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1. Introduction

In [4], the Lyapunov-like linear matrix equation
AHX þ XHA ¼ B; A;X 2 Cm�n ðm – nÞ
with (�)w = (�)T was considered using generalized inverses. Applications occur in Hamiltonian mechanics. At the end of [4], the
more general Sylvester-like equation
AHX þ XHC ¼ B; A; C;X 2 Cm�n ðm – nÞ
was proposed without solution. The equation (with w = T) was studied, again using generalized inverses, in [11,16]. However
in [16], the necessary and sufficient conditions for solvability may be too complicated for most applications. The formula for
X for the special case, assuming m = n, BT = B and the invertibility of A ± CT, may not be numerically stable or efficient (see
Appendix B for the main result). In [11], some necessary or sufficient conditions for solvability were derived. A (seemingly
wrong) formula for X in terms of generalized inverse was also proposed (see Section 2.2 for more details on the approach
taken in [11]). Consult also [5, Lemma 5.10] and [18, Lemma 7], where solvability conditions for the w-Sylvester equations
with m = n were obtained, without considering the details of the solution process. In recent years, an extensive amount of
iterative methods based on the conjugate gradient method were studied and developed for solving the generalized T-Sylves-
ter equation
AXBþ CXT D ¼ E; A;B; C;D; E;X 2 Rn�n:
See, e.g., [15,21–23] and the references cited therein.
In this paper, the (numerical) solution of the w-Sylvester equation (with w = T, H; the latter indicating the complex con-

jugate transpose), as well as some related equations, will be studied. Our tools include the (generalized and periodic) Schur,
. All rights reserved.
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singular value and QR decompositions [13]. We are mainly interested in the square cases when m = n. Other relative work
can be found in [1,19,20].

Our interest in the w-Sylvester equation originates from the solution of the w-Riccati equation
1 Not
XAXH þ XBþ CXH þ D ¼ 0
from an application related to the palindromic eigenvalue problem [5–7,18] (where eigenvalues appears in reciprocal pairs k
and k�w). The solution of the w-Riccati equation is difficult and the application of Newton’s method is an obvious possibility.
The solution of the w-Sylvester equation is required in the Newton iterative process. Interestingly, the w-Sylvester and w-
Lyapunov equations behave very differently from the ordinary Sylvester and Lyapunov equations. For example, from Theo-
rem 2.1 below, the w-Sylvester equation is uniquely solvable only if the generalized spectrum r(A, B) (the set of ordered
pairs {(ai, bi)} representing the eigenvalues of the matrix pencil A � kB or matrix pair (A, B) by ki = ai/bi) does not contain k
and k�w simultaneously, some sort of apalindromic1 requirement. For more details of this application, see Appendix A.

The paper is organized as follows. After this introduction, Section 2 considers the w-Sylvester equation, in terms of its
solvability, the proposed algorithms and the associated error analysis. Section 3 contains several small illustrative examples.
Section 4 considers some generalizations of the w-Sylvester equation—AXBw ± Xw = C, AXBw ± CXwDw = E and the w-Lyapunov
equation AX ± XwAw = C. (Similar equations like AX ± BXw = C can be treated similarly and will not be pursued here.) We con-
clude in Section 5 before describing two applications (in addition to those in [5,6,18]) and a solution formula in terms of
generalized inverse from [16] in the Appendices.

2. w-Sylvester equation

Consider the w-Sylvester equation
AX � XHBH ¼ C; A;B;X 2 Cn�n: ð2:1Þ
This includes the special cases of the T-Sylvester equation when w = T and the H-Sylvester equation when w = H. Justified by
associated applications and for efficient exposition, we shall consider w = H, T simultaneously, as far as possible.

Remark 2.1. Although it is seemingly simpler to consider only the ‘‘+’’ case in (2.1) and replace B by it negative for the ‘‘�’’
case, this will not be applicable for w-Lyapunov equations. Also, note that some solvability conditions are dependent on the
sign while others are not, thus our results will be more revealing with ± in (2.1). While all these features make our results
more general, the (small) price to pay will be the occasional confusing symbols to unfamiliar eyes. If necessary, please
concentrate on one of the four cases, e.g. the w = T and ‘‘�’’ case, which interests you most.

With the Kronecker product and w = T, (2.1) can be written as
PvecðXÞ ¼ vecðCÞ;P � I � A� ðB� IÞE; ð2:2Þ
where vecX stacks the columns of X into a column vector and E is the permutation matrix which maps vec (X) into vec (XT)
[2]; i.e., E ¼

P
16i;j6nejeT

i � eieT
j , where ei denotes the i-th column of the n � n identity matrix In. The matrix operator on the

left-hand-side of (2.2) is n2 � n2 and the application of Gaussian elimination and the like will be inefficient. In addition, the
approach ignores the structure of the original problem, introducing errors to the solution process unnecessarily.

For the w = H case, (2.1) can be rewritten as an expanded T-Sylvester equation:
AX � XTBT ¼ C; A;B;X 2 R2n�2n;
where
A �
Ar Ai

�Ai Ar

� �
; B �

Br Bi

�Bi Br

� �
; C �

Cr Ci

�Ci Cr

� �
; X �

Xr Xi

�Xi Xr

� �
;

with the original matrices written in their real and imaginary parts:
A ¼ Ar þ iAi; B ¼ Br þ iBi; C ¼ Cr þ iCi; X ¼ Xr þ iXi:
The Kronecker product formulation for T-Sylvester equations can then be applied. Such a formulation will be less efficient for
the numerical solution of (2.1), but may be useful as a theoretical tool.

A more efficient approach will be to transform (2.1) by some unitary P and Q, so that (2.1) becomes:
PAQ � Q T XPT � PXT Q � QT BT PT ¼ PCPT ð2:3Þ
or, for w = H:
PAQ � Q HXPH � PXHQ � Q HBHPH ¼ PCPH: ð2:4Þ
being palindromic, with ‘‘anti-palindromic’’ already describes something different.
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Note that minimum residual and minimum norm solutions are possible with the unitary P and Q. Let (QHAHPH, QHBHPH) be in
(upper-triangular) generalized Schur form [13]. The transformed equations in (2.3) and (2.4) then have the form
a11 0T

a21 A22

" #
x11 xH

12

x21 X22

� �
�

xH

11 xH

21

x12 XH

22

" #
bH

11 bH

21

0 BH

22

" #
¼ c11 cH

12

c21 C22

� �
: ð2:5Þ
Multiplying the matrices out, we have

a11x11 � bH

11xH

11 ¼ c11; ð2:6Þ
a11xH

12 � xH

21BH

22 ¼ cH

12 � xH

11bH

21; ð2:7Þ
A22x21 � bH

11x12 ¼ c21 � x11a21 ð2:8Þ
A22X22 � XH

22BH

22 ¼ eC22 � C22 � a21xH

12 � x12bH

21: ð2:9Þ
From (2.6) for w = T, we have
ða11 � b11Þx11 ¼ c11: ð2:10Þ
With (a11, b11) 2 r(A, B), the above equation is uniquely solvable if and only if
a11 � b11 – 0() k ¼ a11=b11 – � 1: ð2:11Þ
Obviously, when n = 1, (2.11) is the only condition for the equation to be uniquely solvable.
From (2.6) when w = H, we have
a11x11 � �b11�x11 ¼ c11: ð2:12Þ
Let x11 � xr + ixi, a11 � ar + iai, b11 � br + ibi and c11 � cr + ici. The above equation becomes
ðar þ iaiÞðxr þ ixiÞ � ðbr � ibiÞðxr � ixiÞ ¼ cr þ ici
or

arxr � aixi � brxr � bixi ¼ cr; arxi þ aixr � brxi � bixr ¼ ci:
These imply
ar � br �ai � bi

ai � bi ar � br

� �
xr

xi

� �
¼

cr

ci

� �
: ð2:13Þ
Denote alternatively k = a11/b11 2 r(A, B). The determinant of the matrix operator in (2.13):
d ¼ a2
r � b2

r

� �
� b2

i � a2
i

� �
¼ ja11j2 � jb11j2 – 0() jkj – 1; ð2:14Þ
requiring that no eigenvalue k 2 r(A, B) lies on the unit circle. Again, (2.14) is the condition for the equation to be uniquely
solvable when n = 1.

Another way to solve (2.12) is to write it together with its complex conjugate in the composite form
a11 �bH

11

�b11 aH

11

" #
x11

xH

11

� �
¼

c11

cH

11

� �

which produces the equivalent formula
x11 ¼
aH

11c11 � bH

11cH

11

ja11j2 � jb11j2
:

From (2.7) and (2.8), we obtain
aH

11I �B22

�bH

11I A22

" #
x12

x21

� �
¼

~c12

~c21

� �
�

c12

c21

� �
þ x11

�b21

�a21

� �
: ð2:15Þ
With a11 = b11 = 0, x11 will be undetermined. However, (A, B) then forms a singular pencil, rðA;BÞ ¼ C and this case will be
excluded by (2.22) in Theorem 2.1. If a11 – 0, (2.15) is then equivalent to
aH

11I �B22

0 A22 � bH

11
aH

11
B22

24 35 x12

x21

� �
¼

~c12

ĉ21

� �
�

~c12

~c21 � bH

11
aH

11

~c12

" #
; ð2:16Þ
which is uniquely solvable if and only if
det eA22 – 0; eA22 � A22 �
bH

11

aH

11
B22; ð2:17Þ
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or � �

bH

11; a
H

11 R rðA;BÞ ð2:18Þ
with (a11, b11) 2 r(A, B). Note that eA22 is still lower-triangular, just like A22 or B22.
Alternatively, if b11 – 0, (2.15) is equivalent to
0 B22 �
aH

11

bH

11
A22

bH

11I �A22

24 35 x12

x21

� �
¼

ĉ12

�~c21

� �
� �~c12 �

aH

11

bH

11

~c21

�~c21

24 35; ð2:19Þ
which is uniquely solvable if and only if
det eB22 – 0; eB22 � B22 �
aH

11

bH

11

A22; ð2:20Þ
or (2.18) again. Note that (2.17) and (2.20) are ‘‘symmetric’’, in the sense that when interchanging A and B as well as a11 and
b11 in one equation reproduces the other, and eB22 is still lower-triangular as A22 and B22. Lastly, (2.9) is of the same form as
(2.1) but of smaller size, leading to a recursive algorithm.

Remark 2.2. Interestingly, for the ordinary Sylvester equation AX � XB = C, numerical solution will be possible when (A, B) is
transformed into the quasi-triangular/triangular form (not necessarily both of the same type) or the cheaper quasi-
triangular/Hessenberg form [13]. It is not the case for (2.1) and the w somehow alters the behavior of the equation greatly.
Remark 2.3. We can arrange the above solution process into a large quasi-triangular linear system. This enables us to apply
the error analysis of triangular linear systems to proposed Algorithms SSylvester and TSylvesterR in Section 2.2. Because x11

can be solved via a scalar or 2 � 2 system and X22 can be treated recursively, we only need to consider the solution of (2.15)
for x12 and x21. The equation has the form, for some right-hand-side R1:
ð2:21Þ
This is equivalent to a series of 2 � 2 systems, for known right-hand-sides Rr, Rs, . . .:

Mrzr ¼ Rr ; Mszs ¼ Rs; . . .
where
Mr � ½rij	;Ms � ½sij	; . . . ; zr � ½zr1; zr2	T ; zs � ½zs1; zs2	T ; . . . :
Consequently, (2.21) is a quasi-lower-triangular linear system with at most 2 � 2 diagonal blocks. By implication, so is (2.5).
This comment still holds when a11 and b11 are replaced by 2 � 2 blocks, as in Section 2.1. In that case, the diagonal blocks in
the corresponding quasi-triangular matrix will be at most 4 � 4.

We summarize the solvability condition for (2.1) in the following theorem:

Theorem 2.1. The w-Sylvester equation (2.1):
AX � XHBH ¼ C; A;B 2 Cn�n
is uniquely solvable if and only if, for {(aii, bii)} = r(A, B), the following conditions are satisfied:
aiiaH

jj � biib
H

jj – 0 ð8i – jÞ; ð2:22Þ
and, for ki � aii/bii and all i,

aii � bii – 0 ðfor H ¼ TÞ; jkij – 1 ðfor H ¼ HÞ: ð2:23Þ
Remark 2.4. Condition (2.11) or (2.14) are actually contained in (2.22) when i = j = 1. The corresponding conditions have to
be restated in (2.23) in Theorem 2.1 for an arbitrary ordering of the eigenvalues {(aii, bii)} or {ki}. In terms of the traditional
representation of the eigenvalues ki � aii/bii, (2.22) means that kj – k�H

i (i – j), and (2.23) means that ki – �1 (w = T) or
jkij– 1 (w = H). Consequently, k = ±1 can be an eigenvalue of (A, B) but must be simple for the corresponding T-Sylvester
equation to be uniquely solvable. As expected, (2.22) or (2.23) imply that (A, B) has to be regular for (2.1) to be uniquely
solvable. When w = T, it is worth to mention that conditions (2.22) and (2.23) are equivalent as Lemma 5.10 in [5].
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The solution process in this subsection is summarized below, using MATLAB-like notation X(i:j, k) (or X(k, i:j)) for the row
(column), consisting of the intersection of row i to j (or k) and column k (or i to j):

Algorithm SSylvester

Input: Given the matrix A;B;C 2 Cn�n; s (a small tolerance).
Output: The unique solution X of AX ± Xw Bw = C.
Compute the lower-triangular Schur form (PAQ, PBQ) (if necessary)

(A, B, C) (PAQ, PBQ, PCPw)
for i = 1,2, . . . ,n � 1

xii ¼ c11
a11þb11

if dim (A) = 1 or ja11j2 + jb11j2 6 s, exit
if ja11jP jb11j, then
if k 2 diagðeA22Þ and jkj < s, exit

else compute x21 ¼ eA�1
22 ĉ21; x12 ¼ ~c12 � B22x21ð Þ=aH

11 (from (2.16))

else if k 2 diagðeB22Þ and jkj < s, then exit

else compute x21 ¼ eB�1
22 ĉ12; x12 ¼ �~c21 � A22x21ð Þ=bH

11 (from (2.19))
Xðiþ 1 : n; iÞ ¼ x21; Xði; iþ 1 : nÞ ¼ xT

12

C  Cð2 : n� iþ 1;2 : n� iþ 1Þ � A21Xði; iþ 1 : nÞ � Xði; iþ 1 : nÞHBH

21
A A(2:n � i + 1,2:n � i + 1), B B(2:n � i + 1,2:n � i + 1)

end for

xnn ¼ c11
a11þb11

X  QXP (w = T), or X QXP (w = H)

Let the operation count of the Algorithm SSylvester be f(n) complex flops, on top of the 66n3 complex flops for the QZ
procedure [13] for the generalized Schur decomposition of (A, B). The count in f(n) involves the solution of (2.9) (for
f(n � 1) complex flops) and (2.16) or (2.19). This involves forming and inverting A22 or B22 (n2 flops), computing x12 (1

2 n2

flops) and forming C22 (2n2). Thus f ðnÞ ¼ f ðn� 1Þ þ 7
2 n2 þ OðnÞ. This implies that f ðnÞ ¼ 7

6 n3 þ Oðn2Þ and the total operation
count for Algorithm SSylvester is 67 1

6 n3 þ Oðn2Þ complex flops.
From the above analysis and Theorem 2.1, the condition of (2.1) will be bad if the separation kik

H

j � 1 is close to zero (or
when the assumption for unique solvability is nearly violated). The same conclusion can also be drawn from the analogous
analysis in Section 2.1 below. For error analysis, see Section 2.2 for more details.

2.1. The real case

When A, B and C are all real, the solution X, judging from (2.2), will be real. To guarantee a real solution X, the generalized
real Schur form [13] for (A, B) has to be used. The transformed equation in (2.3) or (2.4) has the form
A11 0
A21 A22

� �
X11 XT

12

X21 X22

" #
�

XT
11 XT

21

X12 XT
22

" #
BT

11 BT
21

0 BT
22

" #
¼ C11 CT

12

C21 C22

" #

or
A11X11 � XT
11BT

11 ¼ C11; ð2:24Þ
A11XT

12 � XT
21BT

22 ¼ eCT
12 � CT

12 � XT
11BT

21; ð2:25Þ
A22X21 � X12BT

11 ¼ eC21 � C21 � A21X11; ð2:26Þ
A22X22 � XT

22BT
22 ¼ eC22 � C22 � A21XT

12 � X12BT
21; ð2:27Þ
where A11 and B11 may be 1 � 1 or 2 � 2 real matrix. The 1 � 1 case will be trivial as in (2.6) and the 2 � 2 case can be solved
using Kronecker products. The theory leading to the conditions in (2.11) and (2.22) from the complex Schur form still holds.
We shall assume that A11 and B11 are not scalar in the rest of this subsection.

Again, the Kronecker product can be applied to (2.25) and (2.26). A better approach is to consider (2.25)T and (2.26):
�B22X21 þ X12AT
11 ¼ eC12; A22X21 � X12BT

11 ¼ eC21:
A linear combination of these equations will be
ðbA22 � aB22ÞX21 þ X12 aAT
11 � bBT

11

� �
¼ aeC12 þ beC21: ð2:28Þ
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Assuming regularity of the pencil (A, B), there exists real a and b such that aAT
11 � bBT

11 is nonsingular (or well-conditioned).
We then have
X12 ¼ �ðbA22 � aB22ÞX21 aAT
11 � bBT

11

� ��1
þ bC12X12 ð2:29Þ
with bC12 � ðaeC12 þ beC21Þ aAT
11 � bBT

11

� ��1
. Substitute X12 in (2.29) into (2.26), we have a generalized Sylvester equation [8] for X21:
A22X21 � ðaB22 � bA22ÞX21ðaAT
11 � bBT

11Þ
�1BT

11 ¼ eC21 � bCT
12BT

11: ð2:30Þ
Remark 2.5. Alternatively from (2.28), one can choose a and b to optimize the condition of bA22 ± aB22, express X21 in terms
of X12 and obtain a generalized Sylvester equation in X12 analogous to (2.30).

From [8], (2.30) is uniquely solvable when there is no intersection of the spectra r(A22, aB22 ± bA22) and
r BT

11;aAT
11 � bBT

11

� �
. Let (A11, B11) and (A22, B22) be transformed into generalized real Schur forms with diagonal elements

(ai, bi) and (aj, bj) respectively. For a – 0, the condition for the equation to be uniquely solvable is
aj

abj � baj
–

bi

aai � bbi
() aiaj – bibj;
exactly condition (2.22). The same conclusion is reached when a = 0, which implies that B11 is invertible, and X12 in (2.29)
should then be substituted into (2.25)T to produce a similar generalized Sylvester equation for X21:
X21 � A22X21B�T
11 AT

11 ¼ �eC12 þ bC12AT
11:B22 ð2:31Þ
Also X12 is retrievable from (2.29) in a numerical stable and efficient manner. Note that the matrix operator aAT
11 � bBT

11 in
(2.29) is 2 � 2 with (a, b) controlling its condition. In (2.30), A22 and B22 are quasi-lower-triangular with ðaAT

11 � bBT
11Þ
�1BT

11

being at most 2 � 2, enabling X21 to be calculated as in the generalized Bartels–Stewart algorithm in [8]. (For illustration, let
us consider (2.31). With B22 and A22 being quasi-lower-triangular and B�T

11 AT
11 being 2 � 2, the first row of X21 can be com-

puted, leaving a smaller but similar system. This can then be solved recursively and similarly.) A slightly more efficient alter-
native will be to consider the rows of (2.30) consecutively from the top, solving a 2 � 2 system for each row of X21. Eq. (2.31)
can be solved analogously, also one row at a time.

We can then solve recursively (2.27), a smaller equation similar to (2.9). We summarize the procedure in this subsection
in the following algorithm, with the subscripts ‘‘R’’ for ‘‘Real’’.

Algorithm TSylvesterR

Input: Given the matrix A;B;C 2 Rn�n; s (a small tolerance).
Output: The unique solution X of AX ± XTBT = C.
Compute the real Schur form (PAQ,PBQ) (if necessary)

(A, B, C) (PAQ, PBQ, PCPT)
Solve (2.24) for X11; if fail, exit
if last block reached with n = 1, 2, exit
if A11 and B11 are scalar, then
Solve (2.25) and (2.26) for X12 and X21 as in Algorithm SSylvester
if fail, exit
else Solve (2.30) or (2.31) with appropriate a, b for X21 row-wise,

using Gaussian elimination on the 2 � 2 systems; if fail, exit
Retrieve X12 from (2.29)

Apply Algorithm TSylvesterR to
A22X22 � XT

22BT
22 ¼ C22 (c.f. (2.27)), n n � 1 or n � 2

X QXP

The operation count of Algorithm TSylvesterR is approximately equal to 67 1
6 n3 flops, similar to Algorithm SSylvester and

overwhelmed by the initial QZ process.

Remark 2.6. We have not written Algorithm TSylvesterR as in Algorithm SSylvester, without calling itself. As A11 and B11 can
be 1 � 1 or 2 � 2, the alternative algorithm will be repetitive for the different cases.
Remark 2.7. Similar to Remark 2.3, Algorithms TSylvesterR is equivalent to solving quasi-lower-triangular linear systems
after the initial QZ step. The equations for the scalar (or 2 � 2) X11 can be written as a 2 � 2 (or 8 � 8) linear system for
the real and imaginary parts of the elements of X11. For X12 and X21, expanding (2.25) and (2.26) using the Kronecker product
yields a linear system with matrix operator
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In�2 � A11 B22 � I2

In�2 � B11 A22 � I2

� �
:

This has the same form as the one in (2.21), except the elements may be 2 � 2 blocks, producing a series of 4 � 4 linear sys-
tems. Similar arguments as those in Remark 2.3 thus follows.
2.2. Error analysis

We shall discuss the error associated with Algorithms TSylvester and TSylvesterR, following the development in [14,
Chapter 16] and [12].

2.2.1. Residual
As indicated in Remarks 2.3 and 2.7, Algorithms SSylvester and SSylvesterR can be arranged into quasi-triangular linear

systems. We can then apply the error analysis for triangular linear systems in [14, Theorem 8.5] to obtain
kRkF � kC � ðAbX � bXHBHÞkF 6 cnuðkAkF þ kBkFÞkbXkF ð2:32Þ
for a computed solution bX from our algorithms, where cn is a constant dependent on n and u is the unit round-off (typically
O(10�16)), when the condition of the 2 � 2, 4 � 4 or 8 � 8 linear systems in (2.30), (2.31) and Remarks 2.3 and 2.7 are not
bad. Note that the QZ transformation of (A, B) is backward stable, similar to the QR process in [14, Eq. (16.9)]. Consequently,
the relative residual is bounded by a modest multiple of the unit round-off u. See the collaborating numerical examples in
Section 3.

2.2.2. Backward error
Like for ordinary Sylvester equations, the numerical solution of (2.1) is not backward stable in general. Similar to [14,

§16.2] and with ‘‘d’’ indicating perturbation, we can define the normwise relative backward error of an approximate solution
Y by
gðYÞ � minf� : ðAþ dAÞY � YHðBþ dBÞH ¼ C þ dC;

kdAkF 6 �a; kdBkF 6 �b; kdCkF 6 �cg; ð2:33Þ
where a � kAkF, b � kBkF and c � kCkF. With Y = URVH in singular value decomposition (SVD) [13], the Yw terms do not affect
the analysis in [14, §16.2]. With R = diag{r1, . . . ,rn}, it can be shown that
gðYÞ 6 l kRkF

ðaþ bÞkYkF þ c
; ð2:34Þ
where the residual R � C � (AY ± YwB) and
l � ðaþ bÞkYkF þ c

ða2 þ b2ÞkX�1k�2
2 þ c2

h i1=2 :
Consequently, g(Y) can be large when Y is ill-conditioned, and a small residual R does not always imply a small backward
error g(Y). This phenomenon has been observed in Example 3.3, where Y is ill-conditioned. However, from our experience,
severely backward unstable w-Sylvester equations are rare and have to be artificially constructed. This suggests that our
algorithms may well be conditionally backward stable. Similar to the Sylvester equation [14, Section 16.2], we do not know
the conditions under which a w-Sylvester equation has a well-conditioned solution.

2.2.3. Perturbation and practical error bounds
For perturbation, the usual results for linear systems apply. In terms of the w-Sylvester equation (2.1), consider the per-

turbed equation
ðAþ dAÞðX þ dXÞ � ðX þ dXÞHðBþ dBÞH ¼ C þ dC:
Define the w-Sylvester operator
SðXÞ � AX � XHBH;
we then obtain
SðdXÞ ¼ dC � dAX � XHdBH � dAdX � dXHdBH:
Application of norm gives rise to
kdXkF 6 kS
�1kF kdCkF þ ðkdAkF þ kdBkFÞðkXkF þ kdXkFÞ

� �
:
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When kdSkF � kdAkF + kdBkF is small enough so that 1 P kS�1kF � kdSkF, we can rearrange the above result to
kdXkF

kXkF
6

kS�1kF

1� kS�1kF � kdSkF

kdCkF

kXkF
þ kdSkF

� 	
:

With kCkF = kS(X)kF 6 kSkF � kXkF and the condition number j(S) � kSkF � kS�1kF, we arrive at the standard perturbation result
kdXkF

kXkF
6

jðSÞ
1� jðSÞ � kdSkF=kSkF

kdCkF

kCkF
þ kdSkF

kSkF

� 	
:

Thus the relative error in X is controlled by those in A, B and C, magnified by the condition number j(S).
As indicated in [14, Section 16.4], practical error bounds can be estimated, just like for other linear matrix equations. Sev-

eral applications of the solution algorithm will be required. More work has to be done along this direction.

2.3. An alternative formulation

We can consider the sum/difference of (2.1) and its w, producing
ðAþ BÞX þ XHðAþ BÞH ¼ C þ CH; ðA� BÞX � XHðA� BÞH ¼ C � CH: ð2:35Þ
The pair of equations represent the symmetric/Hermitian and skew-symmetric/Hermitian parts of (2.1) and can be solved
using the generalized Schur form of (A + B, A � B). Identical solvability condition as (2.22) can be derived. In terms of the
eigenvalues ~ki 2 rðAþ B;A� BÞ, (2.1) and (2.35) are uniquely solvability if and only if ~ki þ ~kj – 0 or kikj – 1, with
~ki ¼ ðki þ 1Þ=ðki � 1Þ for some ki 2 r(A, B). It is easy to see that mapping between (A, B) and (A + B, A � B) corresponds to some
(inverse) Cayley transformations.

In [11], a formula for the solution X of (2.1) (for w = T and the ‘‘+’’ case) was derived using the first equation in (2.35) only,
throwing away the information in the second equation. We cannot see how the formula can be correct using only half the
information of (2.1) in the first half of (2.35). In the extreme case with A = �B, the first equation in (2.1) will be degenerate
and the solution X will be totally free. Anyway, X is a solution of (2.1) if and only if it is also a solution of (2.35), but a solution
of half of (2.35) in general does not satisfy (2.1).

3. Numerical examples

In this section, we apply Algorithm SSylvester (denoted by ASS) and, for the lack of alternative algorithms, the Kronecker
product approach in (2.2) (denoted by KRP) to some examples for illustrative and comparative purposes. All computations
were performed in MATLAB/version 7.5 on a PC with an Intel Pentium-IV 4.3GHZ processor and 3 GB main memory, using
IEEE double-precision.

Example 3.1. We choose bA; bB 2 Rn�n to be real lower-triangular matrices with given diagonal elements (specified by
a; b 2 Rn) and random strictly lower-triangular elements. They are then reshuffled by the orthogonal matrices Q ; Z 2 Rn�n to
form ðA;BÞ ¼ ðQ bAZ;QbBZÞ. In MATLAB [17] commands, we have
bA ¼ trilðrandnðnÞ;�1Þ þ diagðaÞ; bB ¼ trilðrandnðnÞ;�1Þ þ diagðbÞ; C ¼ randnðnÞ:
To guarantee condition (2.22), let b = randn(n,1), a = 2b. In Table 3.1, we list the CPU time ratios of the ASS and the KRP ap-
proaches as well as the corresponding residuals and their ratios, with increasing dimensions n = 16, 20, 25, 30, 35, 40. Note
that the operation counts for the ASS and KRP methods are approximately 67n3 and 2

3 n6 flops respectively (the latter for the
LU decomposition of the n2 � n2 matrix in (2.2)). The results in Table 3.1 show that the advantage of ASS over KRP in CPU
time grows rapidly as n increases, as predicted by. Even with better management of sparsity or parallelism, the O(n6) oper-
ation count makes the KRP approach uncompetitive even for moderate size n. The residuals from ASS is also better than that
from KRP, as (2.2) is solved by Gaussian elimination in an unstructured way. See the other examples for more comparison of
the residuals of ASS and KRP.
Example 3.2. With the same construction as in Example 3.1 and n = 2, let a = [a + �, b]T, b = [b, a]T. Here a, b are two ran-
domly numbers greater than 1, with the spectral set rðA;BÞ ¼ aþe

b ; b
a

n o
, and jk1k2 � 1j ¼ e

a. Judging from (2.22) and (2.1)
has worsening condition as e decreases. We report a comparison of absolute residuals for the ASS and KRP approaches for
e = 10�1, 10�3, 10�5, 10�7 and 10�9 in Table 3.2. The results show that if (2.2) is solved by Gaussian elimination, its residual
will be larger than that for ASS especially for smaller e. Note that the size of X (the last column in Table 3.2) reflects partially
the condition of (2.1), as indicated in (2.32). The residuals will be worsen for large values of kXkF, with the quotient of res
(ASS) and kXk approximately equal to the unit round-off u. The KRP approach copes less well than the ASS approach for
ill-conditioned problems.
Example 3.3. With n = 2 and let Q 2 Rn�n be orthogonal and the exact solution be Xe, where



Table 3.1
Results for Example 3.1.

n tKRP
tASS

Res (ASS) Res (KRP) ResðKRPÞ
ResðASSÞ

16 1.00e+00 1.8527e�17 2.1490e�17 1.16
25 1.31e+01 2.3065e�17 2.8686e�17 1.24
30 2.61e+01 3.1126e�18 5.7367e�18 2.20
35 6.48e+01 7.0992e�18 1.2392e�17 1.75
40 1.05e+02 1.7654e�18 6.4930e�18 3.68

Table 3.2
Results for Example 3.2.

� Res (ASS) Res (KRP) ResðKRPÞ
ResðASSÞ

O(kXk)

1.0e�1 2.0673e�15 2.4547e�15 1.19 101

1.0e�3 8.6726e�13 4.3279e�13 0.50 103

1.0e�5 2.3447e�12 2.4063e�12 1.03 103

1.0e�7 5.9628e�10 1.1786e�09 1.98 106

1.0e�9 5.8632e�08 3.4069e�07 5.81 108

Ta
Re
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Xe � Q T 10�m 0
0 10m

� �
Q ; A ¼

randn 0
randn 10�m

� �
Q ; B ¼

randn 0
randn 2 
 10�m

� �
Q

and C ¼ AXe þ XT
e BT . Solving the corresponding T-Sylvester equation by Algorithm SSylvester produces the results in Ta-

ble 3.3, using symbols from Section 2.2. The column for the backward error g(Y) (estimated using the bound (2.34)) confirms
that our algorithm is not numerically backward stable. The problem is increasingly ill-conditioned for increasing values of m
and the large values of l worsen the backward errors g(Y), although the relative residuals RRes (ASS)=Res (ASS)/kXk are of
machine accuracy. On the other hand, from our experience, badly behaved examples are rare and have to be artificially
constructed.
4. Related equations

4.1. Generalized w-Sylvester equation I

Consider the more general version of the w-Sylvester equation (2.1):
AXBH � XH ¼ C ð4:1Þ
with A;BH;XH 2 Cm�n and m – n. The generalized Kronecker canonical form [9,10] for (A, Bw) may be used to analyze and
solve the equation. We shall not pursuit this line of attack further.

For A; B;C 2 Cn�n, the equation is equivalent to the w-Sylvester equation in Section 2 when either A or B is nonsingular. In
general, consider the periodic Schur or PQZ decomposition [3] for BHAH so that (QHAHPH,PBH Q) is in upper triangular form.

Consider the transformed equation, for w = H:
PAQ � Q HXPH � PBHQ � PXHQ ¼ PCQ
or for w = T:
PAQ � Q HXPT � PBT Q � PXT Q ¼ PCQ :
The case when (A, B) are real and w = T with a real PQZ decomposition is similar but will be skipped over.
With (QHAHPH, PBHQ) or ðQHAHPH; PBT QÞ being upper-triangular, the transformed equations look like
ble 3.3
sults for Example 3.3.

m Res (ASS) RRes (ASS) jXASS�Xe j
jXe j

O(kXk) l g(XASS)

0 1.0129e�16 10�16 2.6624e�16 100 3.2440e+00 2.7169e�16
2 1.5268e�14 10�16 2.0519e�15 102 9.7188e+01 5.8991e�15
4 2.4170e�12 10�16 5.0599e�13 104 7.3715e+03 1.0410e�12
6 1.6955e�10 10�16 2.4933e�11 106 9.0423e+05 6.8488e�11
8 3.7545e�09 10�17 2.7786e�09 108 8.4485e+07 1.2658e�09
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a11 0T

a21 A22

" #
x11 xH

12

x21 X22

� �
bH

11 bH

21

0 BH

22

" #
�

xH

11 xH

21

x12 XH

22

" #
¼ c11 cH

12

c21 C22

� �
:

We then have
a11bH

11x11 � xH

11 ¼ c11; ð4:2Þ
a11xH

12BH

22 � xH

21 ¼ cH

12 � a11x11bH

21; ð4:3Þ
bH

11A22x21 � x12 ¼ c21 � bH

11x11a21; ð4:4Þ
A22X22BH

22 � XH

22 ¼ C22 � x11a21bH

21 � A22x21bH

21 � a21xH

12BH

22: ð4:5Þ
Inspection of (4.2)–(4.5) shows the equation is uniquely solvable if and only if
aiib
H

ii – � 1; aH

ii bH

ii ajjbjj – 1 ð8i – jÞ; ð4:6Þ
analogous to (2.22) and (2.23) and a special case of (4.10). Algorithms can easily be constructed from (4.2)–(4.5) but will be
ignored here.

4.2. Generalized w-Sylvester equation II

Consider the more general version of the w-Sylvester equations (2.1) and (4.1):
AXBH � CXHDH ¼ E: ð4:7Þ
For A;B; C;D; E 2 Cn�n, the equation is equivalent to the w-Sylvester equation in Section 2, when A and D (or B and C) are non-
singular. In general, we can transform the equation to, for w = H:
PAR � RHXS � SHBHQ � PCS � SHXHR � RHDHQ ¼ PEQ ð4:8Þ
or, for w = T:
PAR � RT XS � SHBT Q � PCS � ST XT R � RHDT Q ¼ PEQ : ð4:9Þ
These equations have the form
eAeXeBH � eC eXH eDH ¼ eE:

The transformation can be realized using the periodic Schur or PQZ decomposition [3] for B�1DA�1C (or other similar forma-
tions), where P, Q, R and S are unitary, and eA; eB; eC and eD are (quasi-) lower-triangular (with diagonal elements ai, bi, ci and
di, respectively). Consequently, similar solution procedure as in Section 2 applies, with both minimum norm and minimum
residual solutions feasible. The transformed equations give rise to equations in the form, for i – j:
aib
H

i � cid
H

i


 �
xii ¼ ~eii;

aib
H

j �cid
H

j

�cjd
H

i ajb
H

i

" #
xij

xji

� �
¼

~eij

~eji

� �

for some known ~eii; ~eij and ~eji, with xii and xij solved in the correct order. The equation will then be uniquely solvable if and
only if
aib
H

i � cid
H

i – 0; aiajb
H

i bH

j – cicjd
H

i dH

j ð8i – jÞ; ð4:10Þ
conditions more general than but similar to (2.22) and (2.23), or (4.6).

4.3. w-Lyapunov equation

Consider the w-Lyapunov equation
AX � XHAH ¼ C; A 2 Cn�n:
(The more general AXBw ± BwXwAw = C can be treated similarly.) Here we assumed that this system is consistent. With unitary
P and Q, the equation can be transformed to, for w = T:
PAQ � Q HXPT � PXT Q � QT AT PT ¼ PCPT
or, for w = H:
PAQ � Q HXPH � PXHQ � Q HAHPH ¼ PCPH:
Obviously, w-Lyapunov equations are special cases of w-Sylvester equations, with B = A, and associated solvability conditions
in Theorem 2.1 (with bkk = akk). We recognize that w-Lyapunov equations are not uniquely solvable, with (2.22) being vio-
lated. However, we can still solve these equations in the traditional, least squares or minimum norm sense, as seen below.
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Note that the unitary transformation of A allows for minimum norm or residual solutions of the equations. We can choose
P and Q from the SVD of A. This is more suited to the case when A is rectangular and this line of attack will be pursued later.
For a square A, we can choose Q = PH using the Schur decomposition of A, solving the equation in a similar fashion as in Sec-
tion 2. The transformed equation has the form
a11 0T

a21 A22

" #
x11 xH

12

x21 X22

� �
�

xH

11 xH

21

x12 XH

22

" #
aH

11 aH

21

0 AH

22

" #
¼ c11 cH

12

�c12 C22

� �
:

Note that the form of the right-hand-side came from the obvious consistency condition C = ±Cw, implying that the diagonal
elements cii = 0 in C when the w = T and ‘‘�’’ case.

Multiply the matrices out, we have
a11x11 � aH

11xH

11 ¼ c11; ð4:11Þ
a11xH

12 � xH

21AH

22 ¼ ~cH

12 � cH

12 � xH

11aH

21; ð4:12Þ
A22X22 � XH

22AH

22 ¼ eC22 � C22 � a21xH

12 � x12aH

21: ð4:13Þ
Because of the (anti-) symmetry of the w-Lyapunov equation, we only need to consider the above three equations, with the
fourth containing redundant information.

For w = T, x11 is free for the ‘‘�’’ case, with c11 = 0 for consistency. For the ‘‘+’’ case, x11 ¼ c11
2a11

when the eigenvalue
k1 = a11 2 r(A) is nonzero. For w = H, we have the underdetermined equation Reða11x11Þ ¼ c11 (for the ‘‘+’’ case) or
Imða11x11Þ ¼ 0 (for the ‘‘�’’ case). For x12 and x21, we have the equation
aH

11I A22
� 
 x12

x21

� �
¼ ~c12
which is underdetermined when ~c12 is in the span of ½aH

11I;A22	 (always holds if A is nonsingular).
The equation for X22 is smaller but similar to the original w-Lyapunov equation.

4.3.1. Symmetric/hermitian solution
With the transformed equations, for w = T:
PAPH � PXPT � PXT PT � PAT PT ¼ PCPT
or for w = H:
PAPH � PXPH � PXHPH � PAHPH ¼ PCPH;
we can impose the (anti-) symmetry constraint Xw = ±X. Eqs. (4.11)–(4.13) then imply similar equations for x11 and X22 as in
the non-symmetric/Hermitian case. For x12 = x21 (and similarly for the anti-symmetric/Hermitian case), (4.12) becomes
aH

11I � A22

 �

x12 ¼ ~c12;
retrieving the solvability condition for the ordinary Sylvester/Lyapunov equation. This requires the eigenvalues kj and kj of A
to satisfy kH

i � kj – 0. When i = j and w = T, this indicates that we cannot have zero eigenvalues for the ‘‘+’’ case and the ‘‘�’’
case gives rise to an undetermined x11, with c11 = 0 from the anti-symmetric C. When i = j and w = H, no eigenvalue ki can be
purely imaginary/real.

4.3.2. Rectangular A
The T-Lyapunov equation with rectangular A has been studied in [4] using generalized inverse (which can only be realized

using the SVD). Please consult [4] for solvability conditions and the formula for the general solution. Here we construct the
solution, and implicitly derive the solvability conditions, using the SVD. In the next subsection, the cheaper QR decomposi-
tion [13] is used instead to derive the same solution.

When A is rectangular, the SVD of A:
A ¼ UDVH ¼ U1 U2½ 	
R 0
0 0

� �
V1 V2½ 	H ð4:14Þ
gives rise to the transformed T-Lyapunov equation:
UDVHX � XT VDT UT ¼ C () DðVHXUÞ � ðUHXT VÞD ¼ UHCU
or the transformed H-Lyapunov equation:
UDVHX � XHVDT UH ¼ C () DðVHXUÞ � ðUHXHVÞD ¼ UHCU:
We then have
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R 0
0 0

� �
X11 X12

X21 X22

� �
�

XH

11 XH

21

XH

12 XH

22

" #
R 0
0 0

� �
¼

C11 C12

�CH

12 C22

� �
ð4:15Þ
or
RX11 � XH

11R ¼ C11;

RX12 ¼ C12;

X21;X22 ¼ free;
requiring C22 = 0 for consistency. With rk being the singular values of A, the first equation has the form
rixij � rjxH

ji ¼ cij:
For i – j, we can solve these equations in the minimum norm solution sense:
xij

xH

ji

" #
¼ cij

r2
i þ r2

j

ri

�rj

� �
;

or let xji (j > i) be free and express xij in terms of xji:
xij ¼
cij � rjxH

ji

ri
:

For i = j, we have
riðxii � xH

ii Þ ¼ cii:
When H ¼ T; xii ¼ cii
2ri

for the ‘‘+’’ case, or xii is free requiring cii = 0 (from the anti-symmetry of C) for the ‘‘�’’ case. When
H ¼ H; ReðxiiÞ ¼ cii

2ri
with ImðxiiÞ free for the ‘‘+’’ case, or ImðxiiÞ ¼ cii

2ri
with ReðxiiÞ free for the ‘‘ � ’’ case.

Note that minimum norm and minimum residual solutions are feasible from the above formulation.
Applying the formula in [4] with A in SVD, we obtain
eX � X11 X12

X21 X22

� �
¼

1
2 R�1C11 þ Z11R R�1C12

Y21 Y22

" #
; ð4:16Þ
where Y21 and Y22 are arbitrary and Z11 ¼ �ZH

11. The solutions are identical except the (underdetermined) calculations involv-
ing X11 is handled differently in [4] by the choice of Z11. To apply the formula in [4] to a general A, we need to choose an
arbitrary Z such that
PT
2ZP2

� �T
¼ �PT

2ZP2; ð4:17Þ
where P2 = ATG with G satisfying ATGAT = AT. To choose Z using the SVD in (4.14), we have P2 ¼ V1VH
1 and (4.17) becomes
V1VT
1ðZ

T � ZÞV1VH
1 ¼ 0() VT

1VðeZT � eZÞVHV1 ¼ 0; eZ � VT ZV ¼
Z11 Z12

Z21 Z22

� �
;

implying the same condition for Z11 ¼ �ZH

11


 �
as in (4.16). Consequently, we might as well use the SVD of A to solve the T-

Lyapuniov equation as in (4.15).

4.3.3. QR
The SVD in Section 4.3.2 can be replaced by the cheaper but equally effective QR decomposition. Let
A ¼ QRP ¼ Q
R11 R12

0 0

� �
P

for some nonsingular R11 and permutation matrix P. The transformed equation is, for w = T:
RðPXQÞ � ðPXQÞT RT ¼ Q HCQ
or, for w = H:
RðPXQÞ � ðPXQÞHRH ¼ QHCQ :
These have the form
R11 R12

0 0

� �
X11 X12

X21 X22

� �
�

XH

11 XH

21

XH

12 XH

22

" #
RH

11 0

RH

12 0

" #
¼

C11 C12

�CH

12 C22

� �
:

Then we have
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R11X11 � XH

11RH

11 ¼ C11 � R12X21 � XH

21RH

12;

R11X12 ¼ C12 � R12X22
with X21 and X22 free. We can obtain X11 and X12 from the decoupled equations, with the first equation solved using the tech-
niques in Section 4.2.

5. Conclusions

We have considered the solution of the w-Sylvester equation which has not been fully investigated before. For the square
case, solvability conditions have been derived and algorithms have been proposed. Preliminary numerical results shows that
the algorithms behave promisingly. The rectangular case and some related equations, especially the w-Lyapunov equation,
have also been considered.

It is interesting and exciting that the w above the second X in (2.1) makes the equation behave very differently. The solvabil-
ity condition in terms of non-intersection of the spectra r(A) and r(B), for the ordinary Sylvester equation AX ± XB = C, is shifted
to (2.22) for the generalized spectrum r(A, B). In addition, (2.1) looks like a Sylvester equation associated with continuous-time
but (2.22) is satisfied when r(A, B) in totally inside the unit circle, hinting at a discrete-time type of stability behavior.

For numerical solution, the varying levels of difficulty and complexity for various equations are also intriguing. In terms of
increasing complexity, the w-Lyapunov, Lyapunov, Sylvester, w-Sylvester and generalized w-Sylvester equations require,
respectively, the QR, Schur, Schur-Hessenberg, generalized Schur and periodic Schur decompositions. The w makes the
Lyapunov equation easier (by creating more symmetry) yet forces the Sylvester equation the opposite direction.
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Appendix A. Palindromic linearization kZ + Zw

An interesting application, for the w-Sylvester equation (2.1)
AX � XHBH ¼ C; A; B;X 2 Cn�n
arises from the eigensolution of the palindromic linearization [7]
ðkZ þ ZHÞx ¼ 0; Z ¼
A B

C D

� �
2 C2n�2n:
Applying congruence, we have
In 0
X In

� �
ðkZ þ ZHÞ In XH

0 In

" #
¼

kAþ AH kðAXH þ BÞ þ ðXAþ CÞH

kðXAþ CÞ þ ðAXH þ BÞH kRðXÞ þ RðXÞ


" #

with
RðXÞ � XAXH þ XBþ CXH þ D:
If we can solve the w-Riccati equation
RðXÞ ¼ 0;
the palindromic linearization can then be ‘‘square-rooted’’. We then have to solve the generalized eigenvalue problem for the
pencil k(AXw + B) + (XA + C)w, with the reciprocal eigenvalues in k(XA + C) + (A Xw + B)w obtained for free.

It is easy to show from the w-Riccati equation that its solution corresponds to the (stabilizing) deflating subspaces of k
Z + Zw spanned by
ðS1; S2Þ �
XH

I

" #
;

I

�X

� � !
:

It turns out that the palindromic symmetry in the problem leads to the orthogonality property SH

1 S2 ¼ 0, allowing the above
congruence to annihilate the lower-right corner of the transformed pencil, thus square-rooting the problem.
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Solving the w-Riccati equation is of course as difficult as the original eigenvalue problem of kZ + Zw. The usual invariance/
deflating subspace approach for Riccati equations leads back to the original difficult eigenvalue problem. The obvious appli-
cation of Newton’s method lead to the iterative process
dXkþ1 AXH

k þ B
� �

þ ðXkAþ CÞdXH

kþ1 ¼ �RðXkÞ;
which is a w-Sylvester equation for dXk+1.

Appendix B. Solution of T-Sylvester equations using generalized inverses [16]

We aim to show the result is tedious and difficult to implement.
The solution of
AX þ XT C ¼ B; A;C 2 Cm�n ðm – nÞ ð5:1Þ
was investigated using generalized inverses. We shall only quote the main result, ignoring some special cases.
Let G � A(1) [2], the 1-inverse which satisfies AGA = A, with the projections P11 � G1A1, P12 � A1G1, P21 � G2A2 and

P22 � A2G2, and
A1 � AT þ C; B1 � Bþ BT ; G1 � Að1Þ1 ;

A2 � AT � C; B2 � B� BT ; G2 � Að1Þ2 ;

A3 � ðI � P22ÞA1; G3 � ½ðI � P22ÞA1	ð1Þ:
We have the following result for the solution of (5.1):

Theorem 5.1 (17, Extension 2). The necessary and sufficient conditions for the solvability of (5.1) are:
I � PT
11

� �
B1ðI � P11Þ ¼ 0; I � PT

21

� �
B2ðI � P21Þ ¼ 0; I � PT

31

� �
B3ðI � P31Þ ¼ 0
where B3 � 2B� AT
1PT

22Z2P22A2 � AT
2PT

22Z2P22A1, which is satisfying
B3 ¼ B2 �
1
2

PT
11B1P11 þ AT

2GT
1B1ðI � P11Þ þ PT

12Z1P12A1 �
1
2

PT
11B1G1 þ I � PT

11

� �
B1G1 � AT

1 PT
12Z1P12

� �
A2

� �� �
; ð5:2Þ
where ZT
1 ¼ �Z1 and ZT

2 ¼ Z2.
When the above conditions are satisfied, the general solution to (5.1) is
X ¼ 1
2

GT
1B1P11 þ GT

1B1ðI � P11Þ þ PT
12Z1P12

� �
A1 þ I � PT

12

� � 1
2

GT
3B3P31 þ GT

3B3ðI � P31Þ þ ðI � PT
31ÞY þ PT

32ZP32A3

� �
;

with Y and Z being arbitrary, where P31 � G3 (I � P22)A1 and P32 � [(I � P22)A1](1).
(The first G1 inside the square brackets in (5.2) was mistaken to be an undefined G11 in [16].).
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