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Abstract 

Suppose G = (V, E) is a graph in which every vertex u E V is associated with a cost c(u). This 
paper studies the weighted independent perfect domination problem on G, i.e., the problem of 
finding a subset D of V such that every vertex in V is equal or adjacent to exactly one vertex in 
D and C{c(u): u ED} is minimum. We give an O(( V) IEI) algorithm for the problem on 
cocomparability graphs. The algorithm can be implemented to run in O(l V 12.37) time. With 
some modifications, the algorithm yields an 0( ( V 1 + ( E I) algorithm on interval graphs, which 
are special cocomparability graphs. 

1. Introduction 

A dominating set of a graph G = (I/, E) is a subset D of V such that every vertex not 
in D is adjacent to some vertex in D. The concept of domination in graph theory arises 

naturally from the facility location problem in operations research. Depending on the 

different requirements of various location problems, domination has many variants, 

e.g., independent domination, connected domination, total domination, edge domina- 

tion, k-domination, and perfect domination. 

A perfect dominating set of a graph G = (V, E) is a subset D of V such that 
every vertex not in D is adjacent to exactly one vertex in D. The perfect domination 

problem is to find a minimum-sized perfect dominating set. Suppose that every 
vertex u E V is associated with a cost c(v) and every edge e E E has a cost c(e). The 
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weighted perfect domination problem is to find a perfect dominating set D such that its 
total cost 

E(D) = c {c(u): 0 E D} + c {c(u, u): ~$0, u ED, and (u, u) E E} 

is minimum. Note that the perfect domination problem is just the weighted 
perfect domination problem with c(u) = 1 for each vertex u and c(e) = 0 for each edge 
e. Yen and Lee [25] proved that the perfect domination problem is NP-complete for 
bipartite graphs and chordal graphs. They also give linear time algorithms for 
the weighted perfect domination problem on trees [25] and series-parallel 
graphs [26]. 

Yen [24] and Yen and Lee [27] also considered the following variants of perfect 
domination. A perfect dominating set D is independent, connected, or total if the 
subgraph G[D] induced by D has no edge, is connected, or has no isolated vertex, 
respectively. They gave NP-complete results of these variants in bipartite graphs and 
chordal graphs, except for connected domination in chordal graphs. They also gave 
linear time algorithms for these variants in trees, block graphs, and series-parallel 
graphs. On the other hand, Chang and Liu [S] gave a linear time algorithm for the 
weighted connected perfect domination problem in chordal graphs by using clique- 
tree structures of chordal graphs. They [9] also use the same technic to give linear 
time algorithms for the weighted perfect domination problem and its three variants in 
interval graphs. Independent perfect domination was called efJicient domination by 
Bange et al. [2], who proved that the efficient domination problem is NP-complete for 
general graphs and gave a linear time algorithm for the problem on trees. If we 
consider the application of perfect domination to coding theory, Biggs [6] studied 
perfect d-codes. A perfect d-code of a graph G = (I/, E) is a vertex set C such that every 
vertex u E I/ is within distance d of exactly one vertex in D. In conjunction with the 
study of the interconnection networks used in parallel computers, Livingston and 
Stout [17] studied perfect d-dominating sets, which are precisely the perfect d-codes. 
The concept of independent perfect domination in this paper is the same concept as 
their perfect l-domination. 

The main results of this paper are an O(l VJ IEI) algorithm for the weighted perfect 
domination problem on a cocomparability graph G = (V, E) and an O() I/( + 1 El) 

time algorithm for the same problem on an interval graph. The algorithm for 
cocomparability graphs can also be implemented to run in 0( 1 V12.37) time. Note that 
cocomparability graphs include interval graphs and permutation graphs. Other 
variants of domination have been extensively studied in interval graphs, permutation 
graphs, and cocomparability graphs. 

For any independent perfect domination set D, c(D) = E(D) if C(u) = c(u) + 

C {c(u, u): (n, u) E E} f or every u E I/ and c(e) = 0 for every e E E. So, for the 
solution to the weighted independent perfect domination in this paper, without 
loss of generality, we may assume that c(e) = 0 for all E E. In this case, c(D) = 
1 {c(u): 2, E D}. 
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2. Cocomparability graphs 

In this section we give an 0( IV1 IEI) algorithm for the weighted independent 
domination problem on a cocomparability graph G = (V, E) in which each vertex u is 
associated with a cost c(u). Domination and its three variants on cocomparability 
graphs have been studied by Kratsch and Stewart [16] and Arvind and Pandu 
Rangan [ 11. 

A comparability graph is a graph G = (V, E) whose vertex set has a transitive 
ordering, i.e., an ordering of V into 1,2, . . . ,n such that 

i <j -C k, (i,j) E E, and (j,k) E E imply (i,k) EE. (1) 

There is an 0( ( V 1’) algorithm [22] to test if a graph is a comparability graph. In the 
case of a positive answer, the algorithm produces a transitive ordering. A cocompara- 

bility graph is the complement of a comparability graph, or equivalently, if its vertex 
set has a cocompurubility ordering, which is an ordering of T/ into 1,2, . . . , n such that 

i<j<kand(i,k)EEimply(i,j)EEor(j,k)EE. (2) 

In this section we assume that G = (T/, E) is a cocomparability graph with a given 
cocomparability ordering. For technical reasons, we add two isolated vertices 0 and 
n + 1 with c(0) = c(n + 1) = 0 to G to obtain a new cocomparability graph, which for 
simplicity we also call G with a cocomparability ordering 0, 1,2, . . . , II, n + 1. Note 
that D is an independent perfect dominating set of the original graph if and only if 
D u (0, n + l} is an independent perfect dominating set of the new graph. For conveni- 
ence, we need the following notation, where u is a vertex: 

N(v) = (U E T/: (u, V) E E), NV1 = (4 UN(V), high(v) = max N [v] , 

low(V) = min N[v], N+[v] = {UE N[v]: u > v}, 

d+(V) = IN+ [VII, N-[v]={~~N[v]:u~u}, d-(v) = IN-[VII. 

Theoreml. D=(O~v~<v~<v~< ... <v,<v,+I~n+l}isunindependentper- 

feet dominating set of cocompurubility graph G if and only if the following three 

conditions hold for all 1 < i < n + 1. 
(1) high(Vi_ 1) < Vi. 
(2) Ui-1 < lOW(Vi). 
(3) {X E V: Vi-1 < x < vi} is the disjoint union of N+ [vi- J and N- [vi]. 

Proof. Suppose D is an independent perfect dominating set of G. 
(1) Suppose high(Vi- I) > Vi. Note that Vi # high(Vi_ I), since D is independent. Then 

Vi-1 < Vi < high(Vi_1). By (2), either (Vi-l,Vi) E E or (Vi, high(Vi_ 1)) E E. The former 
case contradicts the assumption that D is an independent set. The latter case contra- 
dicts the fact that a vertex not in D is adjacent to exactly one vertex in D. So 
high(Vi_ 1) < Vi. 
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(2) Suppose ~)i- 1 2 1OW (Vi). Note that low (vi) # Ui_ i, since D is independent. Then 
low(vi) < ai- 1 < Vi. By (2), either (loW(ri), ui- 1) E E or (vi- 1, Ui) E E. The former case 
contradicts the fact that a vertex not in D is adjacent to exactly one vertex in D. The 
latter case contradicts the assumption that D is an independent set. So Vi_ 1 < low (vi). 

(3) For any vertex x such that Vi- 1 < x < ui, we claim that x is adjacent to Vi_ 1 or 
Vi. By the definition of perfect domination, x is adjacent to exactly one Uj. Ifj > i, then 
x < Ui < Uj and (x, Uj) E E and (x, Ui)$E. By (2) (Vi, Vj) E E, which contradicts the 
assumption that D is an independent set. If j < i - 1, then vj < Ui-1 < x, and 
(Uj,X) E E and (Vi- 1, x)$ E. By (2), (Vi, Vi- 1) E E, a contradiction again. SO x is adjacent 
to Vi_ 1 or ui. This together with (1) and (2) implies (3). 

Conversely, suppose conditions (l)-(3) hold. For any vertex x not in D, assume 
ui_ 1 < x < ui. First, by (3) x is adjacent to exactly one of ui- 1 and vi. Suppose x is 
adjacent to some other rj with j - 1 2 i or j + 1 < i - 1. If j - 1 > i, then 
1OW (Uj) < X < Vi < Uj- 1, which contradicts (2). If j + 1 < i - 1, then high(uj) > 
x > Ui- 1 2 Vi+ 1, which contradicts (1). 0 

Theorem 1 can be rewritten in the following form, which is more useful in designing 
an efficient algorithm to solve the weighted independent perfect domination problem 
on cocomparability graphs. 

Theorem2. D={OruO<uI<uzc ... < u, < u, + 1 = n + 1) is an independent per- 
fect dominating set of a cocomparability graph G if and only if the following four 
conditions hold for all 1 < i < n + 1. 
(1) high(+1) = max({0,1,2, . . . , Vi> - N[Ui])* 

(2) Vi- 1 < 1OW (Ui) a 

(3) N[Ui-11 nN[Ui] = 8. 

(4) d+(ui-1) + d-(0{) = Vi - Vi-1 + 1, 

Working from Theorem 2, we can derive the following algorithm for finding 
a weighted independent dominating set of a cocomparability graph. 

Algorithm WIPD-CC. Find a weighted independent perfect dominating set of 
a cocomparability graph. 
Input. A cocomparability graph G = (I’, E) with a cocomparability ordering 
O,l, . ..) n,n + 1, in which each vertex u is associated with a weight C(U). 
Output. A minimum weighted independent perfect dominating set D of G. 
Method. 

1. cost(O) + 0; 
2. for u = 1 to n + 1 do 

3. cost(u) + co; 

4. h cmax({O,l, . . ..u> -N[u]); 
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5. for all u E N- [h] satisfying 
(Cl) high(u) = h, 
(C2) U < low(u), 

(C3) NCul nN[ul = 0, 
(C4) d+(u) + d-(v) = v - u + 1 do 

6. if (cost(u) + c(v) < cost(v)) 
7. then {cost(v) t cost(u) + c(v); previous(v) c u;} 

end do; 
end do; 

8. if cost (n + 1) = co then STOP since there is no feasible solution; 
9. D=+8; 

10. v t previous@ + 1); 
11. while(v # 0) do (D c Du{v}; v c previous(v);} 

Theorem 3. Algorithm WIPD-CC gives a minimum weighted independent perfect domi- 

nating set D of a cocomparability graph G = (V, E) in 0( 1 V( IEI) time. 

Proof. The correctness of Algorithm WIPD-CC follows from Theorem 2. 
Note that the functions high, low, df, and d- can be calculated in O() VI + IEI) 

time. Steps 2-7 of the algorithm take n + 1 iterations. To implement step 4 and (C3) of 
step 5 efficiently, we use an array mark [O. .n + 11, which is set to 0 initially. At 
iteration v we reset mark(x) to be v for all x E N [v]. A simple backward do loop for 
x from v down to 0 will find the first x with mark(x) < v in 0( IN [u] 1) time. This is the 
desired h. For condition (C3) of step 5, we only need to check if mark(x) < v for all 
x E N[u]. This takes O(lN[u]l) time. So the do loop from steps 5-7 takes O((E1) 
time. Altogether, steps 2-7 take 0( I VI I E I) time. Steps 8-10 clearly take 0( 1 I/ 1 + I E I) 

time. 0 

There is an alternative way to check condition (C3) of step 5, by using matrix 
multiplication. Consider the closed neighborhood matrix A = (a,,) of the graph G de- 
fined by au0 = 1 if and only if u E N [v]. Let AA = (b,,). Then N [u] AN [v] = 8 if and 
only if bij = 0. If we pre-calculate AA, then condition (C3) of step 5 can be checked in 
a constant time. Thus, the fastest known algorithm for matrix multiplication to date 
(see [lo]) gives us the following theorem. 

Theorem 4. Algorithm WIPD-CC can be implemented in O(l V12.37) time. 

3. Interval graphs 

An interval graph is a graph each of whose vertices can be associated with an 
interval in the real line so that two vertices are adjacent in the graph if and only if the 
corresponding intervals intersect. Interval graphs have many applications to the real 
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world (see [ 111). One of the most basic problems in the study of interval graphs is the 
problem of recognizing these graphs. Booth and Lueker [7] gave a linear time 
algorithm for recognizing an interval graph using PQ-trees. Korte and Mohring [15] 
simplified the operations on a PQ-tree. Simon [21], Hsu and Ma [13], and Hsu [12] 
designed new algorithms without using PQ-trees. 

Domination and its variants in interval graphs have been studied extensively [3-5, 
14, 18-20, 231. The following vertex ordering methodology is of particular interest 
from our point of view. 

Theorem 5 (Ramalingam and Pandu Rangan [20]). A graph G = (I/, E) is an interval 
graph if and only zfit has an interval ordering, i.e., its vertex set V can be ordered into 

Cl,29 ee.9 n] such that 

i<j<kand(i,k)EEimply(j,k)EE. (3) 

Note that an interval ordering is a cocomparability ordering. A vertix v is said to 
have a consecutive neighborhood if N[v] contains precisely all vertices form low(v) to 
high(v). The property (3) implies that N- [v] contains precisely all the vertices from 
low [v] to v. Therefore Theorem 1 for interval graphs can be rewritten as follows. 

Theorem 6. D = {vl < v2 < ..- < v,} is an independent perfect dominating set of an 
interval graph G tfand only if all vi have consecutive neighborhoods and V is the disjoint 
union of all N [vi] where 1 < i < r. 

Theorem 6 suggests the following algorithm for the weighted independent perfect 
domination problem on interval graphs. 

Algorithm WIPD-I. Find a minimum weighted independent perfect dominating set of 
an interval graph. 
Input. An interval graph G = (V, E) with an interval ordering 1,2, . . . , n, in which 
each vertex v is associated with a weight c(v). 
Output. A minimum weighted independent perfect dominating set D of G. 
Method. 

1. find the set C of all vertices having consecutive neighborhoods; 
2. cost(O) t 0; 
3. for v = 1 to n do 
4. cost(v) 4- 00; 
5. for all u E N- [v] n C with v = high(u) do 
6. if (cost (low(u) - 1) + c(u) < cost(v)) 
7. then {cost(v) c cost (low(u) - 1) + c(u); 

previous(v) t low(u) - 1; 
center(v) c u;} 

end do; 
end do; 
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8. if cost(n) = cc then STOP since there is no feasible solution; 
9. D to; 

10. u +n; 
11. while (IJ # 0) do (D c Du{center(u)); u c previous(v);} 

Theorem 7. Algorithm WIPD-I gives a minimum weighted independent perfect domina- 
ting set D of an interval graph G = (V, E) in 0( ( V( + IEI) time. 

Proof. The correctness of Algorithm WIPD-I follows from Theorem 6 and the fact 
that each cost(u) is precisely the minimum weighted sum Ci=,c(q), where 
ui c u2 < ... < aj are vertices having consecutive neighborhoods and { 1,2, . . . , v} is 
the disjoint union of their closed neighborhoods. The claim about the running time 
follows from the fact that each iteration v takes O(JN[v]l) time. 0 

We illustrate Algorithm WIPD-I by the following example. Consider the interval 
graph G of 10 vertices in Fig. 1. Assume that [1,2, . . . , lo] is an interval ordering of 
G in which each vertex i has a cost c(i) beside it. 

Algorithm WIPD-I first decides the set of all vertices having consecutive neighbor- 
hoods: C = { 1,2,5,6,7,8,9, lo}. And then compute all cost(v), previous(u), and 
center(u): 
cost(O) = 0; 
cost(l) = co; 
cast(2) = 3, previous(2) = 0, center(2) = 1; 
cast(3) = 1, previous(3) = 0, center(3) = 2; 
cast(4) = cc ; 
cast(5) = co; 

cast(6) = co ; 
cast(7) = 4, previous(7) = 2, center(7) = 5; 
cost(g) = 3, previous(g) = 3, center(g) = 7; 
cost (9) = cc ; 
cost(l0) = 6, previous(lO) = 8, center( 10) = 10. 

So, { 10,7,2} is a minimum weighted independent perfect dominating set with total 
cost 6. 

Fig. 1. An interval graph G of 10 vertices. 
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