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Adiabatically slow and adiabatically fast driven ratchets
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We revisit two known models of deterministically driven ratchets, which exhibit high energetic efficiency,
with the goal to uncover similarities and differences in the principles of their operation. Both the models rely
on adiabaticity of the potential change process, however, the adiabaticity that we deal with in the two cases
is of different types, slow and fast. It is shown that in the former (latter) case the drift velocity is an even
(odd) functional of the potential, with the notable consequence that for the adiabatically slow driven ratchet
the necessary symmetry breaking occurs only due to time-dependent parametric perturbations, while the spatial
asymmetry of the potential is a mandatory condition for the adiabatically fast driven ratchet to operate. To
treat energetic characteristics, the models are restated in terms of traveling potential ratchets. With such an
approach, we find that in these cases (i) the conditions of high energetic efficiency to be reached are similar, and
(ii) the symmetry properties of the kinetic coefficients are different. Based on our results, a strategy for designing
efficient Brownian motors is suggested.
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I. INTRODUCTION

Physical models shedding light on efficient mechanisms
of energy conversion on the nanoscale are claimed to handle
a wide range of biologically valuable processes [1–3] and
can be applied in nanotechnology [3–5]. A promising way
to address this challenge is provided by the concept of
ratchets or Brownian motors, according to which Brownian
motion in a periodic potential combined with external unbiased
perturbations, either deterministic or stochastic, can exhibit a
net drift [3,6,7], thus enabling to convert the energy coming
from a source of nonequilibrium into useful work [8,9].
The time-dependent potential models the combined effect
of environment and the external perturbations on the motor
dynamics and hence determines the efficiency of energy
conversion [10,11].

In the present paper, we discuss two known examples of
deterministically driven ratchets, which exhibit high energetic
efficiency, with the goal to uncover similarities and differences
in the principles of their operation. The first model is the
so-called reversible ratchet, which functions due to adiabat-
ically slow time-periodic variation of a set of parameters
determining the periodic potential. An elegant formulation of
this mechanism, where the entropy production vanishes in
the quasistatic limit, was given in Refs. [12,13] (some further
development of this idea can be found in Refs. [14,15]). The
second model is the flashing ratchet, which, in contrast, is
based on an intrinsically irreversible mechanism: The directed
motion arises due to periodically repeated fast transitions
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between two long-living spatially periodic potential profiles.
Provided the transitions occur instantaneously, the working
mechanism is also adiabatic in the sense that there is no
thermal exchange between the system and environment. It
can also be efficient if the potential profiles are mutually
shifted so that Brownian motion is not involved in the transport
generation [16,17]. A detailed analysis of the highly efficient
flashing ratchet with half-period-shifted potentials was given
in Refs. [18,19]. Thus, both models rely on adiabaticity of the
potential change process, which is crucial to avoid energetic
losses. However, the adiabaticity that we deal with in the two
cases is of a different type, which is manifested, in particular,
in distinctly different properties of the quantities of interest
[20]. To distinguish between these models, the first (second)
one is called hereafter the adiabatically slow (fast) driven
ratchet.

In what follows, first (in Sec. II), we show that the symmetry
properties of the known solutions for the drift velocity of the
adiabatically slow and adiabatically fast driven ratchets are
different. In Sec. III, to better understand the origin of this
difference, we also invoke the high-temperature expansion
of the velocity. In Sec. IV, we restate the models in terms
of traveling potential ratchets, which makes the analysis of
their energetic characteristics particularly transparent. Finally
(Sec. V), based on the results of this paper, we formu-
late conditions for designing Brownian motors with high
efficiency.

II. SYMMETRY PROPERTIES

Consider an overdamped Brownian particle x(t) moving
in the spatially periodic potential V (x; R) with period L. The
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potential depends on a number of parameters {R1,R2, . . . ,Rn}
collected in a vector R. If the parameters vary periodically
in time (with period τ ), R(t + τ ) = R(t), the net drift of the
particle arises even in the adiabatic limit, τ → ∞. The drift
velocity of such adiabatically slow driven Brownian motor
reads [13]

A = L

τ

∮
dR ·

∫ L

0
dxρ+(x; R)

∫ x

0
dx ′∇Rρ−(x ′; R), (1)

where

ρ±(x; R) = Z−1
± (x; R)e±βV (x;R),

(2)

Z±(x; R) =
∫ L

0
dxe±βV (x;R),

and β = (kBT )−1 (kB is the Boltzmann constant and T

is the absolute temperature). Note that the time-reversal
transformation changes dR to −dR and hence inverts the
direction of the drift velocity, as it should be for the reversible
ratchet.

The velocity A in Eq. (1) possesses an additional remark-
able symmetry property. To exhibit it, first note that using
the identity

∮
dR · ∇R�(R) = 0 [with an arbitrary function

�(R)], Eq. (1) can be written in the form

A = −L

τ

∮
dR ·

∫ L

0
dx∇Rρ+(x; R)

∫ x

0
dx ′ρ−(x ′; R). (3)

Then changing the order of integration in Eq. (3) and taking
into account that

∫ L

x ′ dx∇Rρ+(x; R) = − ∫ x ′

0 dx∇Rρ+(x; R),
we arrive at the alternative presentation of the velocity:

A = L

τ

∮
dR ·

∫ L

0
dxρ−(x; R)

∫ x

0
dx ′∇Rρ+(x ′; R). (4)

The quantities ρ+(x; R) and ρ−(x; R) are readily intercon-
verted by the inversion of the sign of V (x; R), as their
definitions in Eq. (2) indicate. With this fact, a comparison
of Eqs. (1) and (4) shows that the drift velocity is an
even functional of the potential. So the inversion of the
sign of the potential leaves the velocity unchanged, though
the asymmetry of the potential (if it is present) is inverted
by this transformation. This observation leads to important
conclusions: (i) Asymmetry of the static potential V (x; R)
contributes nothing to the working mechanism of the adi-
abatically slow driven ratchet and (ii) the only parametric
perturbations R(t) break the spatial inversion symmetry,
allowing a directed motion set in even in an a priori symmetric
potential.

As an example of an adiabatically fast driven ratchet,
consider a flashing ratchet in which the potential switches
periodically in time between two spatially periodic profiles
Va(x) and Vb(x). The adiabaticity condition implies that
(i) transitions from Va(x) to Vb(x) and vice versa are fast,
and (ii) the particle residence times in states a and b, τa and
τb, are large as compared to all characteristic times of the
system. With these conditions satisfied, the solution for the

drift velocity is known [13,21]:

A = L

τ

∫ L

0
dx[ρ(a)

+ (x)−ρ
(b)
+ (x)]

∫ x

0
dx ′[ρ(a)

− (x ′) − ρ
(b)
− (x ′)],

(5)

where ρ
(a)
± (x) and ρ

(b)
± (x) are defined by Eq. (2) in which the

potential V (x; R) is replaced by Va(x) and Vb(x), respectively.
As for the adiabatically slow driven ratchet [see Eq. (1)],
the drift velocity of an adiabatically fast driven ratchet is
proportional to τ−1. Note that Eq. (5) is invariant under
the interchange a ↔ b (which is equivalent to the time
reversal), as it should be for this intrinsically irreversible
mechanism.

To exhibit other symmetry properties, it is instructive to
change the order of integration and take advantage of the rela-
tion

∫ L

x ′ dx[ρ(a)
+ (x) − ρ

(b)
+ (x)] = − ∫ x ′

0 dx[ρ(a)
+ (x) − ρ

(b)
+ (x)].

As a result we get

A = −L

τ

∫ L

0
dx[ρ(a)

− (x) − ρ
(b)
− (x)]

×
∫ x

0
dx ′[ρ(a)

+ (x ′) − ρ
(b)
+ (x ′)]. (6)

A comparison of Eqs. (5) and (6) shows that the aver-
age velocity is an odd functional of the potential: The
simultaneous sign change of Va(x) and Vb(x) inverts the
velocity direction. Then, instead of Va(x) and Vb(x), introduce
u(x) = 1

2 [Va(x) + Vb(x)] and w(x) = 1
2 [Va(x) − Vb(x)], so

that Va,b(x) = u(x) ± w(x). The function u(x) plays the
role of an “average” potential, while w(x) characterizes
the deviation from the average. The invariance of A under
the interchange a ↔ b implies the velocity to be an even
functional of w(x). Additionally, the fact that the simultaneous
sign change of u(x) and w(x) inverts A implies the drift
velocity to be an odd functional of u(x). Since the inversion
of u(x) implies the inversion of its reflection asymmetry,
nonzero values of A are possible only when the function u(x)
is asymmetric. Thus, the broken reflection symmetry of the
average potential u(x) is an indispensable prerequisite for the
adiabatically fast driven Brownian motor to operate. This is
in sharp contrast to what we have seen for the adiabatically
slow driven motor, where the necessary symmetry breaking
occurs without the assistance of the spatial asymmetry of the
potential.

Note that even if the potentials Va(x) and Vb(x) alone are
symmetric, their average, u(x), can be asymmetric, which
results in a nonzero drift velocity (a simple example is given
in Ref. [21]). On the other hand, both Va(x) and Vb(x) can be
asymmetric, but nevertheless A = 0 as this occurs in the case
where Va(x) = −Vb(x) [i.e., u(x) ≡ 0].

III. HIGH-TEMPERATURE EXPANSION

Consider the case of high temperatures βV0 � 1, where
V0 is the characteristic amplitude of the potential. In this
way, we illustrate the results obtained above and, moreover,
reveal additional properties of the adiabatically driven models.
Following the approach suggested in Refs. [22,23], one
can write down the first two terms of the high-temperature
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expansion of the drift velocity:

A = D

L

⎧⎨
⎩β2

∑
qj �=0

(ωjτD)(kqL)3

(kqL)4 + (ωjτD)2
|Vqj |2 + iβ3

×
∑

qj,q ′j ′(�=0)

(kqL)2(kq+q ′L)2(kq ′L)[(kqL)2(kq+q ′L)2 − (ωjτD)(ωj ′τD)]

[(kqL)4 + (ωjτD)2][(kq+q ′L)4 + (ωj+j ′τD)2]
VqjVq ′j ′V−q−q ′,−j−j ′ + O(β4)

⎫⎬
⎭ , (7)

where D is the (potential free) diffusion coefficient, τD =
L2/D is the time step of diffusion over the spatial period,
and Vqj are the Fourier components of an arbitrary potential
V (x,t) = V (x + L,t + τ ), with wave numbers kq = (2π/L)q
and frequencies ωj = (2π/τ )j (q and j are integers). The first
term in Eq. (7) is nonzero only when

|Vqj |2 �= |V−q,j |2. (8)

This condition is met for the parametric excitation V [x; R(t)],
with at least two different time-dependent parameters Ri(t)
(i = 1,2) such that the integral in Eq. (1) does not equal zero.
To make sure this is the case, consider the potential V [x; R(t)]
written in the form

V [x; R(t)] = u(x)R1(t) + w(x)R2(t), (9)

which corresponds, for example [20], to a two-well periodic
potential profile, where the time periodic changes of the wells
and the barriers are governed by the functions R1(t) and
R2(t). Decomposing the functions in Eq. (9) into even and
odd parts [designated as (s) and (a), respectively], we arrive at
the following relation:

|Vqj |2 − |V−q,j |2 = 4

∣∣∣∣∣
u(s)

q w(s)
q

u(a)
q w(a)

q

∣∣∣∣∣
∣∣∣∣∣
R

(s)
1,j R

(s)
2,j

R
(a)
1,j R

(a)
2,j

∣∣∣∣∣ , (10)

where the vertical bars on the right-hand side designate the
determinants. As Eq. (10) indicates, the condition (8) is
satisfied if all functions in Eq. (9) are nonzero and both even
and odd parts of these functions contribute to Eq. (10). Note
that ωj is proportional to τ−1 and for large τ the second term
in Eq. (7) goes to zero as τ−2 if the function R(t) is smooth.
Therefore, for the adiabatically slow driven ratchet (τ 	 τD),
Eq. (7) is reduced to

A 
 (L/τ )β2

[ ∑
qj (�=0)

(j/q)
∣∣Vqj

∣∣2 + O(β2)

]
, (11)

so that the inversion of the potential sign leaves the velocity
unchanged, in accordance with the conclusion of our general
analysis.

If the condition (8) breaks down, i.e., |Vqj |2 = |V−q,j |2,
the leading term in the expansion (7) is proportional to β3.
This term behaves as τ−1 as τ → ∞ only if the function R(t)
is a piecewise smooth function with jump discontinuities. The
simplest example of such a situation is a dichotomous variation
of the potential given by Eq. (9), in which R1(t) = 1 and
R2(t) = σ (t), with σ (t) taking the values +1 and −1 during
the time intervals τa and τb. So the potential switches between
two profiles Va,b(x) = u(x) ± w(x). Taking into account that

the Fourier components σj of σ (t) = ±1 decrease slowly with
increasing j (as j−1), the jj ′ summation of the series in the
second term of Eq. (7) for the case of the adiabatically fast
driven ratchet (τa,b 	 τD) leads to

A 
 4iL

πτ
β3

[ ∑
qq ′(�=0)

q−1uq ′wqw−q−q ′ + O(β2)

]
. (12)

As Eq. (12) indicates, the velocity is the linear form in uq

and the quadratic form in wq , in accordance with our general
analysis.

IV. ENERGETIC EFFICIENCY

In the remainder of the paper, we discuss the energetics
of the adiabatically driven ratchets. To make the analysis
particularly transparent, we restate the models in terms of
traveling potential ratchets, which is a specific subclass of
ratchets with periodic time-dependent potentials having the
form V (x − f (t)), where the function f (t) is associated with
the nonequilibrium perturbation [6]. For such ratchets, the
potential extrema shift in time so that diffusion-free directed
motion is produced, and the condition of high efficiency
mentioned in Refs. [16,17] is satisfied. The overdamped
dynamics of the traveling potential ratchets in the presence
of a load force F is governed by the Langevin equation

ζ ẏ = −V ′(y) − ζ ḟ (t) − F + ξ (t), (13)

where y = x − f (t) is the auxiliary variable, ζ = kBT /D is
the friction coefficient, the dotted and primed symbols stand
for the respective time and coordinate derivatives, and ξ (t) is
unbiased Gaussian white noise with the correlation function
〈ξ (t)ξ (s)〉 = 2ζkBT δ(t − s).

First, consider a genuine traveling potential ratchet with
f (t) = ut [24–26]. We assume that the potential varies adia-
batically slow with the traveling velocity u = L/τ , τ → ∞,
which implies the stopping force Fs (the value of the load force
that nullifies the ratchet effect, F � Fs) is also small. Note that
the periodic function V (x − ut) can be presented as a definite
function (not necessarily periodic) of a periodic argument,
e.g., cos 2π [(x − ut)/L]. Then its spatial time dependence is
determined by a function of the right-hand side of Eq. (9) with
u(x) = cos 2πx/L, w(x) = sin 2πx/L, R1(t) = cos 2πt/τ,

and R2(t) = sin 2πt/τ . Thus in the adiabatic limit, the genuine
traveling potential ratchet is equivalent to the adiabatically
slow driven ratchet.

In this case the effective force F̃ = ζu + F , entering in
Eq. (13), is time independent, so the problem is reduced to the
well-known exactly solvable problem of Brownian motion in a
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periodic tilted potential [27–29]. In view of F̃ → 0, the motor
operates in the linear response regime, so that 〈ẏ〉 = −μeffF̃ ,
where μeff is the effective mobility of the Brownian particle in
the periodic potential V (y) [30]:

μeff = L2∫ L

0 dyeβV (y)
∫ L

0 dye−βV (y)
ζ−1. (14)

Thus the desirable drift velocity A = 〈ẏ〉 + u reads

A = (1 − ζμeff) u − μeffF, (15)

and it is an even functional of the potential as follows from
Eq. (14). Note that for a sawtooth potential, the effective mobil-
ity μeff = ζ−1v2/ sinh2 v (where v ≡ βV0/2) is independent
of the potential asymmetry, as it should be for the adiabatically
slow ratchets.

The useful work done by the particle against the load force
per unit time (power output) equals Pout = FA, whereas the
average energy transferred to the particle per unit time due
to variation of the potential (power input) is given by Pin =
u(ζA + F ) [31]. The quantities −F and u can be considered
as generalized forces so in the vicinity of equilibrium Pout and
Pin can be written as the quadratic forms of the forces:

Pout = −λ11F
2 + λ12Fu, Pin = −λ21Fu + λ22u

2, (16)

where λik (i,k = 1,2) are the kinetic coefficients defined by
the relations

λ11 = μeff, λ12 = −λ21 = 1 − ζμeff, λ22 = ζλ12. (17)

We call attention to antisymmetry of the kinetic coefficients,
which is a distinctive feature of the adiabatically slow driven
ratchets (see also Ref. [20]).

From Eqs. (16) and (17), it follows that the maximum of the
efficiency η = Pout/Pin as a function of the load force is deter-
mined by the single parameter Z = λ11λ22/λ

2
12 = ζμeff/(1 −

ζμeff): ηm = (
√

1 + Z − √
Z)2. Since the effective mobility,

Eq. (14), and hence Z are exponentially small when the char-
acteristic amplitude of the potential V0 	 kBT , the efficiency
maximum approaches unity as ηm 
 1 − 2

√
ζμeff .

To treat the energetics of the adiabatically fast driven
motor, consider another type of traveling potential ratchet
scheme, characterized by a time-periodic driving function
f (t + τ ) = f (t), defined on the interval [0,τ ] as follows:
f (t) = (L/2)θ (t − τa), where τa < τ and θ (t) = 1 for t > 0
and 0 for t < 0. With such driving, the potential V (x − f (t))
switches between two static profiles Va(x) and Vb(x) =
Va(x + L/2), spending time τa in the former and time
τb = τ − τa in the latter. In terms of the probability density
ρ(x,t) and the probability current J (x,t), the ratchet dynamics
can be described in the form of a continuity equation
∂tρ(x,t) = −∂xJ (x,t). The current J (x,t) = Ĵ (x,t)ρ(x,t) on
the intervals 0 < t < τa and τa < t < τ can be determined
by the corresponding explicit forms of the current operator:
Ĵa(x) ≡ −ζ−1[V ′

a(x) + F ] − D∂x and Ĵb(x) = Ĵa(x + L/2).
It is easy to connect the currents at the points x and
x + L/2 with the probability densities at the moments τa

and τ :

Ĵa(x + L/2)ϕa(x + L/2) − Ĵa(x)ϕa(x) = R(x),
(18)

R(x) ≡
∫ x+L/2

x

dx ′[ρ(x ′,0) − ρ(x ′,τa)],

where we have introduced the function ϕa(x) ≡ ∫ τa

0 dtρ(x,t).
This function is related to the similarly defined function
ϕb(x) ≡ ∫ τ

τa
dtρ(x,t) by the relation ϕb(x) = ϕa(x + L/2).

The average velocity of the motor A = (L/τ )[Ĵa(x)ϕa(x) +
Ĵb(x)ϕb(x)] is position independent and can be written in the
form

A = L

τ
[2Ĵa(x)ϕa(x) + R(x)] (19)

by using Eq. (18). The power output, as usual, reads Pout =
FA. The power input in this case is found to be [17–19]

Pin = τ−1
∫ L

0
dx [Va(x) − Vb(x)] [ρ(x,0) − ρ(x,τa)].

(20)

Let us now assume that in the interval [0,L] the potential
profile Va(x) has a high barrier V0, βV0 	 1, at the point
x = 0, so that the current Ĵa(0)ϕa(0) is small enough. Then A

is approximately determined by the quantity R(0) and hence
Pout 
 (FL/τ )R(0). Let us also assume that, in the interval
[0,L/2], the difference �V ≡ Va(x) − Va(x + L/2) in the
vicinity of the potential minima varies only slightly with x.

Then we obtain the approximate relation Pin 
 2τ−1�V R(0)
and the estimate for the efficiency η 
 FL/2�V . Thus with
these assumptions, the efficiency is close to unity when F is
near the stopping force Fs = 2�V/L. Further, consider the
adiabatic limit τa,b → ∞, and neglect the contribution from
the small current Ĵa(0)ϕa(0) to the probability density. Then
the distribution can be approximated by the equilibrium one
with the potential energy Ua(x) = Va(x) + Fx that allows us
to write

ρ(x,0) − ρ(x,τa) 
 [
eβ(�V −FL/2) − 1

]
ρ(x,τa),

ρ(x,τa) 

{[

eβ(�V −FL/2)+1
] ∫ L/2

0
dx e−βUa (x)

}−1

× e−βUa (x). (21)

From these expressions it follows that R(0) defined in
Eq. (18) can be estimated as R(0) ≈ tanh[β(�V − FL/2)/2].
The quasiequilibrium conditions imply the smallness of �V

and F, so that Pout 
 βFL(�V − FL/2)/2τ and Pin 

β�V (�V − FL/2)/τ. Considering these expressions for Pout

and Pin as quadratic forms of the generalized forces −F and
�V [cf. Eq. (16)], we arrive at the conclusion that λ12 = λ21,
thus asserting symmetry of the kinetic coefficients in the case
of adiabatically fast ratchets.

A more detailed and rigorous consideration of efficient
flashing ratchets is presented in Refs. [18–20], where it is
shown that the deviation of the maximum efficiency from unity
decays exponentially with increasing V0 at the instantaneous
switching of the potential profiles and decays much slower
(according to a power law at large V0) when this switching
occurs for a finite time interval.
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V. CONCLUSIONS

To summarize, in the present paper, using different ap-
proaches, we have analyzed and compared the adiabatically
slow and adiabatically fast driven ratchets, both exhibiting
high efficiency of energy conversion. We have found that
these intrinsically different models share common traits, which
lead to the lowering of the energy loss: adiabaticity of
the potential change process, diffusion-free directed motion
generation (provided the potential extrema shift in time), and
an effective rectification mechanism (taking place when the
characteristic amplitude of the potential V0 	 kBT ). These
observations suggest a reasonable framework for designing
efficient Brownian motors. We have also found striking
differences between the properties of the adiabatically slow
and adiabatically fast driven ratchets: (i) the reversibility and
irreversibility with respect to time reversal of the driving
forces; (ii) the evenness and oddness of the motor velocity
as the functional of the potential; (iii) the occurrence of

the necessary symmetry breaking without and with the
assistance of the spatial asymmetry of the potential; and (iv)
antisymmetry and symmetry of the kinetic coefficients in the
quasiequilibrium regime. Additionally, we have shown that
the models of adiabatically slow and adiabatically fast driven
ratchets are equivalent to different types of traveling potential
ratchets under some additional assumptions.
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