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The Methodology
of the Maximum
Likelihood Approach

Estimation, detection, and exploration of seismic events

he retrieval of

information con-

veyed in data

recorded by seis-

mic arrays plays a
key role in seismology and
geophysical exploration.
Accurate localization and reli-
able detection of seismic
events are major tasks in seis-
mic monitoring systems. The
nonstationarity, low signal-to-
noise ratio (SNR), and weak
signal coherence of seismic
data remain challenging
issues for signal processing
algorithms. The maximum
likelihood (ML) approach that
performs well in such critical
conditions is one of the best solutions for simultaneous detec-
tion and localization of seismic events. This article will discuss
the methodology of ML for estimation and detection of seismic
data and its extension to geoacoustic model selection.

INTRODUCTION
Since 1996, the overwhelming majority of countries have
signed the Comprehensive Nuclear Test Ban Treaty, which bans
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nuclear testing underground,
in oceans, and in the atmo-
sphere. One important aspect
of this treaty is the seismic
monitoring regime. The abili-
ty to accurately detect and
locate worldwide all seismic
events above a local magni-
tude of four within a circle of
about 18 km is a formidable
scientific and technical chal-
lenge [1]. Recently, the 2011
magnitude nine earthquake in
Tohoku (also known as the
Great East Japan Earthquake)
triggered extremely devastat-
ing tsunami waves that struck
Japan’s east coast. In addition
to tremendous loss of life and
destruction, nuclear accidents caused by the tsunami at the
Fukushima power plant was a serious health and safety concern
to countries around the globe. Hence, the task of reliable, effi-
cient, and accurate detection of seismic events is of great impor-
tance to early warning systems and disaster mitigation.

To extract information contained in propagating waves, one
has to automatically process signals measured by a network of
seismic arrays and single stations with robust algorithms [2]-
[4]. In this article, we address the aspect of signal detection and
parameter extraction from a single regional seismic array [5]. In
particular, we will investigate a statistically motivated ML
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approach for seismic data analysis. Among existing array pro-
cessing methods, the ML approach is characterized by optimal
statistical properties and robustness against critical scenarios
involving low SNRs, closely located sources, and signals coher-
ence. In addition, the ML approach is applicable to both narrow
band and broadband data. Unlike subspace methods, which
require an additional focusing step in the broadband case, the
ML approach combines broadband data in a statistically justified
manner by exploiting asymptotic normality and independence
of Fourier transformed data [5]. Based on the likelihood princi-
ple, a multiple test procedure can be formulated to detect seis-
mic events with high accuracy and good time resolution [6].
The detection capability is of particular importance when multi-
ple events happen within short time intervals. In [7], the experi-
mental comparison with subspace methods [8] and the
beamforming-based f-k analysis [9] shows that the ML approach
provides the best estimation accuracy and resolution in space
and time.

In the following, we first describe the array data model, their
statistical properties in frequency domain, and the underlying
parametric model. Next, the ML estimates for wave parameters
are derived and the multiple hypothesis testing for signal detec-
tion is addressed. The application of the ML approach to geo-
acoustic model selection is briefly discussed. Finally we show
experimental results obtained by processing data recorded by
the German Experimental Seismic System (GERESS) array and
make a comparison between the proposed ML method and f-k
analysis in terms of their performance.

DATA MODEL

Seismic events generate waves propagating through the interior
of the earth and along its surface layer. For propagation distance
much larger than the array aperture, the wave fronts lie approx-
imately on a flat plane perpendicular to the propagation direc-
tion. The wave field is observed by sensors located at N distinct
positions p; i =1, ..., N. Suppose M wave types are present.
The array outputs are sampled temporally by a properly chosen
sampling frequency and short-time Fourier-transformed

l T-1 )
X(w) = W t_zowl(z‘)x(t)e”’”’, I=1,...,L, (1)

where w,(¢) s are orthonormal window functions [10], [11].
Assuming the plane wave model, the steering vector associated
with the 7/th wave is given by

‘[l(w) = [eingl‘rpl’ A )einglrp[\lTl (2)

where the superscript 7' defines matrix transpose. The expres-
sion (2) considers only sensitivity in the vertical direction.
More details on polarization sensitive arrays can be found in
[12]. The slowness vector &; is related to the propagation
velocity V;, azimuth «;, and elevation ¢, through the following
equation:

[ =

[cos ¢;sin oy, COs ¢p;cos a;, sin ;] (3)
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In the frequency domain, array outputs can be approximately
described through a nonlinear regression model

X(0) = Hw,d)S (w) + Ulw), (4)

where the transfer function H(w, 9) = [d;(0) . . . dy(w)] con-
sists of M steering vectors. The nonlinear wave parameters are
summarized in 9 = [&,, . .., £y]. 8% (w) and U (w) denote the
Fourier-transformed signal and noise vectors, respectively.

The advantages of using orthonormal windows, for example,
prolate spheroidal sequences suggested in [10] and [11] in (1)
include the following:

1) The energy in the observation interval can be concentrated

in a prespecified frequency band.

2) The orthogonality of window functions decouples the

dependence of X'(w), (I =1, ..., L) and leads to a reduced

variance in estimation of the array spectral matrix.

The ML approach relies on proper probabilistic modeling of
the data. According to asymptotic theory of Fourier transform
[13][14], thearrayoutput X*(w) ischaracterizedbythefollowingsta-
tistical features:

For large T, X'(w) is complex normally distributed.

When the signal $/(w) is considered as deterministic,
the distribution of X(w) is completely specified by the
mean H(w,d)8(w) and covariance matrix Cy(w), denoted
by X/(w) ~N(H(w, 3)S (), Cy(w)).

For different frequency bins, o; # w;, X'(w;) and X(w))
are mutually independent.

In contrary to analysis based on time domain observation
x(¢), these properties do not assume normal distribution in
time domain. In fact, they only require regularity conditions on
the moments of x(#). The noise covariance matrix is defined as
Cp(w) = E[U'(w)U'(w)""], where the superscript H denotes
Hermitian transpose. For uncorrelated and identical sensor
noise, Cyi(w) = v(w)I where the noise level v(w) is constant for
[=1,...,L.

The problem of central interest is to detect seismic events
and estimate the wave parameters using the array observa-
tions. The frequencies wy, ..., w; chosen for processing
should cover most seismic energy. The unknown signal
parameters S’(cuj) and noise spectral parameters u(wj) are
summarized in the vectors S and », respectively.

ML APPROACH

The ML approach for parameter estimation for sensor array pro-
cessing is well known to have excellent statistical performance
and robustness. More importantly, the statistical properties of
Fourier transformed data allow a natural combination of differ-
ent frequency bins. These features make the ML method an
attractive solution in processing broadband data. For
geophysical applications, determination of arrival times of seis-
mic waves plays a crucial role. In the ML framework, localiza-
tion and detection of seismic activities can be carried out
simultaneously. A generalized likelihood ratio test can be easily
constructed if an estimate for wave parameters is available.
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PARAMETER ESTIMATION
Following the properties of normal distribution and indepen-
dency discussed in the previous section, the broadband log-like-
lihood function is given by

J

£09,80) = LS S Nogne) + - (X(w)

=1j=1 V(wj)

— H(w, 9)8(w,)"(X!(w;) — H(w;, 9)S(w,). ()

Direct maximization of (5) is computationally prohibitive due to
a high dimension of parameter space. Fortunately, the signal and
noise parameters are separable and the dependence on S,(w;)
and v(w;) can be removed through replacing the unknown sig-
nal and noise parameters by their ML estimates at fixed and
unknown wave parameters ¥ [13]. Omitting the constant term,
the broadband concentrated likelihood function is given by

L(9)=— élog tr[(d = P(w;, @) Cw))), (6)

7

where P(w;, 9) is the projection matrix onto the column space
of the transfer matrix H(w;, ¥) and the sample spectral matrix
is given by C,(w;) =} 31 X'(;) X (w;)"". The ML estimate &
is obtained from maximizing (6)

J =arg n})aXL(ﬁ). (7)

It is worth noting that the noise level v(w;) is estimated by
() = VN tr[(I - P(w, 9)C,(w;)]. The likelihood function
(6) suggests that the optimizing parameter minimizes the geo-
metric mean of estimated noise power over frequencies.

SIGNAL DETECTION

The detection of seismic events can be formulated as a multiple
hypothesis test. Suppose the maximal number of signals tobe M.
The detection procedure discovers the mth signal by testing the
null hypothesis H,, against the alternative A,,,.

For m=1,
H, : Data contains only noise.
X(wj) = U(wj)
A; : Data contains at least one signal.
X(wj) = H1(wj; l91)81(%‘) + U(wj) ®)
For m=2, ..., M.
H,, : Data contains at most (m — 1) signals.

X(w;) =H,,_(0); 8,,-1)Sn-1(0;) + Ulw;)
A,, : Data contains at least m signals.

X(w)) = H,(w;; 9,,)S,(w;) + Ulw)) 9)

Starting from the noise only hypothesis H;, the test decides if a
signal is present. If no signal is present, the procedure stops. If a
signal is detected, the procedure goes to the next step and
decides if a second signal is present in the observation. This pro-

cess continues until the maximum number of signals M,,,, is
reached. The subscript (+),, in (8) and (9) emphasizes the matrix
dimension and the number of parameters associated with the
assumed model.

The test statistic for testing H,, against A,, is constructed
by the likelihood ratio principle [5]

T,, = supL(9,,) — sup L(9,,_1). (10)
9,

D

Inserting the ML estimate 9, and 9,,_; into the concentrated
likelihood function, the resulting test statistic is given by

J
Tm = ETm(a’j); (11)
Jj=1
2

F ( 8 o @ tr[(Pm(wj; '9m) _mel(wj; 1?,mfl))éx(wj)]

n (13)
The statistic F,,(w;; 9,,) is asymptotically , , -distributed
under null hypothesis with degrees of freedom #;, n, [15].
Taking the estimated nonlinear parameters into account, the
degrees of freedom are given by [16]

n=L2+r,), n,=L2n—2m—r,,) (14)
with 7,, = dim(9,,) denoting the dimension of the nonlinear
parameter vector associated with the mth signal.

At the mth stage, the test statistic is compared with a thresh-
old?,,todecide whether toreject the hypothesis H,, or retainit. The
rejection of H,,, implies that a (further) signal is discovered; other-
wise, no signal is detected. More specifically,

T, =t, = reject H,,

T,, < t,= retain H,.

CALCULATION OF TEST THRESHOLD

The threshold £,, is chosen to keep a prespecified significance level
(or false alarm rate) at «,,. The probability that a signal is wrongly
detected should be kept less than «,,. Typical values for «,, are
1%, 5%, and 10%. Let F,,(-) denote the null distribution of 7,,.
The threshold is determined by its inverse F,, 1(-) as follows:

tn = T (@) (17

In the narrow band case with J = 1, the test (9) is equivalent to
the F-test [17], the threshold can be easily derived from the F-
distribution. However, in the broadband case, the null
distribution does not have a closed-form expression. To determine
the threshold £, , methods such as normal approximation was
proposed by [18]. Note that the statistics 7,,(w;), (j =1,...,J)
are independent, identically distributed with mean
M = ET,(0;) and variance o, = Var(T,,(w;)). For large sam-
ples J, the test statistic 7, is approximately normally distributed.
The threshold derived from normal distribution is given by
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U—m —
tm = My + — l(am); (18)

Vi

where @~ Y(a,,) is the inverse of the standard normal distribu-
tion function evaluated at «,,. The formulas for computing pu,,
and ¢, can be found in [19]. A more accurate approximation
can be obtained from the Cornish-Fisher expansion that takes
higher-order moments of 7, into account [20] or simulation-
based bootstrap techniques [16], [21].

For simplicity, the test level «,, is kept constant in each detec-
tion stage. The problem of controlling of the global test level can
be achieved by controlling the familywise error-rate (FWE)
through the sequentially rejective Bonferroni-Holm procedure
[22] or the false discovery rate (FDR) through the Benjamini-
Hochberg procedure [23]. The former is discussed in [18] and the
latter is addressed in [24].

Given the Fourier transformed data, the ML approach for esti-
mation and detection of seismic waves is summarized in Table 1.

IMPLEMENTATION OF ML ESTIMATION

The maximization of the likelihood function (6) involves multi-
dimensional search of nonlinear functions. The global maxima
can be computed by stochastic optimization methods such as
the genetic algorithm [25] or simulated annealing in a straight-
forward manner. A computationally more attractive implemen-
tation is to exploit the nature of sequential detection. Recall
that the likelihood ratio (10) for testing H,, against 4,, involves
the estimates 9,,_; and 9,,. Assuming that the components in
3, for the first (m — 1) signals do not deviate from the cor-
responding components in the estimate 9,,, we may employ the
knowledge about the discovered signals and fix their values at
9,,_1. Then the likelihood function is optimized globally over
the slowness parameter &, associated with the mth signal

&, = argmax L(9,,1, &,). (19)

The computational complexity for global optimization is signifi-
cantly reduced. The so-obtained estimate can be refined by carry-
ing out local optimization via local optimization methods such as
Newton-type algorithms using the initial estimate

3:@9 = [‘?’mfl) ng (20)

with a smaller search interval. This implementation shows excel-
lent performance in both simulation and experimental results in
seismic and sonar applications [18], [16], [19].

EXPLORATION OF GEOPHYSICAL STRUCTURES

The geophysical structure of Earth’s surface has been of great
interest to many areas including geology, environmental and civil
engineering, and industrial applications. The geophysical inver-
sion aims to construct a geophysical model that best fits experi-
mental measurements. The majority of current inversion
techniques assumes a constant model structure and computes
the best model within this class of models [26], [27]. Contrary to

[TABLE 1] ML APPROACH FOR ESTIMATION
AND DETECTION OF SEISMIC EVENTS.

INPUT: FOURIER TRANSFORMED DATA {X()), /=1, ..., L,j
MAXIMAL NUMBER OF SIGNALS M,
INITIAL VALUE FOR ESTIMATED NUMBER OF SIGNALS M = 0.
FORm=1,..., Moo
1. WAVE PARAMETER ESTIMATION
FIND THE ML ESTIMATE: 9, = arg max L(9,,).
2. COMPUTE THE TEST STATISTIC T,,, (10).
3. SIGNAL DETECTION
IF T, = t,, REJECT H,,, A SIGNAL IS DETECTED
M = M + 1, UPDATE THE NUMBER OF SIGNALS
m=m + 1, THE PROCEDURE CONTINUES
ELSE BREAK THE LOOP

END

END

OUTPUT: ESTIMATED WAVE PARAMETERS 9y AND DETECTED NUMBER OF
SIGNALS M.

these methods, the ML approach considers models of various
complexity and finds the best model in a hierarchy of models.
The best model within each class maximizes the likelihood func-
tion. The overall best model is selected by hypothesis testing.
Consider the following classes of models of increasing orders

MIC"'CMmC"'MMde. (21)

The major difference between the previously discussed seismic
location and detection is that the propagation waves are caused
by man-made signals in a controlled environment. The array
outputs collected during an experiment can be described by

X(w)) = d(wj; 9,,)S'(w)) + Uw)), (22)

where 9, contains the geophysical parameters associated with
the model class M,,. Note that only one signal source is pres-
ent; hence, S'(w;) is a scalar and d(w;; 9,,) is a column vector.
The transfer function d(wj; 9,,) is derived from underlying
geophysical laws. In a multilayered half-space model discussed
in [28], 9,, may contain thickness parameters of layers,
P-wave and S-wave propagation velocities. The model com-
plexity increases with an increasing numbers of layers.

To select the best model, a sequential generalized likeli-
hood ratio test is suggested in [19] and [28]. Unlike the detec-
tion problem, the dimension of signal subspace remains the
same for all models. To obtain a test statistic with known null
distribution, the two models are tested against a joint signal
subspace spanned by both models. Starting from the smallest
model in (21), M;, we compare two adjacent models M,, and
M,, .1 by carrying out a three-step test.

Step 1
H,, X=U No signal in the data.
S
A, X=1d, dmﬂ]{sj +U M,, or M,,,, gener-

ates the data.
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[TABLE 2] EVENT LIST FROM THE NATIONAL EARTHQUAKE
INFORMATION CENTER (NEIC).

ORIGIN TIME LAT.

LONG. DIST. THEOR.BAZ MAG.

HHMMSS.SS DEG.N DEG.E DEG. DEG. MB  LOCATION
17:42:50 3488 3281 19.86 127.6 3.1 CYPRUS
Step 2
Hy,,, X=d,+U M,, generates the data.
Sy
Ay X=1d,d,. ] S +U Some components cannot
2 be modeled by M,,.
Step 3
H,, X=d,.,+U M,, | generates the data.
S
A, X=1d, dmﬂ]{ Sl} +U Some components cannot
2

be modeled by M,,.

For simplicity, the frequency and parameter dependence has
been omitted in the formulation. The vector d; = d(w; 9),
i=m,m + 1, is the transfer vector computed at the ML esti-

GERESS Data: 01.03.1994 17:43 34.9N 32.8E mb = 3.1 Cyprus

mate obtained under M,. In Step 1, if H; ,, is rejected, we con-
clude that a signal is present in the data and proceed to Step 2.
If the hypothesis H, ,, is accepted, then model M,, is the true
model and the test stops here. Otherwise, we proceed to Step 3.
Step 3 is a cross-check to test if the larger model M,,, , ; is a bet-
ter one. The test statistics based on likelihood ratio have the
same form as (10)—(13). The null distribution and test threshold
can be derived in a similar manner as those for signal detection.
The three-step procedure for model selection has been success-
fully applied to near surface seismic model reconstruction.
More details can be found in [28].

EXPERIMENTAL RESULTS
In this section, we demonstrate feasibility and performance of the
ML approach by processing seismic data recorded by the 25 verti-
cal seismometers of the GERESS array located in the Bavarian
Forest, Germany. The output of each sensor is sampled with
40 Hz. Details about the GERESS arrays can be found in [29].
Because of the relatively small vertical aperture of GERESS
array, the elevation ¢; is taken to be zero.

A teleseismic event, which occurred
on 1 March 1994 in the Eastern
Mediterranean, was selected for analysis.

- 5,000 L — We also applied the conventional sliding
‘g f-k analysis [30] to the same batch of
S OWNWWWWWMWM data for comparison. Theoretical slow-
o ness values for each event are derived
50003560 90 120 150 180 210 240 270 300 330 360 from the AK135 Earth model [31] s ref-
@) erence. Relevant information about the

2 4 : : : : : : : : : : selected events is collected in Table 2.
S For the ML-based algorithm, we
3 B | employed sliding windows of length 3.2 s
3 with a shift of 0.5 s. In each window, data is
% o . ﬂ.ﬂ ﬂ o l ﬂ ”]ﬂ . Iﬂ L l . ﬂ processed by the method described before
= 0O 30 60 90 120 150 180 210 240 270 300 330 360 and the estimated parameters are plotted at
(b) the center of the data window (e.g.,
205 F T T T T T T T T T T ] Figure 1). The spectral density matrix is
< 180} | estimated with L = 3 Thomson’s orthonor-
N oqssl . ,‘A"' ____________________________ | mal windows. J=7 frequency bins
e ool : | between 0.9 and 3.1 Hz are selected for
L L L L L L L L L L estimation and detection. The maximum

0 30 60 90 120 150 180 210 240 270 300 330 360 . .

© number O.f 51gnals is assu.med. to be. th.ree.
. 20 . . . . . . . . . . The log-likelihood function is optimized
g 151 a | over search space V; (apparent velocity)
9.: ol &Q&éx‘ | € [0...50] km/s, o; (back-azimuth)
-*;g 5l % x - L ] e[0...360] d.egree. The correqundmg
E o . . . . . . . . o slowness vector 1s. calcula.ted according to
O 30 60 90 120 150 180 210 240 270 300 330 360 (3 These constraints avoid nonreasonable

[FIG1] Application of wideband ML method to a weak teleseismic event that occurred on
1 March 1994: (a) seismic data recorded at station C2, GERESS array in Germany, (b)
number of detected signals, (c) estimated values for back-azimuth (-) and theoretical
values for back-azimuth (——), and (d) estimated values for velocity (-) and theoretical

values for velocity (x).

Time: 17:46:30 — 17:52:30 (s)
(d)

estimates for »; and offer better accuracy
for a;. A genetic algorithm is used in global
optimization similar to those described in
[25]. The sequential testing is carried out
with test level ,,, = 0.033.

The conventional sliding f-k analysis
also uses a window length of 3.2 s and a
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shift of 0.5 s. The data in each window were first filtered with a
Butterworth bandpass filter of 0.7—2.0 Hz, order three. Next, a
wideband frequency-wavenumber spectrum analysis following
[9] was applied and the corresponding results (back-azimuth
and apparent velocity) were plotted at the center of the data
window (e.g., Figure 2). Furthermore, the quality factor of the
f-k analysis (ratio of the incoherent noise power to the total
power of the sensor output) is displayed in addition to the beam
steered in the estimated direction and centered at the main sta-
tion C2 of the GERESS array.

It is shown in Figure 1 that earthquakes can be detected with
good time resolution by its P phases. No signals are detected for
the S phases. Sometimes there are false alarms. The estimates for
back azimuth are quite accurate while the estimation of apparent
velocity is slightly higher than theoretical values ( X , *). More
accurate estimates can be obtained by including frequency bins
between 0.6 and 0.9 Hz. It was not done in our analysis because
the presence of coherent noise structure in this frequency inter-
val severely affects the detection performance. The signals detect-
ed between 170 and 210 s after begin of analysis is another local
seismic event that can be recognized by slightly different
azimuths and different velocities at 180 s
and 190 s. The application of f-k analysis
to this event shows that under this critical

ML method is a promising alternative to the conventional
method in seismic application.

CONCLUSIONS AND FUTURE WORK

We discussed the ML approach for seismic parameter estima-
tion and signal detection, and its extension to geophysical
model reconstruction. The ML approach has the advantage of
excellent performance, high-resolution capability, and robust-
ness against low SNRs and small samples. Exploiting the
asymptotic normality of Fourier transformed data, the ML
method allows an optimal combination of various frequency
components. More importantly, localization and detection of
seismic events can be carried out simultaneously. The multi-
ple hypothesis test provides a statistically justified framework
for signal detection and model fitting.

Experimental results show that the ML approach provides
both accurate estimates for velocity and location and reliable
indication about the presence of seismic events in critical sce-
narios and long propagation paths. The detection ability will
significantly enhance the power of modern seismic monitoring
systems in minimizing the impact of natural disasters.

GERESS Data: 01.03.1994 17:43 34.9N 32.8E mb = 3.1 Cyprus

condition it is very difficult to claim that a 150 F '
seismic signal is present with help of the
beamformer output and quality of the esti-

mates (see Figure 2). In the absence of a

BEAM (Counts)
o

seismic signal quality lies in the same -190E y y ! ! . . y : ! !
A I 0 30 60 90 120 150 180 210 240 270 300 330 360

range as in the presence of a seismic sig- @)
nal. The estimates for back azimuth are 1 : : : : : : : : : : :
similar to those given by ML approach and -
apparent velocities seem slightly better. £
There is no indication for the regional 3 B doeg &
event detected by ML algorithm in f-k 02" R . D X : L ) .
analysis. 0 30 60 90 120 150 180 210 240 270 300 330 360

In another analysis, an earthquake
originated from Gulf of Aqaba in the 225
Middle East is contaminated by a one > 180
magnitude-unit smaller preshock, locat- g 135
ed about 37 km from the main event. For 90 v % . ]
the first time, both events can be detect- 45030 60 90 120 150 180 210 240 270 300 330 360
ed and localized accurately by applying (©)
the ML approach. The f-k analysis was & 20 — T . — - . — —
only able to identify the strong event and E 15} 0 e 2 . . o o . o
could not discover the weak one. More > 1of .. ‘&1;?;:: T T P P i p
details can be found in [6]. 8 ISR IR I R R L N PN R R WL N Ut

Experimental results show that the ML Z ki i N w.f“ ¢ | e .‘M« : '"'h‘.","ﬁ ‘.zx.% .’W“. ST

method provides not only reasonable esti- 0 30
mates for wave parameters but also a reli-
able indication about the presence of
weak signals or multiple sources for low
SNRs and long propagation paths. The
detection ability is a significant advantage
over routinely used f-k method. Thus the

1
60 90 120 150 180 210 240 270 300 330 360
Time: 17:46:30 — 17:52:30 (s)

(d)

[FIG2] Application of sliding f-k analysis to a weak teleseismic event that occurred on
1 March 1994: (a) beamformer output, (b) quality of estimates, (c) estimated values for
back-azimuth (-) and theoretical values for back-azimuth (——), and (d) estimated
values for velocity (-) and theoretical values for velocity (x).
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In this article, we have considered ML methods under the plane
wave model. Since the ML method is a model-based approach, it
can be expected that further improvement in estimation accuracy
can be achieved if a more realistic seismic model is incorporated
into the algorithm. Another important issue is computational
complexity. Although the processing speed of modern computers
has grown rapidly, computational efficiency still plays an important
role in practical systems. The recursive algorithms suggested in
[32] and [33] facilitate computationally efficient implementation of
ML methods. Their online processing capability can be very benefi-
cial to seismic processing systems. As mentioned in the beginning
of the article, the ML approach discussed here addresses seismic
data processing from the view of a regional seismic array. How to
integrate ML techniques into global seismic monitoring networks
would be a challenging and very important topic in the future.
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