
IEEE SIGNAL PROCESSING MAGAZINE   [40]   MAY 2012

 Digital Object Identifier 10.1109/MSP.2012.2182949
 Date of publication: 9 April 2012

1053-5888/12/$31.00©2012IEEE

T
 he retrieval of 
information con-
veyed  in  data 
recorded by seis-
mic arrays plays a 

key role in seismology and 
geophysical exploration. 
Accurate localization and reli-
able detection of seismic 
events are major tasks in seis-
mic monitoring systems. The 
nonstationarity, low signal-to-
noise ratio (SNR), and weak 
signal coherence of seismic 
data remain challenging 
issues for signal processing 
algorithms. The maximum 
likelihood (ML) approach that 
performs well in such critical 
conditions is one of the best solutions for simultaneous detec-
tion and localization of seismic events. This article will discuss 
the methodology of ML for estimation and detection of seismic 
data and its extension to geoacoustic model selection.

INTRODUCTION
Since 1996, the overwhelming majority of countries have 
signed the Comprehensive Nuclear Test Ban Treaty, which bans 

nuclear testing underground, 
in oceans, and in the atmo-
sphere. One important aspect 
of this treaty is the seismic 
monitoring regime. The abili-
ty to accurately detect and 
locate worldwide all seismic 
events above a local magni-
tude of four within a circle of 
about 18 km is a formidable 
scientific and technical chal-
lenge [1]. Recently, the 2011 
magnitude nine earthquake in 
Tohoku (also known as the 
Great East Japan Earthquake) 
triggered extremely devastat-
ing tsunami waves that struck 
Japan’s east coast. In addition 
to tremendous loss of life and 

destruction, nuclear accidents caused by the tsunami at the 
Fukushima power plant was a serious health and safety concern 
to countries around the globe. Hence, the task of reliable, effi-
cient, and accurate detection of seismic events is of great impor-
tance to early warning systems and disaster mitigation. 

To extract information contained in propagating waves, one 
has to automatically process signals measured by a network of 
seismic arrays and single stations with robust algorithms [2]–
[4]. In this article, we address the aspect of signal detection and 
parameter extraction from a single regional seismic array [5]. In 
particular, we will investigate a statistically motivated ML 
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approach for seismic data analysis. Among existing array pro-
cessing methods, the ML approach is characterized by optimal 
statistical properties and robustness against critical scenarios 
involving low SNRs, closely located sources, and signals coher-
ence. In addition, the ML approach is applicable to both narrow 
band and broadband data. Unlike subspace methods, which 
require an additional focusing step in the broadband case, the 
ML approach combines broadband data in a statistically justified 
manner by exploiting asymptotic normality and independence 
of Fourier transformed data [5]. Based on the likelihood princi-
ple, a multiple test procedure can be formulated to detect seis-
mic events with high accuracy and good time resolution [6]. 
The detection capability is of particular importance when multi-
ple events happen within short time intervals. In [7], the experi-
mental comparison with subspace methods [8] and the 
beamforming-based f-k analysis [9] shows that the ML approach 
provides the best estimation accuracy and resolution in space 
and time. 

In the following, we first describe the array data model, their 
statistical properties in frequency domain, and the underlying 
parametric model. Next, the ML estimates for wave parameters 
are derived and the multiple hypothesis testing for signal detec-
tion is addressed. The application of the ML approach to geo-
acoustic model selection is briefly discussed. Finally we show 
experimental results obtained by processing data recorded by 
the German Experimental Seismic System (GERESS) array and 
make a comparison between the proposed ML method and f–k 
analysis in terms of their performance. 

DATA MODEL
Seismic events generate waves propagating through the interior 
of the earth and along its surface layer. For propagation distance 
much larger than the array aperture, the wave fronts lie approx-
imately on a flat plane perpendicular to the propagation direc-
tion. The wave field is observed by sensors located at N distinct 
positions pi, i5 1, c, N. Suppose M wave types are present. 
The array outputs are sampled temporally by a properly chosen 
sampling frequency and short-time Fourier-transformed 

 X l 1v2 5 1

"T
 a
T21

t50
wl 1t 2x 1t 2e2jvt,  l5 1, c, L, (1)

where wl 1t 2  s are orthonormal window functions [10], [11]. 
Assuming the plane wave model, the steering vector associated 
with the ith wave is given by 

 di 1v2 5 3e2jvji
Tp1, c,e2jvji

TpN 4T, (2)

where the superscript T defines matrix transpose. The expres-
sion (2) considers only sensitivity in the vertical direction. 
More details on polarization sensitive arrays can be found in 
[12]. The slowness vector ji is related to the propagation 
velocity Vi, azimuth ai, and elevation fi through the following 
equation: 

 ji5
1
Vi

 3cos fi sin ai,  cos fi cos ai, sin fi 4T. (3)

In the frequency domain, array outputs can be approximately 
described through a nonlinear regression model 

 X l 1v2 5H 1v,q2S l 1v2 1U l 1v2 ,  (4)

where the transfer function H 1v, q2 5 3d1 1v2 cdM 1v24 con-
sists of M steering vectors. The nonlinear wave parameters are 
summarized in q5 3j1, c, jM 4. Sl 1v2  and U l 1v2  denote the 
Fourier-transformed signal and noise vectors, respectively. 

The advantages of using orthonormal windows, for example, 
prolate spheroidal sequences suggested in [10] and [11] in (1) 
include the following: 

1) The energy in the observation interval can be concentrated 
in a prespecified frequency band. 
2) The orthogonality of window functions decouples the 
dependence of X l 1v2 , 1 l5 1, c, L 2  and leads to a reduced 
variance in estimation of the array spectral matrix. 
The ML approach relies on proper probabilistic modeling of 

the data. According to asymptotic theory of Fourier transform 
[13] [14], the array output X l1v2  is characterized by the following sta-
tistical features: 

 ■ For large T, X l 1v2  is complex normally distributed. 
 ■ When the signal S l 1v2  is considered as deterministic, 

the distribution of X l 1v2  is completely specified by the 
mean H 1v,q2Sl 1v2  and covariance matrix CU l 1v2 , denoted 
by X l 1v2 |Nc 1H 1v, q2S l 1v2 , CU l 1v22 . 

 ■ For different frequency bins, v i 2 v j, X l 1v i2  and X l 1v j2  
are mutually independent.
In contrary to analysis based on time domain observation 

x 1t 2 , these properties do not assume normal distribution in 
time domain. In fact, they only require regularity conditions on 
the moments of x 1t 2 . The noise covariance matrix is defined as 
CU l 1v2 5 E 3U l 1v2U l 1v2H 4, where the superscript H denotes 
Hermitian transpose. For uncorrelated and identical sensor 
noise, CU l 1v2 5n 1v2I where the noise level n 1v 2  is constant for 
l5 1, c, L. 

The problem of central interest is to detect seismic events 
and estimate the wave parameters using the array observa-
tions. The frequencies v1, c, vJ  chosen for processing 
should cover most seismic energy. The unknown signal 
parameters Sl 1v j2  and noise spectral parameters n 1v j2  are 
summarized in the vectors S and n, respectively. 

ML APPROACH
The ML approach for parameter estimation for sensor array pro-
cessing is well known to have excellent statistical performance 
and robustness. More importantly, the statistical properties of 
Fourier transformed data allow a natural combination of differ-
ent frequency bins. These features make the ML method an 
attractive solution in processing broadband data. For 
 geophysical applications, determination of arrival times of seis-
mic waves plays a crucial role. In the ML framework, localiza-
tion and detection of seismic activities can be carried out 
simultaneously. A generalized likelihood ratio test can be easily 
constructed if an estimate for wave parameters is available. 
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PARAMETER ESTIMATION
Following the properties of normal distribution and indepen-
dency discussed in the previous section, the broadband log-like-
lihood function is given by 

L 1q, S, n2 52La
L

l51
a

J

j51
cN logn 1v j2 1 1

n 1v j2 1X
l 1v j2

 2H 1v j, q2Sl 1v j 22H 1X l 1v j 22H 1v j, q 2Sl 1v j 2d . (5)

Direct maximization of (5) is computationally prohibitive due to 
a high dimension of parameter space. Fortunately, the signal and 
noise parameters are separable and the dependence on Sl 1v j 2  
and n 1v j 2  can be removed through replacing the unknown sig-
nal and noise parameters by their ML estimates at fixed and 
unknown wave parameters q [13]. Omitting the constant term, 
the broadband concentrated likelihood function is given by 

 L 1q2 52a
J

j51
log tr S1I2 P 1v j, q 22  Ĉx 1v j 2T, (6)

where P 1v j, q 2  is the projection matrix onto the column space 
of the transfer matrix H 1v j, q 2  and the sample spectral matrix 
is given by Ĉx 1v j 2 5 1

LgL
l51 X

l 1v j2X l 1v j2H. The ML estimate q̂ 
is obtained from maximizing (6) 

 q̂5 arg max
q

 L 1q 2 . (7)

It is worth noting that the noise level n 1vi 2  is estimated by 
n̂ 1v j2 5 1/N tr 31I2 P 1v j, q 2C ^ x 1v j 24. The likelihood function 
(6) suggests that the optimizing parameter minimizes the geo-
metric mean of estimated noise power over frequencies. 

SIGNAL DETECTION 
The detection of seismic events can be formulated as a multiple 
hypothesis test. Suppose the maximal number of signals to be Mmax. 
The detection procedure discovers the mth signal by testing the 
null hypothesis Hm against the alternative Am. 

For  m5 1, 

 H1 :  Data contains only noise.

 X 1v j 2 5U 1v j 2
 A1 :  Data contains at least one signal.

 X 1v j 2 5H1 1v j; q1 2S1 1v j 2 1U 1v j 2  (8)

For  m5 2, c, Mmax 

 Hm : Data contains at most 1m2 1 2  signals.

 X 1vj 2 5Hm21 1v j; qm21 2Sm21 1v j 2 1U 1v j 2  
Am : Data contains at least m signals.

 X 1v j 2 5Hm 1v j; qm 2Sm 1v j 2 1U 1v j 2  (9)

Starting from the noise only hypothesis H1, the test decides if a 
signal is present. If no signal is present, the procedure stops. If a 
signal is detected, the procedure goes to the next step and 
decides if a second signal is present in the observation. This pro-

cess continues until the maximum number of signals Mmax is 
reached. The subscript 1 # 2m in (8) and (9) emphasizes the matrix 
dimension and the number of parameters associated with the 
assumed model. 

The test statistic for testing Hm against Am is constructed 
by the likelihood ratio principle [5] 

 Tm5 sup
qm  

L 1qm 2  2 sup 
qm21

L 1qm21 2 . (10)

Inserting the ML estimate q̂m and q̂m21 into the concentrated 
likelihood function, the resulting test statistic is given by 

 Tm5 a
J

j51
Tm 1v j 2 ,  (11)

 Tm 1v j 2 5 loga11
n1

n2
 Fm 1v j; q̂m 2b,  (12)

Fm 1v j; q̂m2 5 n2

n1
 
tr 31Pm 1v j; q̂m 2 2 Pm21 1v j; q̂m21 22 Ĉx 1v j 24

tr 31I2 Pm 1v j; q̂m 22 Ĉx 1v j24 . 
 (13)

The statistic Fm 1v j; q̂m 2  is asymptotically Fn1, n2
-distributed 

under null hypothesis with degrees of freedom n1, n2 [15]. 
Taking the estimated nonlinear parameters into account, the 
degrees of freedom are given by [16] 

 n15 L 121 rm 2 ,  n25 L 12n2 2m2 rm 2  (14)

with rm5 dim 1qm 2  denoting the dimension of the nonlinear 
parameter vector associated with the mth signal. 

At the mth stage, the test statistic is compared with a thresh-
old tm to decide whether to reject the hypothesis Hm or retain it. The 
rejection of Hm implies that a (further) signal is discovered; other-
wise, no signal is detected. More specifically, 

 Tm $ tm 1 reject Hm, (15)

 Tm , tm 1 retain Hm. (16)

CALCULATION OF TEST THRESHOLD
The threshold tm is chosen to keep a prespecified significance level 
(or false alarm rate) at am. The probability that a signal is wrongly 
detected should be kept less than am. Typical values for am are 
1%, 5%, and 10%. Let Fm 1 # 2  denote the null distribution of Tm. 
The threshold is determined by its inverse Fm

21 1 # 2  as follows: 

 tm5Fm
21 1am 2 . (17)

In the narrow band case with J5 1, the test (9) is equivalent to 
the F-test [17], the threshold can be easily derived from the F-
distribution. However, in the broadband case, the null 
 distribution does not have a closed-form expression. To determine 
the threshold tam

, methods such as normal approximation was 
proposed by [18]. Note that the statistics Tm 1v j 2 , 1 j5 1, c, J 2  
are independent, identically distributed with mean 
mm5 ETm 1v j 2  and variance sm

2 5 Var 1Tm 1v j 22 . For large sam-
ples J, the test statistic Tm is approximately normally  distributed. 
The threshold derived from normal distribution is given by 
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 tm < mm1
sm

"J
 F21 1am 2 ,  (18)

where F21 1am 2  is the inverse of the standard normal distribu-
tion function evaluated at am. The formulas for computing mm 
and sm

2  can be found in [19]. A more accurate approximation 
can be obtained from the Cornish-Fisher expansion that takes 
higher-order moments of Tm into account [20] or simulation-
based bootstrap techniques [16], [21]. 

For simplicity, the test level am is kept constant in each detec-
tion stage. The problem of controlling of the global test level can 
be achieved by controlling the familywise error-rate (FWE) 
through the sequentially rejective Bonferroni-Holm procedure 
[22] or the false discovery rate (FDR) through the Benjamini-
Hochberg procedure [23]. The former is discussed in [18] and the 
latter is addressed in [24]. 

Given the Fourier transformed data, the ML approach for esti-
mation and detection of seismic waves is summarized in Table 1. 

IMPLEMENTATION OF ML ESTIMATION
The maximization of the likelihood function (6) involves multi-
dimensional search of nonlinear functions. The global maxima 
can be computed by stochastic optimization methods such as 
the genetic algorithm [25] or simulated annealing in a straight-
forward manner. A computationally more attractive implemen-
tation is to exploit the nature of sequential detection. Recall 
that the likelihood ratio (10) for testing Hm against Am involves 
the estimates q̂m21 and q̂m. Assuming that the components in 
q̂m21 for the first 1m2 1 2  signals do not deviate from the cor-
responding components in the estimate q̂m, we may employ the 
knowledge about the discovered signals and fix their values at 
q̂m21. Then the likelihood function is optimized globally over 
the slowness parameter jm associated with the mth signal 

 ĵm5 arg max
jm

 L 1q̂m21, jm 2 . (19)

The computational complexity for global optimization is signifi-
cantly reduced. The so-obtained estimate can be refined by carry-
ing out local optimization via local optimization methods such as 
Newton-type algorithms using the initial estimate 

 q̂m
3045 3q̂m21, ĵm 4 (20)

with a smaller search interval. This implementation shows excel-
lent performance in both simulation and experimental results in 
seismic and sonar applications [18], [16], [19]. 

EXPLORATION OF GEOPHYSICAL STRUCTURES
The geophysical structure of Earth’s surface has been of great 
interest to many areas including geology, environmental and civil 
engineering, and industrial applications. The geophysical inver-
sion aims to construct a geophysical model that best fits experi-
mental measurements. The majority of current inversion 
techniques assumes a constant model structure and computes 
the best model within this class of models [26], [27]. Contrary to 

these methods, the ML approach considers models of various 
complexity and finds the best model in a hierarchy of models. 
The best model within each class maximizes the likelihood func-
tion. The overall best model is selected by hypothesis testing. 

Consider the following classes of models of increasing orders 

 M1 (c(Mm (cMMmax
. (21)

The major difference between the previously discussed seismic 
location and detection is that the propagation waves are caused 
by man-made signals in a controlled environment. The array 
outputs collected during an experiment can be described by 

 X l 1v j 2 5 d 1v j; qm 2Sl 1v j2 1U l 1v j2, (22)

where qm contains the geophysical parameters associated with 
the model class Mm. Note that only one signal source is pres-
ent; hence, Sl 1v j 2  is a scalar and d 1v j; qm2  is a column vector. 
The transfer function d 1v j; qm2  is derived from underlying 
geophysical laws. In a multilayered half-space model discussed 
in [28], qm may contain thickness parameters of layers, 
P-wave and S-wave propagation velocities. The model com-
plexity increases with an increasing numbers of layers. 

To select the best model, a sequential generalized likeli-
hood ratio test is suggested in [19] and [28]. Unlike the detec-
tion problem, the dimension of signal subspace remains the 
same for all models. To obtain a test statistic with known null 
distribution, the two models are tested against a joint signal 
subspace spanned by both models. Starting from the smallest 
model in (21), M1, we compare two adjacent models Mm and 
Mm11 by carrying out a three-step test. 

Step 1
H1, m X5U No signal in the data. 

A1, m X5 3dm dm11 4 cS1

S2
d 1U   Mm or Mm11 gener-

ates the data.

[TABLE 1] ML APPROACH FOR ESTIMATION 
AND DETECTION OF SEISMIC EVENTS.

INPUT: FOURIER TRANSFORMED DATA 5X l 1v j 2 , l5 1, c, L, j5 0, c, J2 16 
 MAXIMAL NUMBER OF SIGNALS Mmax  

 INITIAL VALUE FOR ESTIMATED NUMBER OF SIGNALS M̂5 0. 

FOR m5 1, c, Mmax 

1. WAVE PARAMETER ESTIMATION 

  FIND THE ML ESTIMATE: q̂m5 arg maxqm
L 1qm 2 . 

2. COMPUTE THE TEST STATISTIC Tm (10). 

3. SIGNAL DETECTION 

  IF Tm $ tm, REJECT Hm, A SIGNAL IS DETECTED 

   M̂5 M̂1 1, UPDATE THE NUMBER OF SIGNALS 

   m5m1 1, THE PROCEDURE CONTINUES 

  ELSE BREAK THE LOOP 

  END 

END 

OUTPUT:  ESTIMATED WAVE PARAMETERS q̂M̂  AND DETECTED NUMBER OF 
SIGNALS M̂.



IEEE SIGNAL PROCESSING MAGAZINE   [44]   MAY 2012

Step 2
H2, m X5 dm1U Mm generates the data. 

A2, m X5 3dm dm11 4 cS1

S2
d 1U  Some components cannot 

be modeled by Mm. 
Step 3
H3, m X5 dm111U Mm11 generates the data. 

A3, m X5 3dm dm11 4 cS1

S2
d 1U   Some components cannot 

be modeled by Mm.

For simplicity, the frequency and parameter dependence has 
been omitted in the formulation. The vector di5 d 1v j; q̂i 2 , 
i5m, m1 1, is the transfer vector computed at the ML esti-

mate obtained under Mi. In Step 1, if H1, m is rejected, we con-
clude that a signal is present in the data and proceed to Step 2. 
If the hypothesis H2, m is accepted, then model Mm is the true 
model and the test stops here. Otherwise, we proceed to Step 3. 
Step 3 is a cross-check to test if the larger model Mm11 is a bet-
ter one. The test statistics based on likelihood ratio have the 
same form as (10)–(13). The null distribution and test threshold 
can be derived in a similar manner as those for signal detection. 
The three-step procedure for model selection has been success-
fully applied to near surface seismic model reconstruction. 
More details can be found in [28]. 

EXPERIMENTAL RESULTS
In this section, we demonstrate feasibility and performance of the 
ML approach by processing seismic data recorded by the 25 verti-
cal seismometers of the GERESS array located in the Bavarian 
Forest, Germany. The output of each sensor is sampled with 
40 Hz. Details about the GERESS arrays can be found in [29]. 
Because of the relatively small vertical aperture of GERESS 
array, the elevation fi is taken to be zero. 

A teleseismic event, which occurred 
on 1 March 1994 in the Eastern 
Mediterranean, was selected for analysis. 
We also applied the conventional sliding 
f–k analysis [30] to the same batch of 
data for comparison. Theoretical slow-
ness values for each event are derived 
from the AK135 Earth model [31] as ref-
erence. Relevant information about the 
selected events is collected in Table 2. 

For the ML-based algorithm, we 
employed sliding windows of length 3.2 s 
with a shift of 0.5 s. In each window, data is 
processed by the method described before 
and the estimated parameters are plotted at 
the center of the data window (e.g., 
Figure  1). The spectral density matrix is 
estimated with L5 3 Thomson’s orthonor-
mal windows. J5 7  frequency bins 
between 0.9 and 3.1 Hz are selected for 
estimation and detection. The maximum 
number of signals is assumed to be three. 
The log–likelihood function is optimized 
over search space Vi (apparent velocity) 
[ 30 c50 4  km/s, ai (back–azimuth) 
[ 30 c360 4 degree. The corresponding 

slowness vector is calculated according to 
(3). These constraints avoid nonreasonable 
estimates for vi and offer better accuracy 
for ai. A genetic algorithm is used in global 
optimization similar to those described in 
[25]. The sequential testing is carried out 
with test level am5 0.033. 

The conventional sliding f–k analysis 
also uses a window length of 3.2 s and a 

[TABLE 2] EVENT LIST FROM THE NATIONAL EARTHQUAKE 
INFORMATION CENTER (NEIC).

ORIGIN TIME 
HHMMSS.SS 

LAT. 
DEG. N 

LONG. 
DEG. E 

DIST. 
DEG. 

THEOR. BAZ 
DEG. 

MAG. 
MB LOCATION 

17:42:50 34.88 32.81 19.86 127.6 3.1 CYPRUS 

0 30 60 90 120 150 180 210 240 270 300 330 360
−5,000

0

5,000
GERESS Data: 01.03.1994 17:43 34.9N 32.8E mb = 3.1 Cyprus

C
2 

(C
ou

nt
s)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

2

4

D
et

ec
te

d 
S

ou
rc

es

0 30 60 90 120 150 180 210 240 270 300 330 360

90

135

180

225

B
az

 (
°)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

5

10

15

20

V
el

oc
ity

 (
km

/s
)

Time: 17:46:30 – 17:52:30 (s)
(d)

(c)

(b)

(a)

[FIG1] Application of wideband ML method to a weak teleseismic event that occurred on 
1 March 1994: (a) seismic data recorded at station C2, GERESS array in Germany, (b) 
number of detected signals, (c) estimated values for back-azimuth (?) and theoretical 
values for back-azimuth (22), and (d) estimated values for velocity (?) and theoretical 
values for velocity (3).
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shift of 0.5 s. The data in each window were first filtered with a 
Butterworth bandpass filter of 0.722.0 Hz, order three. Next, a 
wideband frequency-wavenumber spectrum analysis following 
[9] was applied and the corresponding results (back-azimuth 
and apparent velocity) were plotted at the center of the data 
window (e.g., Figure 2). Furthermore, the quality factor of the 
f–k analysis (ratio of the incoherent noise power to the total 
power of the sensor output) is displayed in addition to the beam 
steered in the estimated direction and centered at the main sta-
tion C2 of the GERESS array. 

It is shown in Figure 1 that earthquakes can be detected with 
good time resolution by its P phases. No signals are detected for 
the S phases. Sometimes there are false alarms. The estimates for 
back azimuth are quite accurate while the estimation of apparent 
velocity is slightly higher than theoretical values 1 3 , * 2 . More 
accurate estimates can be obtained by including frequency bins 
between 0.6 and 0.9 Hz. It was not done in our analysis because 
the presence of coherent noise structure in this frequency inter-
val severely affects the detection performance. The signals detect-
ed between 170 and 210 s after begin of analysis is another local 
seismic event that can be recognized by slightly different 
 azimuths and different velocities at 180 s 
and 190 s. The application of f–k analysis 
to this event shows that under this critical 
condition it is very difficult to claim that a 
seismic signal is present with help of the 
beamformer output and quality of the esti-
mates (see Figure 2). In the absence of a 
seismic signal quality lies in the same 
range as in the presence of a seismic sig-
nal. The estimates for back azimuth are 
similar to those given by ML approach and 
apparent velocities seem slightly better. 
There is no indication for the regional 
event detected by ML algorithm in f-k 
analysis. 

In another analysis, an earthquake 
originated from Gulf of Aqaba in the 
Middle East is contaminated by a one 
magnitude-unit smaller preshock, locat-
ed about 37 km from the main event. For 
the first time, both events can be detect-
ed and localized accurately by applying 
the ML approach. The f-k analysis was 
only able to identify the strong event and 
could not discover the weak one. More 
details can be found in [6]. 

Experimental results show that the ML 
method provides not only reasonable esti-
mates for wave parameters but also a reli-
able indication about the presence of 
weak signals or multiple sources for low 
SNRs and long propagation paths. The 
detection ability is a significant advantage 
over routinely used f–k method. Thus the 

ML method is a promising alternative to the conventional 
method in seismic application. 

CONCLUSIONS AND FUTURE WORK
We discussed the ML approach for seismic parameter estima-
tion and signal detection, and its extension to geophysical 
model reconstruction. The ML approach has the advantage of 
excellent performance, high-resolution capability, and robust-
ness against low SNRs and small samples. Exploiting the 
asymptotic normality of Fourier transformed data, the ML 
method allows an optimal combination of various frequency 
components. More importantly, localization and detection of 
seismic events can be carried out simultaneously. The multi-
ple hypothesis test provides a statistically justified framework 
for signal detection and model fitting. 

Experimental results show that the ML approach provides 
both accurate estimates for velocity and location and reliable 
indication about the presence of seismic events in critical sce-
narios and long propagation paths. The detection ability will 
significantly enhance the power of modern seismic monitoring 
systems in minimizing the impact of natural disasters. 
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[FIG2] Application of sliding f-k analysis to a weak teleseismic event that occurred on 
1 March 1994: (a) beamformer output, (b) quality of estimates, (c) estimated values for 
back-azimuth (?) and theoretical values for back-azimuth (22), and (d) estimated 
values for velocity (?) and theoretical values for velocity (3). 
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In this article, we have considered ML methods under the plane 
wave model. Since the ML method is a model-based approach, it 
can be expected that further improvement in estimation accuracy 
can be achieved if a more realistic seismic model is incorporated 
into the algorithm. Another important issue is computational 
complexity. Although the processing speed of modern computers 
has grown rapidly, computational efficiency still plays an important 
role in practical systems. The recursive algorithms suggested in 
[32] and [33] facilitate computationally efficient implementation of 
ML methods. Their online processing capability can be very benefi-
cial to seismic processing systems. As mentioned in the beginning 
of the article, the ML approach discussed here addresses seismic 
data processing from the view of a regional seismic array. How to 
integrate ML techniques into global seismic monitoring networks 
would be a challenging and very important topic in the future. 

AUTHORS
Pei-Jung Chung (peijung.chung@gmail.com) received the 
 Dr.-Ing. with distinction in 2002 from Ruhr-Universität 
Bochum, Germany. From 2002 to 2004, she held a postdoctoral 
position at Carnegie Mellon University and the University of 
Michigan, Ann Arbor, respectively. From 2004 to 2006, she was 
an assistant professor with National Chiao Tung University, Hsin 
Chu, Taiwan. In 2006, she joined the Institute for Digital 
Communications, School of Engineering, the University of 
Edinburgh, United Kingdom as a lecturer. Currently, she is an 
associate member of the IEEE Signal Processing Society Sensor 
Array Multichannel Technical Committee and serves on the 
IEEE Communications Society, Multimedia Communications 
Technical Committee as vice chair of the Interest Group on 
Acoustic and Speech Processing for Communications. Her 
research interests include array processing, statistical signal pro-
cessing, wireless multiple-input and multiple-output communi-
cations, and distributed processing in wireless sensor networks. 

Johann F. Böhme (Johann.Boehme@rub.de) received the 
Diplom in mathematics in 1966, the Dr.-Ing. in 1970, and the 
Habilitation in 1977, both in computer science, from the Technical 
University of Hannover, Germany, the University of Erlangen, 
Germany, and the University of Bonn, Germany, respectively. From 
1967 to 1974, he was with the Sonar-Research Laboratory of 
Krupp Atlas Elektronik in Bremen, Germany. He was with the 
University of Bonn until 1978 and the FGAN in Wachtberg, 
Werthhoven. He has been a professor of signal theory in the 
Department of Electrical Engineering and Information Sciences, 
Ruhr-Universität Bochum, Germany, since 1980. His research 
interests are in the areas of statistical signal processing and its 
applications. He is an IEEE Life Fellow and recipient of the 2003 
IEEE Signal Processing Society Technical Achievement Award. 

REFERENCES
[1] E. S. Husebye and A. Dainty, Eds., Monitoring a Comprehensive Test Ban 
Treaty. Dordrecht, The Netherlands: Kluwer, 1996.

[2] T. C. Bache, S. R. Bratt, H. J. Swanger, G. W. Beall, and F. K. Dashiell, “Knowledge-
based interpretation of seismic data in the intelligent monitoring system,” Bull. Seism. 
Soc. Amer., vol. 83, no. 5, pp. 1507–1526, 1993.

[3] L. M. Haikin, A. F. Kushnir, and A. M. Dainty, “Combined automated and off-
line computer processing system for seismic monitoring with small aperture arrays,” 
Seism. Res. Lett., vol. 69, no. 3, pp. 235–247, 1998.

[4] G. Ekstrom, “Global detection and location of seismic sources by using surface 
waves,” Bull. Seism. Soc. Am. A, vol. 96, no. 4, pp. 1201–1212, 2006.

[5] J. F. Böhme, “Retrieving signals from array data,” in Monitoring a 
Comprehensive Test Ban Treaty, E. S. Husebye and A. M. Dainty, Eds. Alvor, 
Portugal: NATO ASI, Jan. 23–Feb. 2, 1995, pp. 587–610.

[6] P.-J. Chung, M. L. Jost, and J. F. Böhme, “Seismic wave parameter estimation and 
signal detection using broadband maximum likelihood methods,” Comput. Geosci., 
vol. 27, no. 2, pp. 147–156, Mar. 2001.

[7] P.-J. Chung, A. B. Gershman, and J. F. Böhme, “Comparative study of two-dimen-
sional maximum likelihood and interpolated root-MUSIC with application to teleseis-
mic source localization,” in Proc. IEEE Signal Processing Workshop Statistical Sig-
nal and Array Processing, Pocono Manor, PA, Aug. 14–16, 2000, pp. 68–72.

[8] D. V. Sidorovich and A. B. Gershman, “Two-dimensional wideband interpolated 
root-MUSIC applied to measured seismic data,” IEEE Trans. Signal Processing, vol. 
46, no. 8, pp. 2263–2267, Aug. 1998.

[9] J. Capon, “High-resolution frequency–wavenumber spectrum analysis,” Proc. 
IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[10] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 
70, no. 9, pp. 1055–1096, Sept. 1982.

[11] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications, 
Multitaper and Conventional Univariate Techniques. Cambridge, U.K.: Cambridge 
Univ. Press, 1993.

[12] D. Maiwald, D. V. Sidorovitch, and J. F. Bohme, “Broadband maximum likelihood 
wave parameter estimation using polarization sensitive arrays,” in Proc. IEEE Int. 
Conf. Acoustics, Speech, and Signal Processing, vol. 4, 1993, pp. 356–359.

[13] J. F. Böhme, “Array processing,” in Advances in Spectrum Analysis and Array 
Processing, S. Haykin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1991, pp. 1–63.

[14] D. R. Brillinger, Time Series: Data Analysis and Theory, expanded ed. San 
Francisco, CA: Holden-Day, 1981.

[15] N. L. Johnson and S. Kotz, Continuous Univariate Distributions-2. New York: 
Wiley, 1970.

[16] D. Maiwald, “Breitbandverfahren zur Signalentdeckung und -ortung mit Sen-
sorgruppen in Seismik- und Sonaranwendungen,” Dissertation, Faculty Elect. Eng., 
Ruhr Univ. Bochum, Germany, May 1995.

[17] R. H. Shumway, “Replicated time-series regression: An approach to signal esti-
mation and detection,” in Handbook of Statistics, vol. 3, D. R. Brillinger and P. R. 
Krishnaiah, Eds. New York: Elsevier Science Publishers B.V., 1983, pp. 383–408.

[18] D. Maiwald and J. F. Böhme, “Multiple testing for seismic data using bootstrap,” 
in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Adelaide, South 
Australia, 1994, vol. 6, pp. 89–92.

[19] C. F. Mecklenbräuker, P. Gerstoft, J. F. Böhme, and P.-J. Chung, “Hypothesis 
testing for geoacoustic environmental models using likelihood ratio,” J. Acoust. Soc. 
Amer., vol. 105, no. 3, pp. 1738–1748, Mar. 1999.

[20] P.-J. Chung, M. Viberg, and C. F. Mecklenbräuker, “Broadband ML estimation un-
der model order uncertainty,” Signal Process., vol. 90, no. 5, pp. 1350–1356, May 2010.

[21] A. M. Zoubir and D. R. Iskander, Bootstrap Techniques for Signal Processing. 
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[22] S. Holm, “A simple sequentially rejective multiple test procedure,” Scand. J. Stat-
ist., vol. 6, pp. 65–70, 1979. 

[23] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical 
and powerful approach to multiple testing,” J. Roy. Statist. Soc. B, vol. 57, no. 1, pp. 
289–300, 1995. 
[24] P.-J. Chung, J. F. Böhme, C. F. Mecklenbräuker, and A. O. Hero, “Detection of the 
number of signals using the Benjamini–Hochberg procedure,” IEEE Trans. Signal 
Processing, vol. 55, no. 6, pp. 2497–2508, June 2007.

[25] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine 
Learning. Reading, MA: Addison-Wesley, 1989.

[26] M. Sambridge, “Geophysical inversion with a neighbourhood algorithm. I. 
Searching a parameter space,” Geophys. J. Int., vol. 138, pp. 479–494, 1999. 

[27] N. Qiu, Q.-S. Liu, Q.-Y. Gao, and Q.-L. Zeng, “Combining genetic algorithm and 
generalized least squares for geophysical potential field data optimized inversion,” 
IEEE Geosci. Remote Sensing Lett., vol. 7, no. 4, pp. 660–664, Oct. 2010.

[28] M. Westebbe, J. F. Böhme, and H. Krummel, “Model fitting and testing in near 
surface seismics using maximum likelihood in frequency domain,” in Proc. 32nd 
Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 1998, pp. 
1311–1315.

[29] H.-P. Harjes, “Design and sitting of a new regional array in Central Europe,” Bull. 
Seism. Soc. Amer. B, vol. 80, no. 6, pp. 1801–1817, 1990.

[30] S. Mykkeltveit and H. Bungum, “Processing of regional seismic events using data 
from small-aperture arrays,” Bull. Seism. Soc. Am., vol. 74, no. 6, pp. 2313–2333, 
1984.

[31] B. L. N. Kennett, E. R. Engdahl, and R. Buland, “Constraints on seismic velocities 
in the earth from traveltimes,” Geophys. J. Int., vol. 122, pp. 108–124, 1995. 

[32] P.-J. Chung and J. F. Böhme, “EM and SAGE algorithms for towed array data,” in 
The Applications of Space–Time Adaptive Processing, R. Klemm, Ed. London: IEE 
Publishers, 2004, pp. 733–753.

[33] P.-J. Chung and J. F. Böhme, “Recursive EM and SAGE-inspired algorithms with 
application to DOA estimation,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 
2664–2677, Aug. 2005. [SP]


