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Effects of edge potential on an armchair-graphene open boundary and nanoribbons
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Pseudospin flipping is found to be the key process leading to the formation of an edge-potential-induced
edge state at an armchair-graphene open boundary and nanoribbons. At an open boundary, the edge potential
U0 is shown to turn on pseudospin-flipped (intravalley) scattering even though U0 does not post an apparent
breaking of the AB site (basis atoms) symmetry. For a valley-polarized incident beam, the interference between
the pseudospin-conserving (intervalley) and -nonconserving (intravalley) processes in the scattering state leads to
a finite out-of-plane pseudospin density. This two-wave feature in the evanescent regime leads to the formation of
the edge state. The physical origin of the edge state is different from that for the Tamm states in semiconductors.
For an armchair-graphene nanoribbon with a gapless energy spectrum, applying U0 to both edges opens up an
energy gap. Both edge states and energy gap opening exhibit distinct features in nanoribbon conductance.
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I. INTRODUCTION

Ever since the experimental separation of its sample,1,2

graphene has become a fascinating paradigm for the ger-
mination of novel physical phenomena3–8 and future appli-
cations in carbon-based nanoelectronics.9–14 This is due to
the fact that the low-energy physics in graphene is that of
a two-dimensional massless Dirac particle,1,15 and also to
its striking material properties of high electronic mobility16

and thermal conductivity.17 The structure of graphene, a
single honeycomb lattice layer of carbon atoms, has provided
two additional twists, or degrees of freedom, to the Dirac
physics. Pseudospin,18–20 or the sublattice pseudospin, arises
from the bipartite honeycomb lattice, which consists of
two distinct triangular sublattices. Valley isospin21–23 arises
from two nonequivalent K and K ′ points (Dirac points) at
the corners of the Brillouin zone. These have contributed
to anomalous physical characteristics in phenomena such
as Klein tunneling,15,24,25 quantum Hall effects,26,27 weak
(anti)localization,28–30 focusing of electron flow in a graphene
p-n junction,31 and electron beam supercollimation.18

Edge states at a zigzag edge of graphene nanostructures
has attracted an immense amount of attention recently.32–50

These one-dimensional (1D) extended states, localized near
the system edge, are zero-energy states of topological origin,
and are the result of particle-hole symmetry.35 The flatband
nature of the edge states contributes to the large density of
states in neutral zigzag graphene nanoribbons (GNRs) at the
Fermi energy, and leads to localized magnetic structures at
the zigzag edges.33 Recent scanning tunneling spectroscopy
measurements on chiral GNRs,48 with a regular mixing of
zigzag and armchair edges, reveals the presence of 1D GNR
edge states.48,49 There have been promising efforts to fabricate
ideal GNRs with only zigzag or armchair edges.51,52 The
energy spectrum of the zigzag GNR is gapless because of
the edge states.5,33 On the other hand, the flatband feature of
the edge states could support an energy gap when a Hubbard
term for the on-site Coulomb repulsion is included.33,46,48

Edge potentials were invoked recently for the study of gap
opening and gap modulation in the zigzag GNR.45,47 For edge
potentials applying along the GNR edges taking up either a
δ profile45 or a finite range profile across the GNR width,47

the GNR energy spectrum opens up a gap when the applied
potential is antisymmetric over the width of the GNR.45,47

Meanwhile, the edge potential is also invoked to convert
the flatband edge states into valley-dependent gapless edge
states.43 An on-site energy U0 at the boundary is shown, when
the U0 magnitude is large enough, to suppress the hopping
onto the outermost sites and to change the edge to that of a
bearded edge.43 In the presence of a bulk energy gap �, due
to a staggered sublattice potential, the continuous U0 tuning
of the edge-state dispersion relation between the zigzag-edge
type and the bearded-edge type causes, at intermediate U0

values, the conversion of the flatband edge states into gapless
edge states that span the bulk energy gap.43 The topological
nature of these edge states derives from the fact that the states
involve essentially only one valley (K or K ′), and that the
topological charge53 Ñ3 = 1

2τzsgn(�) is nonzero for a valley.43

Here τz = ± is the valley index.
The armchair edge of graphene, on the other hand, has no

edge states.33–35,54 It is of interest then to consider the use of
the edge potential for possible generation and tuning of the
edge states. In this paper, we show that the edge potential
U0 at an open boundary does cause the formation of edge
states, and the key is its turning on of the pseudospin-flipped
(intravalley) scattering process. With this scattering process
enabled, an incident wave in one valley will be reflected, at an
armchair open boundary, into two scattered waves associated,
separately, with K and K ′ valleys. The interference between
the two scattered waves gives rise to out-of-plane pseudospin
density, which is of interest in its own right. As for the edge-
state formation, the two-wave feature is important because it
opens up both evanescent waves, from K and K ′ valleys, for
the construction of the edge-state wave function. Even though
the two evanescent waves have different pseudospins, we show
that the edge potential can provide the needed pseudospin
rotation at the boundary for the edge-state boundary condition.
Two interesting edge-state features are worth noticing here.
The states are dispersive, and their formation does not require a
finite threshold in U0. The fact that the edge states are generated
for arbitrary nonzero U0 shows unequivocally that the physical
origin is not Tamm-type55—the type of edge states induced,
or trapped, by a sufficiently strong trapping potential at the
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system boundary. Rather, the role of U0 is to summon both
evanescent waves for the formation of the edge states.

The effects of the edge potential on armchair GNRs are
also explored in this work, with edge potentials that are
symmetrically configured. Gap opening in the energy spectrum
is obtained in addition to the aforementioned edge-state gener-
ation. To best illustrate the gap-opening features, we consider
armchair GNRs that are gapless in their unperturbed energy
spectrum by judiciously choosing the GNR widths.33,38,39,56

Our finding shows that the energy gap (a global gap) is formed,
at k = 0, when an edgelike branch splits out of and in between
GNR subbands. States in the edgelike branch have an edgelike
spatial profile, except in the long wave-vector regime (k ≈ 0),
where the spatial profile becomes bulklike. Interestingly, we
can find an energy interval within which the edge states exist
while the bulklike states do not. The characteristics in the GNR
conductance associated with this energy interval are identified.
As the propagation direction of the edge states is correlated
with the pseudospin, it is expected that the edge states are
insensitive to disorder. The scattering wave formulation which
we have implemented in this work facilitates extraction of
analytical results for better physical understanding. All our
results compare well with direct numerical calculations.

This paper is organized as follows. In Sec. II, we present
our scattering wave approach to an armchair-graphene open
boundary in the presence of an edge potential U0. The
boundary condition is cast in a pseudospin scattering form
most convenient for our discussion. For the scattering states,
the out-of-plane pseudospin density is presented. For the
edge states, an explicit form for the pseudospin rotation
operator due to U0 at the open boundary is presented. The
edge-state dispersion relation is obtained numerically while
its long-wavelength expression is obtained analytically. In
Sec. III, we present our results for the armchair GNR due to a
symmetrically configured edge potential. The finite-size effect
on the edgelike branch and the gap opening in the GNR energy
spectrum are presented. The effects of the edge potential on
the armchair GNR conductance are also presented in Sec. IV.
Finally, a conclusion is presented in Sec. V.

II. ARMCHAIR GRAPHENE OPEN BOUNDARY

In this section, we present a scattering approach for the
study of edge-potential effects on a armchair graphene open
boundary. This approach allows us to extract, analytically,
physical pictures such as the edge-potential-induced pseu-
dospin scattering, the out-of-plane pseudospin density, and the
edge-potential-induced edge states. In particular, the analytic
expression for the edge-state dispersion relation in the long-
wavelength regime shows that the edge states are generated for
an arbitrary finite edge potential. This indicates that the edge
state is not of Tamm-type. All the features found in this section
will form the basis for the understanding of the edge-potential
effects on the GNR in the next section.

A. Basic model and a scattering approach

The conventions and notations that we adopt in this work are
described briefly below in the introduction of our basic model.
The tight-binding Hamiltonian5 for a armchair graphene open

FIG. 1. Armchair GNR with unit-cell coordinates M (vertical
dotted lines) and N (slanted dotted lines). Edges of the GNR are
at M = 0 and Mw . Indicated are sites A (•) and B (◦); Bravais
lattice vectors A1 = a1 − a2 and A2 = −a1 + 2a2, where a1 = 2ax̂

and a2 = ax̂ + √
3aŷ, and a = √

3 a0/2, with C–C bond length
a0 = 1.42 Å.

boundary is given by

H = Hbulk + Hedge gate, (1)

where

Hbulk = −γ0

∑
〈i,j〉

(
Â

†
Ri

B̂Rj
+ B̂

†
Rj

ÂRi

)
,

(2)
Hedge gate =

∑
i

U0
(
Â

†
Ri

ÂRi
+ B̂

†
Ri

B̂Ri

)
.

The operators Â
†
Ri

and ÂRi
create and annihilate electrons at

the A site of the ith unit cell, respectively, with cell coordinates
(Mi,Ni) and cell location Ri = MiA1 + NiA2, where A1 and
A2 are Bravais lattice vectors. In terms of the more familiar
Bravais lattice vectors a1 = 2ax̂ and a2 = ax̂ + √

3aŷ (see
Fig. 1), we have A1 = a1 − a2 and A2 = −a1 + 2a2. Here
a = √

3a0/2 and a0 = 1.42 Å is the C–C bond length. We note
that our choice of the cell coordinates (Mi,Ni) is convenient
for the armchair open boundary. Included in 〈i,j 〉 are nearest-
neighbor hoppings, with γ0 = 2.66 eV. Hbulk includes only
Mi,j � 0 due to the M = 0 armchair boundary. The edge
potential Hedge gate applies an on-site energy U0 to the Mi = 0
sites. In all the expressions that follow, whenever appropriate,
units for energy, length, and wave vector are chosen to be γ0,
a, and K0 = 2π/(3a), respectively.

Scattering states at the armchair open boundary are con-
structed out of the Bloch states of graphene, albeit restricting
the unit-cell summation in these Bloch states to M � 0.
Specifically, Fig. 2 shows that the scattering state consists of an
incident wave |�B

kα
〉, and intervalley and intravalley scattered

waves |�B
kβ

〉 and |�B
kγ

〉, respectively, given by∣∣�(sc)
kα

〉 = ∣∣�B
kα

〉 + r1

∣∣�B
kβ

〉 + r2

∣∣�B
kγ

〉
, (3)

where r1 (r2) denotes the intervalley (intravalley) reflection
coefficient. Here the Bloch states |�B

k 〉, given by∣∣�B
k

〉 =
∑
j,s

eik·Rj C
(s)
k |j,s〉 , (4)
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FIG. 2. States that involve reflection at the M = 0 open boundary
in Fig. 1. Shown are the energy contour, the Brillouin zone boundary
(dashed line), and valleys K (at K0x̂) and K ′ (at −K0x̂). The incident
state is kα and the intervalley (intravalley) reflected state is kβ (kγ ).
The index for the left- (right-) going state is ξ = 1(1̄). The index for
the K (K ′) valley is η = 1 (1̄). Here, α = (ξ,η) = (1,1), β = (ξ̄ ,η̄),
and γ = (ξ̄ ,η).

sum over the unit-cell index j up to the open boundary (Mj �
0), and over the A (B) site index s = 1 (2). This scattering state
approach has an advantage over the direct numerical approach
in that the asymptotic (M � 1) boundary condition is already
taken care of by the Bloch states, and the scattering problem
is reduced to the finding of only two reflection coefficients.

To set the stage for the pseudospin scattering processes
in the next subsection, we provide the explicit form of the
pseudospinor in the following:(

C
(1)
k , C

(2)
k

)T = Nk
(
1, ±

√
HkH̃k/Hk

)T
. (5)

Here Nk is the normalization constant for the pseudospinor,
and ± is for the conduction (valence) band. Furthermore,
Hk = −γ0[1 + 2e−i

√
3kyacos(kxa)], whereas H̃k = −γ0[1 +

2ei
√

3kyacos(kxa)]. For real wave vector k, H̃k = H ∗
k , so

that C
(2)
k = H ∗

k /(
√

2 |Hk|) carries the phase of H ∗
k , and the

pseudospin orientation is in-plane.
In contrast, the pseudospin orientation becomes out-of-

plane when k is complex. For our purposes here, kx is
determined from

cos(kxa) = −1

2
cos(

√
3kya) + ξη

2

√
E2 − sin2(

√
3kya) (6)

for a given ky and energy E. A complex kx is conveniently
cast in the form kx = ηκr − iξκi , where κr and κi are positive,

and η = 1 (1̄) denotes the K (K ′) valley, while ξ = 1 (1̄)
denotes the left- (right-) going state. We have kβx = −kαx for
intervalley reflection and kγx = k∗

αx for intravalley reflection.
Since both Hk and H̃k are even in kx , regardless of whether
kx is real or complex, the pseudospins for kαx and kβx are the
same, but they are different from the pseudospin for kγx .

It is known5 that scattering at a pristine armchair graphene
open boundary involves only intervalley reflection where
pseudospin is conserved. Applying an edge potential Hedge gate

that affects equally the A and B site potentials in a unit cell
seems not to have broken the equal preference of staying in
either site, and thus it seems to be pseudospin-conserving. Our
finding in the next subsection, however, shows the contrary.

B. Edge-potential-induced pseudospin scattering

In this subsection, we demonstrate the physical origin of
pseudospin flipping due to the edge potential Hedge gate. Insight
in this regard is obtained from the unit-cell recurrence relation.
By substituting Eqs. (3) and (4) into Eq. (1) and focusing upon
the coefficient of the term eikyRjy , the recurrence relations are
obtained as

(−U0 + σx) V0 + TV1 = −EV0, (7a)

TVM−1 + σxVM + TVM+1 = −EVM, (7b)

where VM = (φ(1)
M ,φ

(2)
M )T is the wave-function amplitude at the

Mth unit cell, with

φ
(s)
M = eikαxMaC

(s)
kα

+ r1e
ikβxMaC

(s)
kβ

+ r2e
ikγxMaC

(s)
kγ

. (8)

Equation (7b) is obtained from the coefficients at the Mth unit
cell for M > 0 and energy E. Terms involving T and σx are
from intercell and intracell hopping, respectively. Actually, the
same equation gives the bulk recurrence relation for the Bloch
states. On the other hand, Eq. (7a) carries the sole effect of the
edge potential via the term −U0V0. No unit cell of smaller M

exists to contribute to the hopping, and the negative sign on U0

follows from our sign convention for the hopping coefficient
−γ0. The hopping matrix T is given by

T =
(

0 e−i
√

3kya

ei
√

3kya 0

)
. (9)

Equation (7) is cast into a compact form by borrowing a
symbol V−1 from, mathematically, the bulk recurrence relation
in Eq. (7b) to M = 0, and substituting it into Eq. (7a), to give

U0V0 + TV−1 = 0. (10)

The expression for V−1 is given by Eq. (8), and Eq. (10) is
expanded to give

" (
U0C

(1)
kβ

+ C
(2)
kβ

e−ikβ ·a2 U0C
(1)
kγ

+ C
(2)
kγ

e−ikγ ·a2

U0C
(2)
kβ

+ C
(1)
kβ

e−ikβ ·(a1−a2) U0C
(2)
kγ

+ C
(1)
kγ

e−ikγ ·(a1−a2)

) (
r1

r2

)
= −

(
U0C

(1)
kα

+ C
(2)
kα

e−ikα ·a2

U0C
(2)
kα

+ C
(1)
kα

e−ikα ·(a1−a2)

)
. (11)

Rearranging into a form more convenient for our discussion on the reflection coefficients, we get(
U0C

(1)
kβ

+ C
(2)
kβ

e−ikβ ·a2

U0C
(2)
kβ

+ C
(1)
kβ

e−ikβ ·(a1−a2)

)
r1 +

(
U0C

(1)
kγ

+ C
(2)
kγ

e−ikγ ·a2

U0C
(2)
kγ

+ C
(1)
kγ

e−ikγ ·(a1−a2)

)
r2 = −

(
U0C

(1)
kα

+ C
(2)
kα

e−ikα ·a2

U0C
(2)
kα

+ C
(1)
kα

e−ikα ·(a1−a2)

)
. (12)

Equations (11) and (12) are two key relations in this work.
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Taking U0 = 0 in Eq. (12), we see that r1 = −e−2ikαxa and
r2 = 0. This results from the fact that the kα and kβ states
have the same pseudospin and the kγ state has a different
pseudospin. Furthermore, (kβ − kα) · a2 = (kβ − kα) · (a1 −
a2) = −2kαxa. Pseudospin is conserved. Taking U0 
= 0,
however, has effectively brought about other pseudospins. In
fact, the on-site nature of U0 has kept intact the pseudospins of
the associated terms in Eq. (12), whereas the other terms have
their C

(s)
k coefficients inverted due to their hopping origin.

Thus r2 can no longer remain zero, and pseudospin flipped
reflection is invoked. It is clear that the turning on of the
pseudospin flipped reflection does not require a threshold U0,
but rather a nonzero U0.

A comment on our seemingly surprising result, namely that
the edge potential Hedge gate affects equally the A and B sites
on the open boundary and can open up pseudospin flipped
reflection, is in order here. Equation (12) clearly shows that
pseudospins associated with U0 have their in-plane nature kept
intact. This is expected. What one might overlook, however, is
that U0 can still bring about pseudospins other than the incident
one. Equation (12) shows that this is achieved by way of
relative phases between the two components of a pseudospin.

C. Out-of-plane pseudospin density

As U0 opens up a pseudospin flipped channel, interference
between the pseudospins of the reflected waves will occur.
Since the pseudospins are in-plane for real k, the interference
will lead to out-of-plane pseudospin.

In this subsection, we present the out-of-plane pseudospin
polarization PPzη in the vicinity of the M = 0 boundary.
Incident states propagating along +y with energy within �E

and from one valley (index η) are included. The density
nsη(E,Mj ) in the j th unit cell is

nsη(E,Mj ) =
∑
kα

′ ∣
∣
〈
j,s

∣∣�(sc)
kα

〉∣
∣

2
, (13)

where the primed summation has restricted the energy to the
range E � E(kα) � E + �E, and kαy > 0. Here s refers to
the A (B) sites, and α = (1,η) for incident kα . Equation (13),
or nsη, depends on Mj but not on Nj , as it should. The
pseudospin polarization, as defined by

PPzη ≡ nAη − nBη

nAη + nBη

, (14)

is presented in Fig. 3, where M is used instead of Mj . The
decay of PPzη with M is due to the spread in the wave vector
�kx(E), the range of which is subjected to the restrictions
imposed by the summation. This leads to a decrease in the
decay length with increasing E, as is seen in Figs. 3(a)–
3(d). Meanwhile, PPzη changes sign as its valley-index η

is changed, or as the incident wave vectors are changed, from
ky > 0 to ky < 0. Finally, the magnitude of PPzη increases
with U0, as is demonstrated in comparing Figs. 3(a) and 3(c).

This out-of-plane pseudospin distribution can be realized
in the presence of a valley-polarized incident beam. The recent
development in valleytronics and, in particular, proposals on
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FIG. 3. (Color online) Contour plot of valley-dependent pseu-
dospin polarization PPzη against unit-cell location M and energy
E. Edge potential U0 = 0.2 in (a),(b) and U0 = 1.0 in (c),(d).
Contribution from K valley (η = 1) is shown in (a) and (c), and from
K ′ valley (η = −1) is in (b) and (d). States within �E = 5 × 10−3

are included. The sign of PPzη reverses with η but the magnitude
remains the same.

valley-filter21,23 and valley-polarized electron beams22 are,
thus, of direct relevance to this work.

D. Edge-potential-induced edge states

In this subsection, we turn our attention to edge states,
and we identify the key physical process that enables their
formation. The pseudospin of these edge states, however,
does not have an out-of-plane component. We will explain
the reason for this in our analytical analysis.

Starting with Eq. (3), but without an incident component
|�B

kα
〉, we look for edge-state energy Eed for a given ky in

the complex kx regime. Already, Eq. (11) has provided the
basis for the numerical calculation of Eed. This is from the
zeros of the determinant of the matrix on the left-hand side
of Eq. (11). The case for positive U0’s is illustrated in Fig. 4.
Turning on U0, an edge state branch is formed out of the
bulk state continuum (gray area) on the valence-band side.
Increasing U0 pushes the branch away from the continuum.
Near U0 = 1, the edge-state branch has a zero slope near a
Dirac cone. Beyond U0 = 1, the slope in the long-wavelength
regime increases monotonically with U0 and approaches that
of the continuum on the conduction-band side. A change in
the sign of U0 simply changes the sign of Eed.

A number of interesting features about these edge states are
in order here. These edge states are obtained without opening
a gap in the bulk state continuum. The dispersion relations
Eed(ky) for all U0 start and end at Dirac cones. These include
cases when U0 is arbitrarily small but nonzero. There is no
threshold U0, and this, in turn, assures us that the physics for
this edge-state formation is not Tamm-type.55 In fact, the edge-
state formation is enabled by the opening up of the pseudospin
flipped channel, and by a pseudospin rotation at the boundary.
This pseudospin rotation analysis will be discussed in the last
part of this subsection.
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FIG. 4. (Color online) Edge-state dispersion relations induced by
U0 at an armchair open boundary are shown for U0 = 1.4 (open
square), 1.2 (open circle), 1 (solid curve), 0.8 (dashed curve), 0.6
(dashed-dotted curve), 0.4 (solid circle), and 0.2 (solid square). Gray
areas depict the bulk electron continuum spectrum. Right panel shows
a ky range that includes two Dirac cones. Left panel shows a smaller
ky range.

An analytical expression for Eed(ky) is derived near the
Dirac cone, in the long-wavelength regime kya2y � 1. This
complements our numerical results given above for a better
understanding. Assuming the form Eed = α1(U0)|qy |, where
|qy | = |ky |a2y � 1, and the coefficient α1(U0), the U0 it
depends on is not necessarily small. We obtain, from Eq. (6),
k

η
x = (ηK + �k

η
xr ) + i�kxi . Here η = 1 and −1 correspond

to cases for kγ and kβ , respectively. To lowest order in qy , we

have

�kxi = 1√
3

√
1 − α2

1 |qy | ≡ G(U0)|qy |,
(15)

�kη
xr = − η

2
√

3
[1 + G2(U0)]q2

y ,

where G(U0) = 1√
3

√
1 − α2

1(U0). The coefficient α1(U0) is
derived from requiring the determinant of the matrix in
Eq. (11) to be zero. Using the relation C

(2)
k /C

(1)
k = Eed/Hk,

we obtain, up to the second order in qy ,

−U0α1

1 − U 2
0

=
√

1 − α2
1

3
. (16)

Subsequently, in the kya2y � 1 regime, we obtain

Eed ≈ sgn(U0)

√
3

(
U 2

0 − 1
)

√
1 + U 2

0 + U 4
0

|ky |a. (17)

This is another key expression, which is valid to all orders
in U0.

The boundary condition, given by Eq. (12), must be in a
pseudospin rotation form at the energy Eed(ky), which connects
pseudospins of the kβ and kγ states. From Eq. (12), and
dropping terms associated with kα , we have

Dβ

(
C

(1)
kβ

C
(2)
kβ

)
r1 + Dγ

(
C

(1)
kγ

C
(2)
kγ

)
r2 = 0, (18)

where Dβ = [U0 + e−ikβxaT] and Dγ = [U0 + e−ikγ xaT]. This
amounts to requiring D ≡ −(r2/r1)Dβ

−1Dγ to rotate kγ ’s
pseudospin to that of the kβ state. The explicit form of D
is

D = − r2/r1

�

(
1 − U 2

0 e−2kxia ie−i
√

3kya[2U0e
−kxia sin (kxra)]

iei
√

3kya[2U0e
−kxia sin (kxra)] 1 − U 2

0 e−2kxia

)
, (19)

where kxr = Re kγx , kxi = Im kγx , and � = U 2
0 e−2kxia −

ei2kxr a . The unimodular property of D has D(1,1) = D∗(2,2),
or r2/r1� a real number, and the property |D(1,1)|2 +
|D(1,2)|2 = 1 leads to |r2/r1| = 1, which is checked with
our numerical results. We have thus demonstrated that the
formation of the edge state requires the pseudospin rotation
to satisfy a particular condition at the boundary, namely
|r2/r1| = 1.

On the other hand, D can be expressed in terms of the
orientation angles of the two pseudospins. The pseudospin
states of kβ and kγ are of the form [cos(θ/2), sin(θ/2)eiφ]T

and [sin(θ/2), cos(θ/2)eiφ]T , where θ and φ are real numbers
representing the pseudospins’ angles of orientation. As an
operator that rotates an angle π − 2θ about an axis along
[cos(φ)x̂ + sin(φ)ŷ] × ẑ, we must also have

D =
(

sin θ e−iφ cos θ

−eiφ cos θ sin θ

)
. (20)

Comparing Eqs. (19) and (20), we have

sin θ = − (
1 − U 2

0 e−2kxia
)
/ |�| , (21a)

cos θ = −(2U0e
−kxia sin kxra)/ |�| , (21b)

e−iφ = ie−i
√

3kya. (21c)

The relation |r2/r1| = 1 that the edge states are required to
obey has important bearings on their pseudospin. Expressed
in terms of θ and φ, the edge-state wave function �ed(M) at
the Mth unit cell, in pseudospin form, is given by

�ed(M) = r1 eikβxMa

(
cos(θ/2)
sin(θ/2)eiφ

)

+ r2 eikγxMa

(
sin(θ/2)
cos(θ/2)eiφ

)
,
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from which we calculate the pseudospin polarization
PPz,ed(M), and we obtain

PPz,ed(M) ≡ �
†
ed σz �ed

�
†
ed�ed

= 0. (22)

The fact that PPz,ed is zero in Eq. (22) is clearly seen from
�

†
ed σz�ed = e−2 Im(kβx )Ma cos θ (|r1|2 − |r2|2), which vanishes

when |r2/r1| = 1.

III. ARMCHAIR-GRAPHENE NANORIBBON

In this section, the effects of the edge potential on armchair
GNR are studied. The scattering approach we invoked in the
previous section is applied here, and simplifications in both the
formulation and subsequent analysis are achieved. Features
studied include the generation of edge states, their hybridiza-
tion due to finite ribbon widths, band-gap modulation, and
pseudospin characteristics. An expression for the band gap,
up to second order in U0, is obtained. In addition, an energy
window in the electron spectrum is found within which the
states are all edge states.

A. Formulation with scattering approach

The armchair GNR (see Fig. 1) has edges at M = 0 and Mw,
and a total number of sites W = Mw + 1 across the width. The
edge potential Hedge gate in Eq. (2) now has Mi = 0 and Mw.
Following Eq. (3), the GNR eigenstates |�(NR)〉 consist of four
Bloch states, all of the form given by Eq. (4) but with the sum
over the unit-cell index j restricted to the interval 0 � Mj �
Mw. For convenience of presentation, we label Bloch states that
correspond to the K valley as A and B, with their (ξ,η) = (1̄,1)
and (1,1), respectively. Bloch states that correspond to the K ′
valley are labeled C and D, with their (ξ,η) = (1,1̄) and (1̄,1̄),

respectively. For a given ky and energy E, we have

|�(NR)〉 = A
∣∣�B

kA

〉 + B
∣∣�B

kB

〉 + C
∣∣�B

kC

〉 + D
∣∣�B

kD

〉
. (23)

These coefficients are connected by reflections at the bound-
aries, given by⎛

⎜⎝
−1 rAB rAC 0
r̃BA −1 0 r̃BD

r̃CA 0 −1 r̃CD

0 rDB rDC −1

⎞
⎟⎠

⎛
⎜⎝
A
B
C
D

⎞
⎟⎠ = 0. (24)

Here rνμ denotes the reflection coefficient at the M = 0 edge
from Bloch states μ to ν, and r̃νμ denotes reflection at the
M = Mw edge.

In this work, the applied edge potential is symmetric with
respect to the center of the ribbon. Thus Eq. (24) can be
simplified further by exploiting the parity symmetry. This is
carried out by replacing Rjx by Rjx − Mwa/2 in the unit-cell
summation of |�B

kν
〉. The parity of the nanoribbon eigenstate

|�(NR)〉 is imposed by the relations C = ±A and B = ±D,
where the upper (lower) sign corresponds to even (odd) parity.
Equation (24) is reduced to(

1 ∓ rAC ∓rAB

∓rDC 1 ∓ rDB

) (
C
B

)
= 0. (25)

The energy spectrum for each parity is determined separately,
according to Eq. (25). Level anticrossing thus occurs only
between states of the same parity because the edge potential
preserves the symmetry. For our convenience below, the
reflections from states {B,C} into states {A,D} are represented
by the reflection of state α = (ξ = 1,η) into states β = (ξ̄ ,η̄)
and γ = (ξ̄ ,η). The reflection coefficients in Eq. (25) are then
labeled as r1α and r2α , with subscript 1 (2) denoting inter-
valley (intravalley) reflection. These coefficients are obtained,
following a similar procedure that leads to Eq. (11), as

(
e−ikβx Mwa/2

[
U0 C

(1)
kβ

+ C
(2)
kβ

e−ikβ ·a2
]

e−ikγ x Mwa/2
[
U0 C

(1)
kγ

+ C
(2)
kγ

e−ikγ ·a2
]

e−ikβx Mwa/2
[
U0 C

(2)
kβ

+ C
(1)
kβ

e−ikβ ·(a1−a2)
]

e−ikγ x Mwa/2
[
U0 C

(2)
kγ

+ C
(1)
kγ

e−ikγ ·(a1−a2)
]
) (

r1α

r2α

)

=
(

e−ikαx Mwa/2
[
U0C

(1)
kα

+ C
(2)
kα

e−ikα ·a2
]

e−ikαx Mwa/2
[
U0C

(2)
kα

+ C
(1)
kα

e−ikα ·(a1−a2)
]
)

. (26)

Numerical results from this scattering approach compare well
with exact diagonalization results. Moreover, Eqs. (26) and
(25) provide a useful starting point for the derivation of the
edge-potential-induced gap modulation, to be presented in a
later subsection.

B. GNR energy spectrum

In the following, we present the energy spectrum of
armchair GNR under the effect of edge potentials. To better
illustrate the edge-potential-induced gap-opening features, the
GNRs considered here are of the type W = 3p + 2 for non-
negative integer p, such that their unperturbed energy spectra

are gapless.33,38,39,56 Figure 5 presents the energy spectrum of
an armchair GNR for U0 = 1 and W = 80 and 41, respectively,
in Figs. 5(a) and 5(b). The same spectrum occurs around
another Dirac cone at ky = √

3K0/2. Edge-state branches are
the isolated branches separated from the GNR subbands. The
GNR subbands open up an energy interval between them, at
the Dirac cone, leaving room for the edge-state branches to
develop. This is seen more clearly in Figs. 5(a′) and 5(b′),
where smaller ky ranges are shown. The gray areas are the
continuum spectrum for the bulk graphene, given by Eq. (6).
States with energy E(ky) that falls outside the gray area should
have their wave function exhibiting exponential behavior.
Guided by this, the GNR subbands and the edge-state branches
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FIG. 5. (Color online) Energy spectrum of armchair GNR for
U0 = 1, and W = 80 in (a) and 41 in (b). Smaller ky ranges are
shown in (a′) and (b′), where gray areas are the continuum spectrum
for the bulk graphene. Two branches outside the gray areas are
edge-state branches: odd (even) parity for the upper (lower) branch.
Dotted curve between the edge-state branches is that for a single open
boundary. Horizontal (dotted-dashed) line segments in (a′) and (b′)
denote energies to be considered in Fig. 6.

are easily identified. Furthermore, the edge states have two
branches with the upper (lower) branch having odd (even)
parity. This results from hybridizations between edge states
on the two GNR edges. The fact that the edge-state branch for
an open boundary, denoted by the dotted curve, is centrally
positioned in energy between the two edge-state branches
demonstrates a degenerate splitting feature, and it indicates that
the edge states are pretty well formed. When the two branches
overlap in energy, for sufficiently large ky , the edge states on
the two GNR edges become decoupled. It is worth pointing out
that when the small ky region of the edge-state branches falls
within the gray area, their spatial profiles |�(NR)

A/B |2, on the A or

B sites, are expected to exhibit bulklike characteristics. This is
found in Fig. 6. When the edge-state branches overlap, linear
superpositions of the even- and odd-parity wave functions
produce edge-state wave functions �

(NR)
R (L) that localize on the

right (left) edges. These are shown in Figs. 6(a) and 6(b) for,
respectively, the cases of E = −0.03, and −0.05.

Another important indication shown in Fig. 6 concerns the
out-of-plane pseudospin for the edge states. The |�(NR)

A |2 and
|�(NR)

B |2 curves fall exactly on top of one another in Fig. 6.
This implies that the out-of-plane pseudospin vanishes for the
edge states. Furthermore, the out-of-plane pseudospins of the
GNR subbands are also found to be zero. We think that this is
due to the highly symmetric alignment of the GNR edges. For
less symmetric graphene boundary configurations, however,
the edge-potential-induced out-of-plane pseudospin feature is
expected to manifest near an armchair open boundary. This is
left for further investigation.

We present in Fig. 7 the evolution of the two edge-state
branches with the increase of U0. For positive U0, the edge-
state branches are being drawn from the two highest GNR
valence subbands. Meanwhile, an energy gap is formed which
is increasing with U0, and is indicated by �p in Fig. 7(c). The
gap is formed between two odd-parity branches, namely the
GNR subband, denoted by Eodd

bulk, and the edge-state branch,
denoted by Eodd

edge. On the other hand, there is an energy
window in the spectrum that consists of only edge states. For
example, in Fig. 7(c), the energy window, bounded by the
ky = 0 edge-state branch (even parity) and its neighboring
GNR subband, on the lower energy side, is of the order
of 0.02γ0.

C. Edge-potential-induced gap modulation

In this subsection, the edge-potential-induced energy gap
�p(U0) is obtained up to second order in U 2

0 . Toward this
end, we consider ky = 0. Equation (5) gives us C

(1)
kα

= C
(1)
kβ

=
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B
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|ΨR |2, E = −0.03

| Ψ |2, E = 0.04

|ΨL|2, E = −0.05
|ΨR |2, E = −0.05

(b)

(a)

FIG. 6. (Color online) Wave-function
spatial profiles for selected energies on the
edge-state branches in Fig. 5. W = 80 in
(a) and 41 in (b). Energies outside (inside)
the gray areas in Fig. 5 exhibit edgelike
(bulklike) profiles, denoted by squares and
circles (solid curves). �R (L) denote wave
functions that localize on the right (left)
edges.
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FIG. 7. (Color online) Energy spectrum of the W = 80 armchair
GNR in Fig. 5. U0 = 0.2, 0.5, 0.8, and 1.0 in (a), (b), (c), and (d),
respectively. Near the Dirac cone, the GNR subband (Eodd

bulk) and the
edge-state branch (Eodd

edge) are both of odd parity, as denoted in (a).
The U0-induced energy gap �p is indicated in (c). Dotted curve is
the open-boundary edge-state branch.

C
(1)
kγ

= 1/
√

2, C
(2)
kα

= C
(2)
kβ

= −ξη/
√

2, and C
(2)
kγ

= −C
(2)
kα

for
α = (ξ,η). Substituting these into Eq. (26), we obtain r2α = 0
and

r1α = −e−ikαxMwa/2[−U0 ξη + e−ikαxa2x ]

eikαxMwa/2[−U0 ξη + eikαxa2x ]
. (27)

Energies for the odd-parity states are determined from
Eq. (25), which in turns gives the equation 1 + r1α = 0. For
our purposes here, the unperturbed wave vector kx for these
states is at ηK when U0 = 0. Keeping up to the second order
in U0, the correction δkαx is,

δkαx = ξ�1U0 + η�2U
2
0

�1 = − 1√
3 (p + 1)

, (28)

�2 = 1√
3

[
1

2 (p + 1)
− 1

3(p + 1)2

]
.

The energy shift δEα , up to second order in δkx , is obtained
from Eq. (6), given by

δEα = −ξ
(√

3 δkx,α − 1
2η δk2

αx

)
. (29)

Substituting Eq. (28) into Eq. (29), the band edges of the
subband Eodd

bulk, where η = −1, and the edge-state branch Eodd
ed ,

where η = 1, are obtained as

δEα =
[

1

(p + 1)
U0 − ξη

p

2(p + 1)2 U 2
0

]
. (30)

Here ξ = 1. Finally, the energy gap �p, up to second order in
U0, is obtained as

�p = Eodd
bulk(0) − Eodd

ed (0) = p

(p + 1)2 U 2
0 . (31)

IV. CONDUCTANCE OF AN ARMCHAIR GNR

In this section, we present the conductance G of an
armchair GNR and its dependences on the edge potential
U0 and the chemical potential μ of the GNR. Our major
interest here is to identify the signatures of the edge states
and the gap opening in the G(U0,μ) characteristics. The
Landauer-Büttiker formula57,58 is used for the calculation of G.

Figure 8 shows the contour plot of G, where its value,
in units of 2e2/h, is depicted by integers in the respective
regions in the μ-U0 plane. Essentially the integers denote the
number of propagating (right-going) channels in the GNR.
The G = 0 (black) region indicates the energy gap in μ, which
has a zero μ interval at U0 and opens up monotonically with
U0. The μ interval in the small U0 regime is described by
Eq. (31). Furthermore, the U0 = 0 results can be understood
by comparing the energy spectrum close to that in Fig. 7(a).
Increasing μ from zero, there are two right-going channels, one
from each Dirac cone, at ky = 0 and ky = √

3 K0/2, giving
G = 2. As μ increases further, approaching 0.07, two higher
GNR subbands enter for each Dirac cone, and G = 6. On the
other hand, decreasing μ from zero, the higher GNR subbands
enter in a pair for each Dirac cone, and G’s value is in the
sequence 2, 6, and 8.

Similarly, the trend for finite U0 can be understood from
the energy spectrum for U0 = 1, as shown in Fig. 7(d). A few
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FIG. 8. (Color online) Dependences of conductance on the edge
potential U0 and the chemical potential μ. The armchair GNR has
W = 80. Integers in the figure denote the conductance G, in units of
2e2/h, in the respective region. Dotted (dotted-dashed) line depicts
the odd- (even-) parity edge-state branch that emerges from the
continuum spectrum of the bulk graphene.
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added features should be noted here. Higher GNR subbands
are split and no longer enter in a pair as μ changes. The
energy gap (G = 0) is shifted to the positive-μ region, and the
splitting of the edge-state branches near a Dirac cone brings
about interesting G structures. The conditions under which the
edge-state branches emerge from the continuum spectrum are
indicated by the dotted and dot-dashed lines. Thus increasing μ

from zero, the G values are in the sequence 2, 0, 2, and 4. In the
opposite direction, when μ decreases from zero, the sequence
of G values becomes 2, 6, 4, 6, and 8. In between the dotted
and the dot-dashed lines, where G = 2 and 6, the edge states,
including both coupled and decoupled edge states, are the sole
contributors to G. The jump from G = 2 to 6 arises from two
(one) channels in the even- (odd-) parity edge-state branch,
per Dirac cone. The next region (G = 4) is another region
where G is contributed from edge states alone. Here, however,
only decoupled edge states are involved. The characteristics
presented above remain intact for the edge potential with a
smooth spatial profile.59 It is perhaps not unexpected that the
atomic-scale profile for the edge potential is not very crucial
for the features found in this work. It may be that it is the
intravalley (small momentum change) scattering, rather than
the intervalley (large momentum change) scattering, that must
be invoked here. Finally, the edge-state features are expected
to be robust against weak disorder due to their chiral nature.

V. CONCLUSIONS

In conclusion, we have studied the effects of edge potentials
on an armchair graphene open boundary, and on armchair
GNRs. The connection of the formation of the edge states with
the edge-potential-induced pseudospin flipping at the open
boundary has been elucidated. The subsequent generation of
out-of-plane pseudospin polarizations at an open boundary
is demonstrated. In the case of an armchair GNR, both
the formation of edge states and the opening of an energy
gap are found. These effects exhibit distinct characteristics
in the conductance of the GNR. Finally, the edge-potential
configuration considered in this work could be realized with
the technique of anisotropic etching of graphene by thermally
activated nickel nanoparticles,52 with some of the etched
graphene functioning as gating electrodes and others as the
GNR.

ACKNOWLEDGMENTS

We acknowledge useful discussions with M. Monteverde,
and we are grateful to him for referring us to Ref. 51. This
work was supported by Taiwan NSC (Contract No. 100-2112-
M-009-019), NCTS Taiwan, and a MOE-ATU grant.

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

2K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich,
S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA 102,
10451 (2005).

3A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
4C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
5A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

6N. M. R. Peres and R. M. Ribeiro, New J. Phys. 11, 095002 (2009).
7D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and
T. Charkraborty, Adv. Phys. 59, 261 (2010).

8S. DasSarma, S. Adam, E. H. Hwang, and E. Ross, Rev. Mod. Phys.
83, 407 (2011).

9P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotech. 2, 605
(2007).

10F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N.
Lau, Science 317, 1530 (2007).

11L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W.
Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).

12F. Schwierz, Nat. Nanotech. 5, 487 (2010).
13Y. W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444,

347 (2006).
14X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys.

Rev. Lett. 100, 206803 (2008).
15M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2,

620 (2006).
16K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg,

J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146,
351 (2008).

17A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan,
F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

18C. H. Park, Y. W. Son, L. Yang, M. L. Cohen, and S. G. Louie,
Nano Lett. 8, 2920 (2008).

19L. Majidi and M. Zareyan, Phys. Rev. B 83, 115422 (2011).
20M. Mecklenburg and B. C. Regan, Phys. Rev. Lett. 106, 116803

(2011).
21A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Nat. Phys. 3, 172

(2007).
22J. L. Garcia-Pomar, A. Cortijo, and M. Nieto-Vesperinas, Phys.

Rev. Lett. 100, 236801 (2008).
23D. Gunlycke and C. T. White, Phys. Rev. Lett. 106, 136806

(2011).
24A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
25N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett.

102, 026807 (2009).
26K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

27Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

28H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 (2002).
29E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and

B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
30A. F. Morpurgo and F. Guinea, Phys. Rev. Lett. 97, 196804

(2006).
31V. V. Chelanov, V. Fal’ko, and B. L. Altshuler, Science 315, 1252

(2007).
32S. E. Stein and R. L. Brown, J. Am. Chem. Soc. 109, 3721 (1987).
33M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys.

Soc. Jpn. 65, 1920 (1996).

155444-9

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1088/1367-2630/11/9/095002
http://dx.doi.org/10.1080/00018732.2010.487978
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1038/nnano.2007.300
http://dx.doi.org/10.1038/nnano.2007.300
http://dx.doi.org/10.1126/science.1144359
http://dx.doi.org/10.1126/science.1154663
http://dx.doi.org/10.1038/nnano.2010.89
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1103/PhysRevLett.100.206803
http://dx.doi.org/10.1103/PhysRevLett.100.206803
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1021/nl801752r
http://dx.doi.org/10.1103/PhysRevB.83.115422
http://dx.doi.org/10.1103/PhysRevLett.106.116803
http://dx.doi.org/10.1103/PhysRevLett.106.116803
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1103/PhysRevLett.100.236801
http://dx.doi.org/10.1103/PhysRevLett.100.236801
http://dx.doi.org/10.1103/PhysRevLett.106.136806
http://dx.doi.org/10.1103/PhysRevLett.106.136806
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/PhysRevLett.89.266603
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.97.196804
http://dx.doi.org/10.1103/PhysRevLett.97.196804
http://dx.doi.org/10.1126/science.1138020
http://dx.doi.org/10.1126/science.1138020
http://dx.doi.org/10.1021/ja00246a033
http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1143/JPSJ.65.1920


CHI-HSUAN CHIU AND CHON-SAAR CHU PHYSICAL REVIEW B 85, 155444 (2012)

34K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys.
Rev. B 54, 17954 (1996).

35S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
36T. Hikihara, X. Hu, H. H. Lin, and C. Y. Mou, Phys. Rev. B 68,

035432 (2003).
37C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
38M. Ezawa, Phys. Rev. B 73, 045432 (2006).
39L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
40N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73,

195411 (2006).
41N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73,

125411 (2006).
42C. Ritter, S. S. Makler, and A. Latgé, Phys. Rev. B 77, 195443
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