorithm. The field width for the shift value in our proposed
method is 1 bit shorter than that in the Wu-Manber algorithm,
and therefore, the ideal maximum shift value is half that of
the Wu-Mamber algorithm. The maximum shift values are
1, 3, 7, 15, and 31 characters for table sizes of 16, 24, 32,
40, and 48 kB, respectively. Otherwise, most of their average
shifted characters are similar to the Wu-Mamber algorithm.
We concentrate on their performance for 30 000 patterns in the
following experiment.

Fig. 16. On-chip memory requirement for 30 000 random rules. (a) Bloom
filter; (b) Wu-Manber; (c) shift-signature Table.

B. Requirements for On-Chip Memory

The experiment demonstrates why the average shift of our
proposed method is better than that in the Wu-Manber algorithm
and determines the table size required for good performance on
the ClamAV pattern set. Fig. 16(a) indicates that the Bloom filter
only requires a 16-kB table to reach 1-Gb/s scanning speed with
ideal memory. Performance improves monotonically with table
size, and performance degrades when the latency of external
memory increases.

The performance of the Wu-Manber algorithm shown in
Fig. 16(b) does not increase with table size but rather remains
almost unchanged. The experiment indicates that only 1.3 to
1.7 characters can be shifted for each check during the run.
However, the filtering engine based on the Wu-Manber algo-
rithm still has fewer checks (FE events) than the bloom filter
because of its shifting feature. Conversely, the Wu-Manber
launches more exact-matching events (EME events) than the
Bloom filter because of the collision of bad characters. Finally,
the performance of the Wu-Manber algorithm is worse than
that of the Bloom filter because of the long access time of the
external memory.

At the same table size, Fig. 16(c) shows that most cases
perform better with our method than with the Bloom filter or
Wu-Manber algorithm, with the exception of the 16-kB table.
The 16-kB table is a 2-bit wide table, where one bit is the S-flag
and the other is a shift value. In this case, it can only shift a
maximum of one character, and therefore, its effect is roughly
the same as an 8-kB Bloom filter but with degraded perfor-
mance. However, when the table size is increased, the filtering
engine is given the opportunity to shift multiple characters. The
experimental results show that the re-encoded shift-signature
table has almost the same average run-time shift value and filter
rate (L1F) as the Wu-Manber algorithm. Although more SE
alarms in Fig. 16(c) are caused by the first level in our method
than the EME alarms in Fig. 16(b) caused by the Wu-Manber
algorithm, the signature-checking mechanism filters out most
alarms. As a result, the shift-signature table generates fewer
exact-matching events than the others. In addition, it also pro-
duces fewer filtering events than the Bloom filter. Therefore,
its performance is better than that of the other methods. Our
goal is to produce a pattern matching processor that performs
at a rate better than 1 Gb/s using external memory with 40 ns

850 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

Fig. 17. Performance and load distribution for different filtering engines.
(a) Bloom filter; (b) Wu-Manber; (c) shift-signature Table.

average access time. Therefore, we chose a 32-kB table size for
the subsequent experiments.

C. Average Performance Analysis

In this experiment, we scan the previous test file with dif-
ferent filtering engines to measure the effect of the memory gap
on performance. All of the engines use the same exact-match en-
gine on the back-end. The -axis of Fig. 17 gives the number of
ClamAV virus signatures, and the -axis is the latency of each
memory access. We compared Bloom filters, shift tables, and
our shift-signature table, all implemented with a 32-kB on-chip
memory. Fig. 17 shows that the performance of Bloom filters
is not strongly related to the pattern count or the memory gap.
Even the best performance is only 2.14 Gb/s at 534 MHz. In
contrast, the ideal performance of the shift table reaches 32.03
Gb/s, but its performance heavily depends on memory latency
and pattern count. However, the performance of the shift table is
better than that of the Bloom filter in the ideal cases (3.20 Gb/s
versus 1.48 Gb/s) for 30 000 patterns. Because the width of a
shift value of our proposed shift-signature table is 1 bit shorter
than in the Wu-Manber algorithm, the maximum performance
of our proposed algorithm is half that of the Wu-Manber algo-
rithm, but this special case only occurs for a few patterns. For
the large-scale pattern set, our proposed shift-signature table im-
proves the performance of the Wu-Manber algorithm by 54%,
from 0.91 to 1.40 Gb/s, when using a second-level filter.

D. Performance Analysis Under Algorithmic Attacks

Because the size of the pattern sets increases and is already
greater than the capacity of on-chip memory, most designs store
their pattern sets in off-chip memory. Therefore, the memory
gap becomes a bottleneck. Malicious attackers usually exploit
this weakness to attack systems. For this reason, the following
experiments address two types of attacks mentioned in Section I:
1) deep-search attacks and 2) sub-pattern attacks. Because per-
formance is dramatically affected by attack strings, we use dif-
ferent ratios to test this design. The -axis of Fig. 18 is the
percentage of attack strings in input data, and the -axis is the
latency of memory. The following experiments prove that al-
though the heuristic design has a worst-case problem, it also
achieves acceptable performance when enhanced by our pro-
posed methods.

1) Deep Search Attacks: Simply, the deep search attack takes
the rule sets as its attack strings. Each attack string comprises
several complete or partial rules that trigger numerous searches.
These searches make the exact-matching engine traverse into
the depths of the trie tree, and the exact-matching engine has

Fig. 18. Algorithmic attacks. Case 1: deep-search attacks. (a) Without opti-
mization; (b) skip; (c) skip + prefetch; (d) skip + prefetch + cache.

to begin a new search from the next character after finishing the
previous search if it does not skip. Thus, the performance shown
in Fig. 18(a) drops off dramatically with the proportion of attack
strings that result from a large number of memory accesses.

However, our proposed skip method removes these unneces-
sary memory accesses using skipping rules. Fig. 18(b) shows
that the exact-matching engine triggered the most skip events
and reduced memory access by 40%, and the attack string is
entirely composed of the rule set because most rules do not
contain any prefixes of other rules. Thus, while finishing a
check, the exact-matching engine can skip its checked part to
find the next candidate without redundant checking. Notably,
the jump events, compared to skip events, do not increase
massively. In this case, most rules do not contain any other
rules, and therefore, the concept of a failure state does not work
well (although it is not suitable for this case, we will describe
how it works for the other case later). However, the prefetch
mechanism further raises the performance from 0.54 to 0.71
Gb/s, even when the memory gap is very large, 40 ns. Because
the access time of DDR memory only requires a column access
(CAS) time for each non-first continuous address access in burst
mode, simply relocating those trie nodes that correspond to the
same rule into neighboring addresses improves performance.
Although this method does not actually reduce the number of
memory accesses, it effectively overlaps memory access time
and computing time in prefetching.

2) Sub-Pattern Attacks: Although sub-pattern attacks are the
worst case in pattern matching and can be avoided through the
selection of rule sets, we experimented with this type of attack to
discuss its effect on performance. We also took ClamAV as our
benchmark in this experiment, but we added a new rule “aaa ”
whose length is 66 characters, the same as the average length of

CHENG et al.: SCALABLE HIGH-PERFORMANCE VIRUS DETECTION PROCESSOR 851

TABLE I
CASE 1: OFF-CHIP MEMORY ACCESS OF DEEP SEARCH ATTACKS

Fig. 19. Algorithmic attacks. Case 2: sub-pattern attacks. (a) Without optimiza-
tion; (b) skip; (c) skip + prefetch; (d) skip + prefetch + cache.

ClamAV virus codes, which comprises repetitions of the same
character. We used this rule as the attack string “aaa ” to eval-
uate performance. Because this rule “aaa ” appears at the head
of the attack string “aaa ” and can also appear in any position
of the attack string, the pattern matching processor must launch
an exact match for each position of the attack string, which re-
quires a larger number of memory accesses. The performance of
pattern matching processors without any optimization, shown in
Fig. 19(a), dramatically drops off from 3.82 Gb/s to close to 0
Gb/s because of the larger number of memory accesses.

Table II (b) shows that our skip mechanism eliminates 95% of
memory accesses when the attack string consists entirely of the
“aaa ” string due to its failure state concept. With an increase
in the proportion of attacks, the numbers of skip events and jump
events also increases, as shown in Table II (b). In the extreme
case, the attack string occurs in numbers equivalent to the length
of the input string (the total size of the input string is 8733 kB).
This means that the skip mechanism and jump mechanism occur
in every position of the attack string. Notably, the worst perfor-
mance does not occur here but rather when dealing with a string

that contains about 40% of the attack string. The blend of attack
string and normal string keeps the skip mechanism from skip-
ping the examined part. In addition, although the skip mecha-
nism can remove 95% of memory access and improve the ideal
performance from 0.07 to 1.33 Gb/s, the number of memory ac-
cesses is still not small enough to avoid terrible performance
when considering the memory gap. Furthermore, the prefetch
mechanism does not work well in this case because the number
of memory accesses caused by algorithmic attacks is consider-
ably more than the prefetch saves. However, this case is highly
suitable for cache mechanisms because only a few trie nodes are
referenced. The cache lets the pattern matching processor pre-
serve reasonable performance with high-latency memory.

VI. IMPLEMENTATION

We integrate this design on an FPGA development board with
a general personal computer to replace the pattern-matching
kernel of Snort/ClamAV. Thus, we not only prove the feasi-
bility of this design, but we also discuss some integration issues.
The Altera EP1S60-5 FPGA board we chose is plugged into the
PCI interface at the south bridge and has private DDR RAM, as
shown in Fig. 20. This system runs on Mandrake Linux 8.1, and
we use WinDriver to write the required PCI driver. The ISE syn-
thesis tool reports that this design can run maximally at 148.59
MHz, but because of the limits of the PCI interface, this design
only runs at 66 MHz on the FPGA board. We implement two
modes: 1) application mode and 2) kernel mode.

For demonstration purposes, the application mode executes
the target application in the host in an x86-linux environment
and replaces pattern-matching kernel with our PME. In theory,
the system can provide a 477-Mb/s scan rate, but its perfor-
mance is reduced substantially when we replace the Snort’s
kernel with this design to scan real connections at run time.
This mode is not effective because of significant data move-
ment and driver overhead. Thus, both the FPGA board and net-
work adapter are on the south bridge while the main memory
is on the north bridge. When a packet comes in, it triggers a
processor to switch into the system mode to execute the driver
program of the network adapter and to set up a DMA to move
data from the south side to the north side. However, after the pro-
cessor completes the network protocol, it moves the data from
the north bridge to the south bridge again for virus scanning.
Redundant data movement and frequent context switches hinder
performance. We suggest that PME should be implemented at
the north bridge or be a coprocessor. Because of the limitations
of PC architecture, we build this mode as a prototype.

852 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

TABLE II
CASE 2: OFF-CHIP MEMORY ACCESS OF DEEP-SEARCH ATTACKS

Fig. 20. Integrated FPGA experiment environment.

Fig. 21. Chip implementation.

The kernel mode is used to model the scenario with off-chip
memory and investigate the pure performance of the pattern
matching processor. We modified the testing flow. First, we
download a test file and pattern set (32 960 ClamAV rules) onto
the local DDR memory on the FPGA. The PME then scans the
file and accesses the pattern set directly from the FPGA’s local
memory. Therefore, there is no redundant data movement or
context switch overhead. The performance is improved to ap-
proximately 477 Mb/s. This result shows that PME is helpful
and suitable for network security systems.

Additionally, we also implemented the PME using a TSMC
13- m process. Fig. 21 summarizes its features and shows the
die photo. Unlike the design in the previous chapter, this chip
uses a specialized BiTCAM [25] to implement the shift-signa-
ture table to further reduce the size of on-chip memory. The
detailed algorithm for reducing the requirement of on-chip
memory is not discussed in this paper. Although both ver-
sions are slightly different, they use the same control flow to

match a string; therefore, both versions have nearly the same
complexity.

According to the measured result, the controller of the PME
maximally reaches 534 MHz. This version performs at 3.86
Gb/s for 32 960 ClamAV virus codes by 32-kB SRAM. If the
shift table is implemented by BiTCAMs, then the maximum
working frequency falls to 380 MHz due to the BiTCAM’s lim-
itations, but it still performs better than 3 Gb/s. By observing the
chip layout, we find that most of the area of this chip (> 90%)
is used for the shift table. Because using on-chip memory to
store an entire virus database is very costly, a two-layer design
is more reasonable for virus detection requirements. The key
design issues of such approaches are: 1) reducing the chip area;
2) increasing the filter rate of the filter engine; and 3) reducing
memory latency or access counts. This design attempts a case-
study approach for algorithm improvement, chip implementa-
tion, and systems integration to explore the problems faced by
the PME.

VII. COMPARISON

We have collected previous designs and have cate-
gorized them into two types: automata-based and fil-
tering/heuristic-based architectures, as shown in Table III.
Most automata-based approaches are based on the algorithm
[8] proposed by Aho and Corasick in 1975. Although the orig-
inal algorithm guarantees linear performance at the algorithmic
level, its state table grows dramatically with its pattern set.
Many designs [7] based on the AC algorithm try to reduce
memory requirements. Lin Tan proposed a successful design
by splitting large automaton matching into several lightweight
machines at the bit level. However, a large number of read ports
makes this design implementable only with on-chip memory
because each lightweight machine requires a dedicated memory
port. Piti Piyachon and Yan Luo extended this concept to the
Intel IXP2855 network processor, and they minimized the
requirements of on-chip memory. In 2007, an IBM team im-
plemented an optimized AC algorithm [7] on a cell processor
for large pattern sets, but the large pattern sets and irregular
access patterns caused the memory gap to become the bottle-
neck. Therefore, they provided a DMA-based communication
mechanism. In summary, the AC algorithm guarantees linear
performance at the algorithmic level, but in a real implementa-
tion, the performance is affected by memory pressure caused
by the irregular accessing of its large state table.

CHENG et al.: SCALABLE HIGH-PERFORMANCE VIRUS DETECTION PROCESSOR 853

TABLE III
COMPARISONS WITH PREVIOUS WORK

Filtering-based architectures [4], [19], [21] do not guarantee
linear performance, but the front-end engine provides an effi-
cient filtering rate using a filtering table. The size of the filtering
table is generally between 10 and 100 kB and can therefore be
implemented by internal memory. Localizing computation on
the chip makes the average performance of filtering-based ar-
chitectures attractive. Even these architectures have a worst-case
scenario, but some solutions can address this scenario and still
provide reasonable performance. In addition, some front-ends,
such as “shift table,” operate on multiple characters, which fur-
ther improves performance. As a result, filtering-based archi-
tectures have the potential to provide higher performance than
automata-based architectures. Furthermore, the back-end of a
filtering-based architecture is generally based on a compact trie
structure, which is more memory-efficient than automata-based
architectures. According to our design, this work only requires
8 MB of external memory for 30 000 patterns (2 MB pattern
bytes) rather than 64 MB for 20 000 patterns (151 kB pattern
bytes). Under the same conditions, this design provides a 9.06
Gb/s scan rate compared to previous designs [4], [7], [9], [17],
[19], [21], [23] when given 3000 pattern, due to numerous opti-
mizations at the algorithm level. Even for 32 960 given patterns,
this design still performs at 3.86 Gb/s. In brief, filtering-based
architectures are more suitable for embedded security systems
in both performance and cost.

VIII. CONCLUSION

Many previous designs have claimed to provide high per-
formance, but the memory gap created by using external
memory decreases performance because of the increasing size
of virus databases. Furthermore, limited resources restrict the
practicality of these algorithms for embedded network security
systems. Two-phase heuristic algorithms are a solution with a
tradeoff between performance and cost due to an efficient filter
table existing in internal memory; however, their performance
is easily threatened by malicious attacks. This work analyzes
two scenarios of malicious attacks and provides two methods

for keeping performance within a reasonable range. First, we
re-encoded the shift table to make it provide a bad-character
heuristic feature and high filter rates for large pattern sets at the
same time. Second, the proposed skip mechanism cushions the
blow to performance under algorithmic attacks.

The operating frequency of this design, when implemented
by a TSMC .13- m 1P8M process, is above 534 MHz. Its kernel
provides 3.86-Gb/s average performance and 1.31-Gb/s per-
formance under attacks by 30 000 ClamAV virus codes. When
considering the memory gap (40 ns per memory access), this
design still has 1.43-Gb/s average performance with 0.57-Gb/s
performance under algorithmic attacks. The proposed re-en-
coding stage removes 95.42% of the exact-matching events in
the front-end for normal cases, and the skip mechanism elimi-
nates 95.8% of the external memory accesses for attack cases
with just 32 kB internal memory and 8 MB external memory.

REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, pp. 333–340, 1975.

[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, pp. 762–772, 1977.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, 1970.

[4] S. Dharmapurikar, P. Krishnamurthy, and T. S. Sproull, “Deep packet
inspection using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp.
52–61, Jan. 2004.

[5] D. P. Scarpazza, O. Villa, and F. Petrini, “Peak-performance DFA-
based string matching on the Cell processor,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process., 2007, pp. 1–8.

[6] O. Villa, D. P. Scarpazza, and F. Petrini, “Accelerating real-time string
searching with multicore processors,” Computer, vol. 41, pp. 42–50,
2008.

[7] D. P. Scarpazza, O. Villa, and F. Petrini, “High-speed string searching
against large dictionaries on the Cell/B.E. processor,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., 2008, pp. 1–8.

[8] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. Chen, “A fast string-
matching algorithm for network processor-based intrusion detection
system,” ACM Trans. Embed. Comput. Syst., vol. 3, pp. 614–633, 2004.

[9] L. Tan and T. Sherwood, “A high throughput string matching architec-
ture for intrusion detection and prevention,” in Proc. 32nd Annu. Int.
Symp. Comput. Arch., 2005, pp. 112–122.

[10] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-
matching using TCAM,” in Proc. 12th IEEE Int. Conf. Netw. Protocols,
2004, pp. 174–183.

854 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

[11] G. Memik, S. O. Memik, and W. H. Mangione-Smith, “Design and
analysis of a layer seven network processor accelerator using reconfig-
urable logic,” in Proc. 10th Annu. IEEE Symp. Field-Program. Custom
Comput. Mach., 2002, pp. 131–140.

[12] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Specialized hard-
ware for deep network packet filtering,” in Proc. Reconfig. Comput.
Going Mainstream, 12th Int. Conf. Field-Program. Logic Appl., 2002,
pp. 452–461.

[13] Z. K. Baker and V. K. Prasanna, “High-throughput linked-pattern
matching for intrusion detection systems,” presented at the ACM
Symp. Arch. for Netw. Commun. Syst., Princeton, NJ, 2005.

[14] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for high
speed networks,” in Proc. 12th Annu. IEEE Symp. Field-Program.
Custom Comput. Mach., 2004, pp. 249–257.

[15] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” in Proc. 9th Annu. IEEE Symp. Field-Program. Custom
Comput. Mach, 2001, pp. 227–238.

[16] S. Yi, B.-K. Kim, J. Oh, J. Jang, G. Kesidis, and C. R. Das, “Memory-
efficient content filtering hardware for high-speed intrusion detection
systems,” presented at the ACM Symp. Appl. Comput., Seoul, Korea,
2007.

[17] P. Piyachon and Y. Luo, “Efficient memory utilization on network pro-
cessors for deep packet inspection,” presented at the ACM/IEEE Symp.
Arch. for Netw. Commun. Syst., San Jose, CA, 2006.

[18] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Univ. Arizona, Tucson, Report TR-94-17, 1994.

[19] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A recon-
figurable perfect-hashing scheme for packet inspection,” in Proc. 15th
Int. Conf. Field Program. Logic Appl., 2005, pp. 644–647.

[20] Y. H. Cho and W. H. Mangione-Smith, “Deep packet filter with dedi-
cated logic and read only memories,” in Proc. 12th Annu. IEEE Symp.
Field-Program. Custom Comput. Mach., 2004, pp. 125–134.

[21] Y. H. Cho and W. H. Mangione-Smith, “A pattern matching copro-
cessor for network security,” presented at the 42nd Annu. Des. Autom.
Conf., Anaheim, CA, 2005.

[22] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and
high-speed NIDS pattern matching,” in Proc. 12th Annu. IEEE Symp.
Field-Program. Custom Comput. Mach., 2004, pp. 258–267.

[23] Micron Technology, Inc., Boise, ID, “256 MB DDR2 SDRAM
datasheet,” 2003.

[24] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, pp. 490–499, 1960.
[25] C.-C. Wang, C.-J. Cheng, T.-F. Chen, and J.-S. Wang, “An adaptively

dividable dual-port BiTCAM for virus-detection processors in mobile
devices,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1571–1581,
May 2009.

Chieh-Jen Cheng (S’06) was born in Taiwan, in
1980. He received the B.S. and M.S. degrees in
computer science from the National Chung Cheng
University, Taiwan, in 2003 and 2006. He is currently
pursuing the Ph.D. degree from the Institute of Com-
puter Science, National Chung Cheng University,
Taiwan.

His research interest lies in microprocessor archi-
tecture, system simulation, and memory hierarchy.

Chao-Ching Wang (S’06–M’08) was born in
Taiwan, in 1981. He received the B.S. and Ph.D.
degrees in electrical engineering from the National
Chung Cheng University, Taiwan, in 2003 and 2008,
respectively.

Since then, he has been with Himax Media Solu-
tions, Inc., Tainan Tree Valley Park, Taiwan, where
he is currently a Senior Engineer. His research inter-
ests include high speed, low-leakage, and low-power
memory designs, high-performance digital integrated
circuit designs.

Wei-Chun Ku (S’06) was born in Miaoli, Taiwan, in
1981. He received the B.S. degree in Department of
Computer Science and Information Engineering from
Tamkang University, Taipei, Taiwan, in 2004, respec-
tively. He is currently pursuing the Ph.D. degree from
the Department of Computer Science and Informa-
tion Engineering, National Chung Cheng University,
Chia-Yi, Taiwan.

His research interests include embedded system
design, computer architecture, and SOC design.

Tien-Fu Chen (S’90–M’93) received the B.S. degree
in computer science from National Taiwan Univer-
sity, Taiwan, in 1983, and the M.S. degree and Ph.D.
degrees in computer science and engineering from
the University of Washington, Seattle, in 1991 and
1993, respectively

He joined Wang Computer Ltd., Taiwan, as a
System Software Engineer for three years. He is cur-
rently a Professor with the Department of Computer
Science and Information Engineering, National
Chiao Tung University, Hsinchu, Taiwan. In the past,

he had published several widely-cited papers on dynamic hardware prefetching
algorithms and designs. In recent years, he has made contributions to processor
design and SOC design methodology. His recent research results include
multithreading/multicore media processors, on-chip networks, and low-power
architecture techniques as well as related software support tools and SoC design
environment. His current research interests include computer architectures,
system-on-chip design, design automation, and embedded software systems.

Jinn-Shyan Wang (S’85–M’88) was born in
Taiwan, in 1959. He received the B.S. degree in elec-
trical engineering from the National Cheng-Kung
University, Tainan, Taiwan, in 1982 and the M.S.
and Ph.D. degrees from the Institute of Electronics,
National Chiao-Tung University, Hsinchu, Taiwan,
in 1984 and 1988, respectively.

He was with Industrial Technology Research In-
stitute (ITRI) from 1988–1995, engaged in ASIC cir-
cuit and system design, and became the Manager of
the Department of VLSI Design. He joined the De-

partment of Electrical Engineering, National Chung-Cheng University, Chia-Yi,
Taiwan, in 1995, where he is currently a full Professor. His research interests in-
clude low-power and high-speed digital integrated circuits and systems, analog
integrated circuits, IP and SOC design, and CMOS image sensors. He has pub-
lished over 20 journal papers and 40 conference papers and holds over 20 patents
on VLSI circuits and architectures.

