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Generation of large orbital angular momentum from superposed Bessel beams corresponding to
resonant geometric modes
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We theoretically verify that a coherent superposition of nearly degenerate Bessel beams characterizes the family
of resonant geometric modes in circular billiards. With the ray-wave correspondence, we experimentally exploit
a large-aperture cylindrical waveguide to generate the resonant geometric modes with large orbital angular
momentum. Furthermore, the free-space propagation of the geometric modes emerging from the cylindrical
waveguide is demonstrated to display the transient dynamics of the coherent states released from a circular
quantum billiard.
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I. INTRODUCTION

Helically phased light beams are well known to have
an azimuthal phase form of exp(imφ) and carry an orbital
angular momentum (OAM) of mh̄ per photon, where m is
an integer [1,2]. The OAM or optical vortex of light has been
exploited in a variety of applications, such as trapping [3,4] and
rotating [5] of micron and submicron objects in hydrodynamics
and biology, stellar coronagraphy [6], image processing [7],
quantum cryptography [8], phase contrast microscopy [9],
and spiral interferometry [10]. Helically phased beams with
small OAM can be generated with several different techniques,
such as transformation from Hermite-Gaussian modes by lens
converters [11], generation from Gaussian beams by spiral
phase plates [12], creation by synthesized holograms [13],
generation through spatial light modulation by liquid crystal
cells [14], and creation with light diffraction on dielectric
wedges [15]. Nowadays, generation of light beams with huge
OAM is an important and interesting task for potential applica-
tions including demonstration of optomechanical effects and
trapping of cold atoms [16].

Bessel beams emerge as propagation-invariant solutions
of the Helmholtz equation in a cylindrical waveguide and
carry a well-defined OAM associated with their spiral wave
fronts [17]. In ray dynamics, the transverse confinement of a
cylindrical waveguide can be regarded as a circular billiard
for light. The periodic orbits of a circular billiard can be
characterized by the indices (p,q), where q is the number of
turning points at the boundary during one period, and p is the
number of windings during one period [18]. The average OAM
of light for each periodic orbit (p,q) can be given by h̄(ktRo),
where Ro is the shortest distance to the circular center and kt

is the transverse wave number. This indicates that it is possible
to employ the geometric modes of cylindrical waveguides to
generate light beams with large OAM. Even though very-high-
order Bessel beams have been demonstrated using cylindrical
waveguides and whispering gallery resonators [16], generation
of geometric modes with huge OAM has not been realized yet.
Moreover, since light interference is profoundly relevant to
the underlying ray dynamics [19–21], it will be scientifically
interesting to explore light beams with huge OAM from the
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feature of ray-wave correspondence that is analogous to the
classical-quantum correspondence [22].

In this work we first explore the subtle relationship between
geometric modes and high-order Bessel modes for manifesting
the OAM in the ray-wave correspondence. We further develop
a systematic method to generate various geometric modes with
huge OAM from a large-aperture cylindrical waveguide. More
importantly, we also employ the free-space propagation of the
geometric modes emerging from the cylindrical waveguide to
analogously emulate the transient dynamics of quantum states
suddenly released from quantum billiards.

II. RELATIONSHIP BETWEEN GEOMETRIC MODES AND
HIGH-ORDER BESSEL MODES

The normalized eigenstates ψm,n(r,φ) in polar coordinates
for a circular billiard of radius R are given by

ψm,n(r,φ) = 1√
πRJm−1(km,nR)

Jm(km,nr)eimφ, (1)

where m ∈ Z, n ∈ N, and Jm is the Bessel function of the
first kind and order m. The corresponding eigenvalues km,n are
determined by the boundary condition at the circular boundary,
i.e., Jm(km,nR) = 0 and the quantum numbers m, n correspond
to the quantization of the azimuthal and radial oscillations of
the wave, respectively. In a cylindrical waveguide, km,n is the
transverse component of the total wave number k. For large
quantum numbers, the eigenvalues km,n can be determined with
the Wentzel-Kramers-Brillouin (WKB) method to be given by√

k2
m,n(R2 − R2

o) − m cos−1(Ro/R) = (n + 3/4)π , where Ro

is the distance of closest approach of the wave to the center
of the billiard. The relationship between Ro and km,n is given
by the expression for OAM: mh̄ = Ro(h̄km,n). In ray dynamics,
the shortest distance to the origin Ro for the periodic orbits
(p,q) is given by Ro = R cos(pπ/q). With this expression,
the quantization condition from the WKB method can be
written as km,nR sin(pπ/q) = [m(p/q) + n + (3/4)]π . This
quantization condition reveals that the group of the eigenstates
ψmo+qκ,no−pκ with κ ∈ Z and mo � |qκ| constitutes a family
of nearly degenerate states and forms an energy shell in the
neighborhood of the central eigenstate ψmo,no

, which indicates
the appearance of a sharp peak in the density of states [23].
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In terms of the representation of the stationary coherent
state [24,25], the resonant modes localized on the periodic
orbits can be expressed as a coherent superposition of the
eigenstates belonging to the same shell of the spectrum:

�
p,q

mo,M
(r,φ; φo)

= (2M + 1)−1/2
M∑

κ=−M

eiqκφoψmo+qκ,no−pκ (r,φ), (2)

where φo is related to the starting position of periodic orbits
and (2M + 1) is the total number of Bessel modes. For
a sufficiently large mo, the larger the number M is, the
more localized the resonant mode �

p,q

mo,M
(r,φ; φo) is on the

orbital trajectories. It is intriguing that even for M = 1
the resonant modes �

p,q

mo,M
(r,φ; φo) are conspicuously local-

ized on the periodic orbits. In brief, the interference between
nearly degenerate eigenmodes is extremely efficient in forming
the resonant geometric modes. The efficient interference leads
the resonant geometric modes to play an important role in
numerous mesoscopic systems [18–22]. Figure 1 shows the
numerical patterns calculated by using Eq. (2) with M =
3 and φo = 0, where the values of the order parameter
mo are 200 and 100 for the results in Figs. 1(a)–1(d) and
Figs. 1(e)–1(h), respectively. Note that the chosen values for
mo, φo, and M are not particular but were selected only for clear
presentation. It can be seen that the numerical patterns for the
resonant geometric modes are well localized on the periodic
orbits. Since the Bessel beams with the azimuthal phase
term of exp(imφ) carry OAM [16], the resonant geometric
modes naturally possess considerable average OAM. The
average OAM of the geometric mode �

p,q

mo,M
(r,φ; φo) can be

straightforwardly verified to be moh̄.
Although the numerical patterns of resonant modes

�
p,q

mo,M
(r,φ; φo) are clearly concentrated on the periodic orbits,

it is pedagogically useful and important to explore the ray-
wave correspondence in an explicit way. Next, we use the
properties of the Bessel function to construct the relationship

between the Bessel beams and geometric modes. Using the
boundary condition Jm(km,nR) = 0 and the asymptotic form of
the Bessel function, Jm(z) ≈ √

(2/πz) cos[z − (2m + 1)π/4]
for z → ∞, we can obtain Jm−1(km,nR) ≈

√
2
/

(πkm,nR) for
the large indices. With this result and the Bessel’s integral
representation, the high-order Bessel modes ψm,n(r,φ) can be
expressed as

ψm,n(r,φ) =
√

km,n

2R

1

2π

∫ π

−π

eikm,nr sin ϕeim(φ−ϕ)dϕ. (3)

In substitution of Eq. (3) into Eq. (2), the resonant modes
�

p,q

mo,M
(r,φ; φo) are given by

�
p,q

mo,M
(r,φ; φo) =

√
kmo,no

(2M + 1)R

1

2
√

2π

×
∫ π

−π

eikmono r sin ϕe−imo(ϕ−φ)

×
M∑

κ=−M

e−iqκ(ϕ−φ−φo)dϕ. (4)

Changing the integration variable from ϕ to α with ϕ −
φ − φo = α and resetting the integration bounds on the circle
angle, Eq. (4) can be written

�
p,q

mo,M
(r,φ; φo) =

√
(2M + 1)kmo,no

2R

e−imoφo

2π

×
∫ π

−π

eikmo,no r sin(α+φ+φo)e−imoαDM (qα)dα,

(5)

where DM (qα) = (2M + 1)−1 ∑M
κ=−M e−iκqα is the Dirichlet

kernel. Since DM (qα) is a periodic pulse function with period
2π/ q, the integration of Eq. (5) on the circle angle can be
divided into q segments with the integration interval between
− π/q and π/q. Hence Eq. (5) can be written

�
p,q

mo,M
(r,φ; φo) =

√
(2M + 1)kmo,no

2R

e−imoφo

2π

q−1∑
s=0

{ ∫ π
q

− π
q

e
ikmo,no r sin

(
α+φ+φo− 2πs

q

)
e
−imo

(
α− 2πs

q

)
DM (qα)dα

}
. (6)

For (2M + 1)q � 1, the Dirichlet kernel DM (qα) displays a narrow peak concentrated in a small region of −	 � α � 	, where
	 = π/[q(2M + 1)]. Since the effective integral range of α in Eq. (6) is rather limited, the factor sin[α + θ + θo − (2πs/q)]
for small α can be reasonably approximated as α · cos[θ + θo − (2πs/q)] + sin[θ + θo − (2πs/q)]. To obtain a close form, we
also approximate the function DM (qα) as a gate function that is 0 outside the interval [ − 	, 	] and unity inside it. With these
approximations and kmo,no

= mo/Ro, Eq. (6) can be analytically integrated as

�
p,q

mo,M
(r,φ; φo) =

√
mo

2RRo

e−imoφo

q
√

(2M + 1)

(q−1∑
s=0

e
imo

[
r

Ro
sin

(
φ+φo− 2πs

q

)
+ 2πs

q

]
sin c

{
mo

Ro

π

q(2M+1)

[
r cos

(
φ + φo−2πs

q

)
−Ro

]})
,

(7)

where sinc(x) = sin(x)/x is the sinc function. From the property of the sinc function, the wave function �
p,q

mo,M
(r,φ; φo) can be

manifestly deduced to be concentrated on the set of straight lines: r cos [φ + φo − (2πs/q)] = Ro with s = 0,1, . . . ,q − 1 that
coincide with the periodic orbit in a circular billiard.
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(b)(a) (c) (d)

(f)(e) (g) (h)

FIG. 1. (Color online) Numerically calculated patterns with Eq. (2) using M = 3 and θo = 0. The values of the order parameter mo are 200
and 100 for the results in (a)–(d) and (e)–(h), respectively.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

Cylindrical waveguides and whispering gallery resonators
have been employed to generate very-high-order Bessel beams
[16]. Here we exploit a large-aperture cylindrical waveguide
with the precise coupling scheme to systematically generate
resonant geometric modes with large OAM. Figure 2(a) depicts
the experimental setup. A linearly polarized Gaussian laser
beam of wavelength at 532 nm was used as an incident
light source. A beam expander was employed to reduce the

beam divergence less than 0.1 mrad. A lens with a focal
length of 25 mm was used to focus the laser beam into
the cylindrical waveguide. Figure 2(b) depicts the central
angle of incidence θo and the effective spreading range 	θ

in the longitudinal section of the cylindrical waveguide. The
transverse path length of a ray with the angle of incidence θo

through the waveguide is given by LT = L tan θo, where L

is the length of the waveguide. For the angle bandwidth 	θ ,
the range of the transverse path length can be found to be
	LT = (L sec2 θo)	θ . To form a complete transverse orbit

Beam 
expander

Pinhole

Focusing 
lens 1

f = 25mm

Focusing 
lens 2

f = 8 mm

Cylindrical waveguide 
1.5 mm 295 mm

Screen

Diode pumped 
green laser

CCD
camera

Ro

(b) (c)

(a)

Ro

R

FIG. 2. (Color online) (a) Experimental setup for generating the resonant geometric modes from a cylindrical waveguide; (b) longitudinal
section of the cylindrical waveguide, showing the central angle of incidence θo and the effective spreading range 	θ ; (c) transverse section,
showing the off-axis distance Ro of the incident beam and the effective azimuthal spreading 	φ.
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(b)(a) (c) (d)

(f)(e) (g) (h)

FIG. 3. (Color online) Experimental transverse near-field patterns for the observed geometric modes corresponding to the numerical patterns
shown in Fig. 1.

(p,q), the range 	LT needs to be greater than the orbital length
Lp,q = 2qR sin(pπ/q). Namely, the geometric condition is
given by (sec2 θo)	θ � 2q(R/L) sin(pπ/q). A smaller aspect
ratio R/L can lead to the formation of geometric modes
with smaller angle bandwidth. Here we use the cylindrical
waveguide with R = 0.75 mm and L = 295 mm. Figure 2(c)
depicts the off-axis distance Ro of the incident beam and the
effective azimuthal spreading 	φ in the transverse section
of the cylindrical waveguide. A movable pinhole with an
adjustable diameter was placed behind the beam expander to
control the incident angle θo and the off-axis distance Ro of
the laser beam. The pinhole diameter was adjusted to obtain
the desired bandwidth 	θ and 	φ.

We experimentally confirmed that the geometric mode
with index (p,q) can be completely generated when the
off-axis distance Ro is close to the value of R cos(pπ/q).
The transverse near-field pattern at the output facet of the

cylindrical waveguide was projected on a screen and was
imaged by a CCD camera. We controlled the incident angle
to be approximately θo = 10◦ and changed the off-axis
distance Ro to generate various geometric modes with in-
dices (p,q) corresponding to the theoretical results shown in
Fig. 1. Figure 3 shows the near-field patterns for observed
geometric modes. The experimental patterns are in good
agreement with the numerical patterns showing in Fig. 1.
With θo = 10◦ and Ro for different geometric modes with
indices (p,q), the average OAM can be calculated as 〈m〉 =
k tan(θo)R cos(pπ/q), where k is the wave number of the
incident beam. Consequently, it can be found that the average
OAM ranges from 348 h̄ to 1264 h̄.

Another extended intriguing topic is to investigate the free-
space propagation of the geometric mode because it can be
analogous to the time evolution of a suddenly released two-
dimensional (2D) quantum billiard wave. The optical wave

z= 0 mm 1.95 mm 3.55 mm 8.7 mm 22.2 mm5.76 mm

FIG. 4. (Color online) Experimental (upper row) and numerical (lower row) patterns for the quasiscarred optical modes for the case of
(p,q) = (2, 5) in the free-space propagation.
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ψ(x,y) that emerges from the output end of the light pipe at
z = 0 to the free space in the direction of the + z axis can be
described with the Fresnel transformation:

ψ(x,y,z) = ie−ikz

λz

∫
dy ′

∫
dx ′

× exp

{
− ik

2

[
(x − x ′)2 + (y − y ′)2

]
z

}
ψ(x ′,y ′).

(8)

In quantum mechanics, the free time evolution of the
quantum state ψ(x,y) suddenly released at time t = 0 can
be expressed in terms of the 2D free propagator [26,27]:

ψ(x,y,t) = m

2πih̄t

∫
dy ′

∫
dx ′

× exp

{
im

2h̄

[(x − x ′)2 + (y − y ′)2]

t

}
ψ(x ′,y ′).

(9)

Comparing Eqs. (8) and (9) it is evident that the time
evolution of a 2D quantum state is equivalent to the Fresnel
transformation of a near-field optical wave with the substi-
tution of t → z and m/h̄ → 2π/λ, where λ is the optical
wavelength. Figure 4 illustrates the experimental (upper row)
and numerical (lower row) patterns for the geometric modes
�

p,q

mo,M
(r,φ; φo) for the case of (p,q) = (2,5) in the free-space

propagation. Numerical patterns can be clearly seen to agree
very well with experimental results. It is also worth noting that
the free-space propagation of the geometric mode displays
not only the feature of ray streamlines but also the spiral
characteristics. The spiral feature confirms the existence of
OAM that comes from the traveling-wave nature of the
geometric modes in the azimuthal axis.

Finally, it is worthwhile to mention the intrinsic and
extrinsic nature of the OAM in the Bessel-related geometric
modes. The spin angular momentum (SAM) is well known

to be independent of the reference axis and so is identified
to be intrinsic. Like the OAM in the Laguerre-Gaussian (LG)
beam [28], the Bessel-related geometric mode outgoing from
the waveguide without passing through apertures has zero
transverse momentum and may therefore be described as
intrinsic. When the geometric mode propagates through an
off-axis aperture to have nonzero transverse momentum, the
OAM depends on the reference axis of calculation and exhibits
to be extrinsic. The OAM properties of the Bessel-related
geometric modes are generally the same as the LG beams with
a distinct character between intrinsic and extrinsic, so-called
quasi-intrinsic [29]. Recently, there have been reports on
methods of converting SAM into high values of the intrinsic
OAM by means of an inhomogeneous anisotropic optical
element called q plate [30,31]. The q-plate element can
also be employed to perform the OAM state tomography for
characterizing the intrinsic and extrinsic nature [32,33].

IV. CONCLUSIONS

In conclusion, we have exploited the Bessel’s integral to
analytically manifest the ray-wave correspondence between
high-order Bessel beams and geometric modes in circular
billiards. We also experimentally demonstrated that the Bessel-
related geometric modes can be strikingly generated by uti-
lizing a large-aperture cylindrical waveguide and controlling
the extent of the incident angle. Moreover, we demonstrated
that the free-space propagation of the output beam emerging
from the cylindrical waveguide could be used to investigate the
transient dynamics of the geometric modes. We believe that
the present investigation can provide important insight into
quantum physics and wave optics.
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