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Analyses and forecasts of carbon emissions, energy consumption and real outputs are key requirements
for clean energy economy and climate change in rapid growth market such as China. This paper employs
the nonlinear grey Bernoulli model (NGBM) to predict these three indicators and proposes a numerical
iterative method to optimize the parameter of NGBM. The forecasting ability of NGBM with optimal
parameter model, namely NGBM�OP has remarkably improved, compared to the GM and ARIMA. The
MAPEs of NGBM�OP for out-of-sample (2004e2009) are ranging from 1.10 to 6.26. The prediction results
show that China’s compound annual emissions, energy consumption and real GDP growth is set to
4.47%, �0.06% and 6.67%, respectively between 2011 and 2020. The co-integration results show that the
long-run equilibrium relationship exists among these three indicators and emissions appear to be real
output inelastic and energy consumption elastic. The estimated values cannot support an EKC hypothesis,
and real output is significantly negative impact on emissions. In order to promote economic and envi-
ronmental quality, the results suggest that China should adopt the dual strategy of increasing energy
efficiency, reducing the loss in power transmission and distribution and stepping up energy conservation
policies to reduce any unnecessary wastage of energy.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

“Climate Change 2007”, the Fourth Assessment Report of the
United Nations Intergovernmental Panel on Climate Change (IPCC),
predicts that by 2100 global average temperature could rise 2e4.2� .
Most experts have attributed the root causes of global warming to
the rapid growth of the global economy, human consumption of
large amounts of energy, and the greenhouse effect from emissions
of six gases affecting Earth’s climate changes. The 1997 Kyoto
Protocol had the objective of reducing greenhouse gases (GHG),
which cause climate change. It demanded a 5.2% reduction of GHG
emissions compared to the 1990 level, between 2008 and 2012. The
Protocol went into effect in 2005. Amongst several environmental
pollutants that can cause climate change, carbon dioxide (CO2) is
responsible for 58.8% of all GHGs [1]. The combustion of fossil fuels
is the largest single contributor to CO2 and total GHG emissions,
and of all the major sources, their impact has grown the most
rapidly since 1970 because of the world’s recent economic growth.
þ886 3 5710102.
).
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Therefore, the analyses and forecasts of CO2 emissions, energy
consumption and economic growth constitute a vital part of clean
energy economy.

In emerging markets such as China, although she signed the
Kyoto protocol to curb emission, environmental concerns are still
there, because of the country’s large population, strong capital
investment and urbanisation, and heavy reliance on coal. China is
the biggest coal consumer in Asian region. For the trend of CO2
emissions, increasing coal consumption brought China to overtake
the United States in 2006 as the world’s biggest emitter of carbon
dioxide; China’s CO2 emissions were 25.43% of the world total in
2009 (EIA, Energy Information Administration). But the country’s
carbon dioxide emissions per capita are also relatively low
compared to developed countries, and China has not contributed
much to climate change because of its short history as an industrial
nation. Figure for 2009 (EIA), per capita emissions were 5.82 tons in
China, which is lower than 8.22 tons of the 15 nations in European
Union, or 17.67 tons in United States, but it is larger than the world
average figure of 4.47 tons. As shown in [2], in order to actively
respond climate change and to develop clean energy economy,
China has an ambitious goal to reduce carbon intensity by 40e45%
by 2020, from 2005 levels.
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For the trend of energy consumption, in 2009, China became the
world’s largest energy consumer. In 2010, the country consumed
5.3% more coal, 12.9% more crude oil, 18.2% more natural gas and
13.1% more electricity than in 2009; however its energy intensity
fell 4.01%. Based on data from 2008 (EIA), China’s energy intensity
was 11,086.80 Btu, which is higher than the 5278.14 Btu of the 15
nations in European Union, the 7602.96 Btu in USA or the 9798.42
Btu of the world average. China aims to reduce its energy intensity
by asmuch as 17% by 2015 from current level, by closing enterprises
that are heavy energy users. In the next five years, China aims to
generate 11.4% of energy from non-fossil fuels, and to raise smart
grid market from $22.3 billion to $61.4 billion [2]. The country’s
massive smart grid plans is to address issues in its power industry
and to develop a lower-carbon economy. The plan will largely
change the generation and the use of energy in China. In addition,
Chinese government efforts to control inflation and restructure the
economy will slow economic growth, which should also reduce the
growth in energy use.

For the trend of economic growth, China ranks since 2010 as the
world’s second largest economy after the USA. It has been the
world’s fastest-growing major economy, with consistent growth
rates of around 10.98% over the past 30 years. China is also the
largest exporter and second importer of goods in the world. As
China’s economic importance has grown, so should be concerned
about the economy’s structure and health. Due to constantly
pursuing rapid economic expansion in past years, China has
brought unbalanced economic and social development. Therefore,
the official target for average GDP growth over the next five years is
set to 7% annually, which is 0.5% down from the past five years [3]. It
reflects the government’s determination to shift the economic
focus from speed to quality.

The relationship between emissions and economic growth, as
well as economic growth and energy consumption, has been
intensively analysed over the past two decades. Recently, a combi-
nation of these two approaches has emerged, which facilitates the
examination of the long-run relationship among economic growth,
energy consumption and environmental pollutants. China’s carbon
dioxide emissions, energy consumption and economic growth rose
sharply, the historical data for each series usually differ significantly
from the actual growth. Therefore, an intelligent model with good
adaptability and high forecasting accuracy to predict these time
series is important for clean energy economy. This paper uses
recent years’ data in the grey prediction models for the multi-step
forecasting of each series, with a forecast period between 2009 and
2020. The grey predictionmodel has good forecasting ability even if
there are only four original data [4,5]. The co-integration technique
is employed to examine the long-term relationship among emis-
sions, energy consumption and economic growth.

The remainder of this paper is organised as follows: Section 2
presents a review of the literature; Section 3 outlines the models
and both the GM and NGBM approaches are presented; Section 4
presents the data used and empirical findings. Section 5 discusses
the prediction results. The last section summarises and concludes
the paper.

2. Brief literature review

The relationship between economic growth and environmental
pollution, as well as economic growth and energy consumption,
has been intensively analysed over the past two decades. However,
the empirical evidence remains controversial and ambiguous to
date. The first nexus is closely related to testing the validity of the
Environmental Kuznets Curve (EKC) hypothesis. The EKC hypoth-
esis postulates that the relationship between economic develop-
ment and the environment resembles an inverted U-shaped curve.
That is, environmental pollution levels increase as a country
develops, but started to decrease as rising incomes pass a turning
point. This hypothesis was first proposed and tested by Grossman
and Krueger [6]; recent examples are illustrated in articles [7,8].
However, a higher national income does not necessarily warrant
greater efforts to contain the emissions of pollutants.

The second strand is related to energy use and the real output
nexus. This nexus suggests that higher economic growth requires
more energy consumption. Likewise, more efficient energy use
requires a higher level of economic development. Following the
study by Kraft and Kraft [9], an increasing number of studies have
assessed the empirical evidence by employing co-integration
techniques and the Granger causality [10,11].

A recent and emerging line of literature has analysed both
nexuses in the same framework. This approach facilitates the
examination of the dynamic relationship between economic
growth, energy consumption and environmental pollutants
combined. Ang [12] and Soytas et al. [13] initiated this combined
line of research. Recent work on this issue includes articles [14e19].

A sound forecasting technique is essential for accurate invest-
ment planning for energy production and distribution, environ-
mental protection and economic development. Current forecasting
methods can be divided into three categories: multivariate analysis,
univariate time-series analysis, and non-linear intelligent models.
Multivariate modelling and co-integrated techniques or regression
analysis have been used in a number of studies to analyse and
forecast energy consumption [20e22]. One limitation of multivar-
iate models is that they depend on the availability and reliability of
data on independent variables over the forecasting period, which
requires further efforts in data collection and estimation. Univariate
time-series analysis provides another modelling approach, which
only requires the historical data for the variable of interest to
forecast its future behaviour. The univariate BoxeJenkins ARIMA
[23] analysis has beenwidely used for modelling and forecasting in
many energy, environmental, financial, and engineering applica-
tions [24,25]. However, the need for a large number of observations
to produce accurate forecasting results has usually been required.
Due to fluctuations in energy consumption, some intelligent non-
linear forecasting methods, namely artificial neural network
(ANN) [26e28], fuzzy regression [29,30], and some hybrid models
[31,32], have been employed to predict energy demand more effi-
ciently. However, the forecasting results depend on the number of
training data and their representativeness, and these limitations
have not yet been overcome. In all of the above methods, the key
element that affects the forecasting performance is the sample size,
which limits their applicability to certain forecasting situations.
Forecasting the energy demand, emissions and real GDP in rapidly
developing countries are an example of this because the trend of
each series may be changing rapidly over time. Therefore, the grey
prediction model is an alternative forecasting tool for systems with
complex, uncertain and chaotic structures because of their low data
requirements to build forecasting models.

Grey theory was first proposed by Deng in 1989 [33] and has
over 20 years of history. This theory does not rely on statistical
methods to consider a grey quantity, but it uses, indirectly, original
data and tries to identify its intrinsic regularity. Accumulated
generating operation (AGO) is the main idea of Grey theory and
originates from the cumulative distribution in elementary statis-
tics. The aims of AGO are to reduce the randomness of raw data to
a monotonically increasing series. Grey theory has been widely
used in forecasting studies because of its higher forecasting accu-
racy when compared with other forecasting techniques [34,35]. For
a time sequence that can be approximated by the exponential
function curve, the forecasting accuracy can be improved to some
degree using GM (1, 1), because the traditional grey model is
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constructed with an exponential function. However, the time
sequence of the actual system will vary in waves, which do not
always satisfy the above increasing rule. Therefore, many models
have been proposed to increase this accuracy, such as the taguchi-
grey [36], grey-fuzzy [37], trigonometric-grey [38], and other
models [39e42]. These hybrid models include complex mathe-
matics and are difficult to apply.

The nonlinear grey Bernoulli model (NGBM) was named by
Chen et al. [43] and first appeared in the book by Liu et al. [44]. It is
a simple modification of GM (1, 1) combined with the Bernoulli
differential equation [45]. The advantage of this model is that the
curvature of the solution curve can be adjusted to fit the result of
the AGO of the raw data by adjusting variable parameters [46]. This
paper proposes a numerical iterative method for choosing optimal
parameter of NGBM to improve model accuracy, the improved
NGBM with optimal parameter model is named NGBM-OP. The
proposed iterative method is simple, easy to implement and has
fast convergence.

3. Methodology

This section describes fourpredictionmodels: theAutoregressive
Integrated Moving Average (ARIMA) linear model, the nonlinear
grey prediction model (GM (1, 1)), NGBMi and the proposed
NGBM �OP. All models are employed to forecast CO2 emissions,
energy consumption and real GDP for China from 2009 to 2020. The
multi-step forecasting abilities of the NGBM�OP are comparedwith
theGMandARIMAmodels using actual data from the out-of-sample
period between 2003 and 2008 for energy consumption, and
2004e2009 for both real GDP and emissions, where the in-sample
period is 1980e2002 or 2003 for the ARIMA model, and
1997e2002 or 1998e2003 for the GM and the NGBM�OP, respec-
tively. The co-integration technique is employed to analyse the long-
run equilibrium relationship between the variables. If a co-
integration relationship exists, predict all of them are an important
part of the clean energy economy.

3.1. Model

Following the empirical literature in environmental economics,
it is plausible to form a long-run relationship between CO2 emis-
sions, energy consumption, and economic growth in linear, loga-
rithmic quadratic form to test the validity of the EKC hypothesis as
follows:

LCOt ¼ b0 þ b1LGDPt þ b2LGDP
2
t þ b3LECt þ ut ; (1)

where LCO, LGDP and LEC represent the natural logarithms of CO2
emissions, energy consumption and real GDP, respectively. The
error term, ut, is assumed to be independent and normally
distributed with a zero mean and a constant variance. The
expected sign of the energy consumption is positive because
a higher level of energy consumption should result in greater
economic activity and stimulate CO2 emissions. Under the EKC
hypothesis, the signs of b1 and b2 are expected to be positive and
negative, respectively, to reflect the inverted U-shape pattern. The
turning point occurs at an income level of b1/2b2 (in logarithms)
[17]. That is, environmental pollution levels increase as a country
develops but started to decrease as rising incomes pass this
turning point.

To avoid both a spurious regression result and overestimating
the importance of the independent variables, the nested linear
models, with their R2, adjusted R2, and Jarque and Bera (JB) statis-
tics [47], are used to evaluate how well the LEC, LGDP and LGDP2

work together to accurately describe the LCO variable as follows:
LCOt ¼ a1 þ b1LGDPt þ ut (2-a)
LCOt ¼ a2 þ b2LGDPt þ c2LGDP
2
t þ ut (2-b)

LCOt ¼ a3 þ b3LGDPt þ c3LECt þ ut (2-c)

LCOt ¼ a4 þ b4LGDPt þ c4LECt þ d4LGDP
2
t þ ut (2-d)

If adding LGDP2 provides an adjusted R2 that is slightly larger
(<0.01), we might decide that including LGDP2 is not desirable. In
Eq. (2-d), if LGDP2 is not included, it indicates a monotonic rela-
tionship between emissions and income, when energy use does not
change. Eq. (2) provides estimates of the long-run elasticities of
energy use and income impacts on emissions.

The co-integration test is performed in two steps. First, we
verify the order of the integration of the variables, since various
co-integration tests are only valid if the variables have the same
order of integration. Three different unit root tests, including the
Augmented DickeyeFuller (ADF), the PhillipsePerron (PP) and the
KwiatkowskiePhillipseSchmidteShin (KPSS) [48e50] tests, are
used to investigate the stationarity and the order of the integra-
tion of the variables. In terms of the literature, tests designed on
the basis of the null hypothesis that a series is I (1) have a low
power of rejecting the null. Therefore, KPSS is sometimes used to
complement the widely used ADF and PP tests to obtain robust
results.

In the second step, when all of the series of the same order are
integrated, the Johansen maximum likelihood method [51,52] is
used to test the co-integration relationship between the variables
in Eq. (1) or (2). If co-integration exists among the variables, OLS
that is applied to the estimates from Eq. (1) or (2) does not lead to
a spurious regression result. Furthermore, the parameters esti-
mated by OLS are super-consistent. The existence of co-integration
indicates that there are long-run equilibrium relationships among
the variables. Therefore, the forecasts of CO2 emissions, energy
consumption and economic growth constitute a vital part of envi-
ronmental energy policy.
3.2. ARIMA model

The ARIMA model analyses and forecasts equally spaced,
univariate time series data. It predicts a value in a response time
series as a linear combination of its own past values and past
errors. The analysis performed by the ARIMA procedure is divided
into three stages: identification, estimation and diagnostic
checking, and forecasting, which correspond to the stages
described by Box and Jenkins. Classical BoxeJenkins models
describe stationary time series. Therefore, to tentatively identify
a BoxeJenkins model, we must first transform the time series into
a stationary time series by taking a pre-differencing trans-
formation. The BoxeJenkins models, ARIMA (p,d,q), are expressed
as follows:

where
fpðBÞð1� BÞdyt ¼ dþ qqðBÞat
fpðBÞ ¼ 1� f1B� f2B

2 �/� fpB
p

qqðBÞ ¼ 1� q1B� q2B2 �/� qqBq
(3)

In this expression, the time series is yt; B is the backward shift
operator; d is the order of regular differences; and at, at�1,. are
independent random shocks. The series at is assumed to be a white
noise process, and fp(B) and qq(B) are polynomials in B of order p
and q, respectively. The roots of fp(B) ¼ 0 and qq(B) ¼ 0 should lie
outside the unit circle.
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3.3. Grey prediction model

The Grey theory was proposed by Deng [33]. A system is called
“white” if all of the information about the system is known. On the
other hand, a system is called “black” if nothing is known about it.
Therefore, a grey system is one which is partially known. Grey
prediction power comes from its ability to predict the future value
with only a limited amount of data.

The grey prediction based on the grey model (GM) has three
basic operations: accumulated generating operation (AGO), inverse
accumulated generating operation (IAGO) and grey modelling. The
GM (1, 1) model is the most commonly used model. The first ‘1’ in
GM (1, 1) indicates that there is only one variable, and the next ‘1’
means that the first order grey differential equation is used to
construct the model. The algorithm of the GM (1, 1) grey prediction
model can be summarised as follows [35]:

Consider the non-negative time-sequence data;

uð0Þ ¼ �uð0Þð0Þ;uð0Þð1Þ;/;uð0ÞðiÞ;/;uð0ÞðnÞ�: wheren�3 : (4)

Then, the GM (1, 1) is as follows:

uð0ÞðkÞ þ aZð1ÞðkÞ ¼ b; k ¼ 1;2;.;n; (5)

where “a” is called “develop parameter” and “b” is called “grey
input”. The following procedures are then instituted:

1. Take AGO on u(0);

uð1ÞðkÞ ¼ AGO
�
uð0ÞðkÞ

�
¼
Xk

uð0ÞðiÞ; k ¼ 1;2;/;n; (6)

i¼0

where u(1)(0) ¼ u(0)(0).

2. Find Z(1) (k);

Zð1ÞðkÞ ¼ 0:5
�
uð1ÞðkÞ þ uð1Þðk� 1Þ�; k ¼ 1;2;/;n : (7)
3. Using the least square method, the parameters [a b]T in Eq. (4)
can be estimated as

½a; b�T ¼
h
BTB

i�1
BTyn;
where

B ¼

2
664
�Zð1Þð1Þ 1
�Zð1Þð2Þ 1
. .

�Zð1ÞðnÞ 1

3
775 and yn ¼

2
664
uð0Þð1Þ
uð0Þð2Þ
.
uð0ÞðnÞ

3
775: (8)
"
a

b

#
¼

2
66664
Pn

k¼1
�
Zð1ÞðkÞ�iþ1Pn

k¼1

n
uð0ÞðkÞ�Zð1ÞðkÞ�io�Pn

k¼1
�
Zð1Þðk

Pn
k¼1

n
uð0ÞðkÞ�Zð1ÞðkÞ�ioPn

k¼1
�
Zð1ÞðkÞ�2�Pn

k¼1


uð0ÞðkÞZð

Pn
k¼1

�
Zð1ÞðkÞ�2iPn

k¼1
�
Zð1ÞðkÞ�2�

 Pn
k¼1

�
Zð1
4. Find the response equation;

ûð1ÞðkÞ ¼
�
uð1Þð0Þ�b

a

�
e�akþb

a
¼
�
uð0Þð0Þ�b

a

�
e�akþb

a
; k¼ 0;1;.

(9)

5. By performing IAGO on u
_ð1Þðkþ 1Þ, the predicted value of

ûð0Þðkþ 1Þ is

u
_ð0Þðkþ1Þ ¼ u

_ð1Þðkþ1Þ� u
_ð1ÞðkÞ or

u
_ð0Þðkþ1Þ ¼ ð1� eaÞ

�
uð0Þð0Þ�b

a

	
e�aðkþ1Þ; k ¼ 0;1;. ;

(10)

where u
_ð0Þð1Þ; u_ð0Þð2Þ;.; u

_ð0ÞðnÞ are called the GM (1, 1) fitted
sequence, while u

_ð0Þðnþ1Þ; u_ð0Þðnþ2Þ;.; are called the GM (1, 1)
out-of-sample forecast values. The results of the grey prediction
model are compared with the results of the ARIMA and NGBM-OP
models.
3.4. NGBM�OP model

The forecasting model NGBM (1, 1) was named by Chen [43] and
first appeared in the book by Liu et al. [44]. Based on the ordinary
nonlinear differential Bernoulli equation [45], the NGBMi (1, 1) is as
follows [53]:

where uð0ÞðkÞþaZð1ÞðkÞ ¼ b
�
Zð1ÞðkÞ�i; i˛R;

Zð1ÞðkÞ ¼ 0:5
�
uð1ÞðkÞþuð1Þðk�1Þ�; k ¼ 1; 2;.;n

(11)

The optimal value of power i is determined by the minimum
mean absolute percentage error (MAPE) of the forecasting model.
The solution of Eq. (11) reduces to Eq. (5) when i ¼ 0, and it reduces
to the GreyeVerhust equation when i ¼ 2 [44]. The parameters
a and b can be estimated as follows:

where

½a;b�T ¼ �BTB��1
BTyn

B ¼

2
6664
�Zð1Þð1Þ �

Zð1Þð1Þ�i
�Zð1Þð2Þ �

Zð1Þð2Þ�i
« «

�Zð1ÞðnÞ �
Zð1ÞðnÞ�i

3
7775 and yn ¼

2
664
uð0Þð1Þ
uð0Þð2Þ

uð0ÞðnÞ

3
775; i˛R

(12)

The alternative form of parameters a and b are shown below:
Þ�2iPn
k¼1 u

ð0ÞðkÞZð1ÞðkÞ

1ÞðkÞ�Pn
k¼1

�
Zð1ÞðkÞ�iþ1

3
77775

ÞðkÞ�iþ1
!2 (13)
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Fig. 1. Time series plots of the emissions, energy consumption and real GDP,
1980e2008.
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The response equation is the following:

u
_ð1ÞðkÞ ¼

��
uð0Þð0Þð1�iÞ�b

a

	
e�að1�iÞk þ b

a

�1=ð1�iÞ
; is1 and

k ¼ 0;1;/; (14)

By performing IAGO on u
_ð1Þðkþ 1Þ, the predicted value of

ûð0Þðkþ 1Þ is

u
_ð0Þðkþ 1Þ ¼ u

_ð1Þðkþ 1Þ � u
_ð1ÞðkÞ; k ¼ 0;1;.; (15)

where u
_ð0Þð1Þ; u

_ð0Þð2Þ;.; u
_ð0ÞðnÞ are called the NGBMi (1, 1) fitted

sequence, and u
_ð0Þðnþ 1Þ; u

_ð0Þðnþ 2Þ;.; are called the NGBMi (1,
1) out-of-sample forecast values.

The parameter i in NGBM serves as the adjustable parameter,
this paper proposes a numerical iterative method with MAPE value
to optimize this parameter. In the next section, the iterative results
will show parameter i is efficient in improving the model precision,
and the prediction results of NGBMwith optimal parameter imodel
(NGBM�OP) are compared with the results of the ARIMA and GM
(1, 1) models.

For the purpose of evaluating the out-of-sample forecast capa-
bility, the forecasting accuracy is examined by calculating three
different evaluation statistics: the root mean square error (RMSE),
the mean absolute error (MAE) and the mean absolute percentage
error (MAPE). These are expressed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðPi � AiÞ2



n

s
;

MAE ¼ Pn
i¼1

jPi � Aij



n;

MAPE ¼ Pn
i¼1

jðPi � AiÞ=Aij



n*100;

(16)

where Pi and Ai are the ith forecasting and actual values, respec-
tively, and n is the total number of predictions. Lewis [54] interprets
the MAPE results as way to judge the accuracy of the forecast,
where less than 10% is a highly accurate forecast; 10%e20% is a good
forecast; 20%e50% is a reasonable forecast; andmore than 50% is an
inaccurate forecast.

4. Data and forecasts

4.1. Data analysis

This study collected annual data on energy consumption for
1980e2008, and the CO2 emissions, energy intensity and carbon
intensity for 1980e2009, from the EIA. The real GDP from 1980 to
2009 was collected from the World Development Indicators (WDI).
CO2 emissions are measured in metric tons of carbon dioxide based
on the energy consumption and flaring of fossil fuels. Real GDP is
measured in US dollars at 2000 prices. Total energy consumption is
measured in quadrillion Btu (British thermal unit). The energy
intensity in Btu is measured by the total primary energy
consumption per dollar of GDP. The carbon intensity in metric tons
is measured by the total carbon dioxide emissions from the
Table 1
Summary statistics for China, 1980e2008.

CO2 emissions (billion
metric tons)

Energy consumption
(quadrillion Btu)

Real GDP (constant
2000 US$ billion)

Mean S.D. CV (%) Mean S.D. CV (%) Mean S.D. CV (%)

3.04 1.48 48.68 37.32 18.89 50.62 927.89 713.18 76.86
consumption of energy per dollar of GDP. Table 1 displays the
summary statistics associated with the five variables.

Fig. 1 shows the change trend of each series for China. All vari-
ables increased over time, with real GDP exhibiting the most
related variation (defined by the coefficient of variation (CV)), and
emissions the least related variation (Table 1). Table 2 shows the
annual average percentage growth rates in the years to 2008 of
each variable. Fifteen-, ten-, and five-year growth rates were
calculated as the growth between 1993 and 2008, 1998e2008, and
2003e2008, respectively. In the most recent five years



Table 3
Coefficients of Eq. (2) for CO2 emissions.

Independent variables

LGDP LGDP2 LEC Intercept Adj-R2 R2 JB p val.

Eq. (2-a) 0.520*** (19.046) �2.385*** (�13.264) 0.9282 0.9307 1.877 0.391
Eq. (2-b) �0.790* (�1.853) 0.100*** (3.079) 1.827 (1.327) 0.9453 0.9492 4.085 0.130
Eq. (2-c) �0.081*** (�75.10) 1.095*** (1186.64) �2.308*** (�312.59) 0.9983 0.9985 0.233 0.890
Eq. (2-d) 0.193*** (52.69) �0.026*** (�28.69) 1.196*** (99.71) �3.338*** (�115.72) 0.9991 0.9992 139.584 0.000

Figures in parentheses indicate t-statistics.
* and *** indicate the rejection of a null hypothesis at 10% and 1% level of significance, respectively.

Table 2
Average growth rates in percentages to 2008 for each variable.

Growth rate China World

CO2

emissions
Energy
consumption

Real
GDP

Energy
intensity

Carbon
intensity

CO2

emissions
Energy
consumption

Real
GDP

Energy
intensity

Carbon
intensity

15-year 6.55 7.19 10.14 �2.68 �3.26 2.30 2.41 3.11 �0.71 �0.81
10-year 8.65 8.67 10.11 �1.31 �1.33 2.83 2.57 3.09 �0.60 �0.33
5-year 10.82 10.71 11.57 �0.77 �0.67 3.26 2.97 3.43 �0.60 �0.20

H.-T. Pao et al. / Energy 40 (2012) 400e409 405
(2003e2008), the average growth rate in real GDP was 11.57%,
which is almost 3.4 times higher than the world growth rate of
3.43%; the growth rate in energy consumptionwas 10.71%, which is
almost 3.6 times higher than the world growth rate of 2.97%; and
the emissions growth rate was 10.82%, which is almost 3.3 times
higher than the world growth rate of 3.26%. These indicate that
China is a very fast growing market. The five-year growth rate in
emissions is almost 1.7 times higher than the fifteen-year growth
rate, but it is only 1.1 times higher than the fifteen-year growth rate
in real GDP. For the ten-year and fifteen-year growth rates, energy
consumption was greater than emissions, but emissions were
greater than energy consumption for the five-year growth rate.
These results show that China has no intention of capping its
emissions, even as authorities are committed to realising the
nation’s target to reduce carbon intensity through new policies and
measures. Additionally, the fifteen-year decline rate of carbon
intensity and energy intensity shown in Table 2 were 3.26% and
2.68%, respectively, which is almost 4.0 and 3.8 times higher than
the world decline rate of 0.81% and 0.71%, respectively. These
numbers show that China has made significant gains in reducing
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Fig. 2. The ln(CO2 emissions)eln(GDP) plot for China, 1980e2008.
carbon intensity and energy intensity in the fifteen-year period,
despite an increase in both emissions and energy consumption;
however, developing countries have a long way to go to improve
people’s lives and eliminate poverty. Despite these challenges,
China has pledged to reach their goal of cutting carbon intensity per
GDP unit by 40e45% by 2020 [2].

4.2. Co-integration test

The annual data from 1980 to 2008 were used to estimate Eqs.
(1,2), and the time series properties of the variables were checked
using three different unit root tests, including the ADF, PP, and
KPSS. The coefficients of Eq. (2-b) shown in Table 3 indicate that the
relationship between income and emissions resembles a U-shape;
therefore, the estimates cannot support an EKC hypothesis. The
turning point of the U-shape occurs at an income level of 3.95
(¼0.79/(2*0.10), in logarithm). Because the value of the turning
point (3.95) is less than the minimum value (5.21) of the LGDP in
China for the period 1980e2008, the relationship between income
and emissions shown in Fig. 2 presents a monotonic increase. The
values of the R2, adjusted R2 and JB-statistic from Eq. (2) shown in
Table 3 indicate that Eq. (2-d) is inappropriate because adding
LGDP2 results in an adjusted R2 that is slightly larger (<0.001), and
the p-value of the JB-statistic is less than 0.01. The comprehensive
results of Eq. (2-b) with turning point and Eq. (2-d) imply that Eq.
(2-c) is appropriate to describe the relationship among variables.

All of the series in Eq. (2-c) appear to contain a unit root in their
levels but are stationary in their first difference, indicating that they
are integrated at order one, i.e., I (1). The results are displayed in
Table 4
Results of the unit roots tests.

ADF PP KPSS

Level 1st diff. Level 1st diff. Level 1st diff.

LCO �0.07 �2.64* 0.96 �2.72* 0.67** 0.20
LEC 0.30 �2.93* 1.25 �2.96* 0.68** 0.24
LGDP �0.48 �3.92*** 0.30 �3.29** 0.70** 0.06

All unit roots (except the KPSS) have a null hypothesis in that the series has a unit
root against the alternative of being stationary. The null of KPSS states that the
variable is stationary. Individual intercepts are included in test regressions.
*, ** and *** mean that the null of the unit root test is rejected at a 10%, 5% and 1%
level. The lag lengths are selected using AIC.



Table 5
Results of the Johansen co-integration test.

Panel C: Eq. (4)

Variable: LCO, LEC and LGDP; lag ¼ 1

Eigenvalue Trace
Stat.

5% critical
value

Max Eigen.
Statistic

5% critical
value

Number of
co-integrations

0.941 92.10* 35.19 79.33* 22.30 None
0.286 12.78 20.26 9.44 15.89 At most 1
0.113 3.34 9.17 3.34 9.17 At most 2

The optimal lag lengths are selected using AIC.
* indicates the rejection of a null hypothesis at a 5% level of significance.
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Fig. 4. The results of the MAPE with different power i in the NGBMi (1, 1) for energy
consumption over the out-of-sample period between 2003 and 2008.
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Table 4. The next step is to test whether the variables in Eq. (2-c) are
co-integrated; therefore, Table 5 shows the results of the Johansen
test. The trace and eigenvalue tests reject the hypothesis of no co-
integrating equation at a 5% or better level of significance and
indicate at least one co-integration equation with no lags. There-
fore, there is a long-run equilibrium relationship between emis-
sions, energy consumption and real GDP, and the OLS applied to the
estimated Eq. (2-c) does not lead to a spurious regression result.
The results of Eq. (2-c) indicate that a 1% increase in energy usage
increases emissions by 1.095% when the real GDP does not change,
and a 1% increase in real output decreases emissions by 0.081%
when energy consumption does not change. Therefore, emissions
appear to be real output inelastic and energy consumption elastic,
and energy consumption is a more important determinant of
emissions than real output in China. In addition, results indicate
that when the energy consumption does not change, real output is
significantly negative impact on emissions. In order to enhance
economic growth and reduce emissions, it is suggested that China
should increase both energy supply investment and energy effi-
ciency, and step up energy conservation policies to reduce unnec-
essary wastage of energy. Based on long-run equilibrium
relationship, forecasts of CO2 emissions, energy consumption and
economic growth are a vital part of green energy policy.

4.3. Forecasting results

The multi-step forecasting abilities of the NGBM-OP models
were compared with the ARIMA and GM (1, 1) models using actual
data over the six-year, out-of-sample period between 2003 and
2008 for energy consumption, and 2004e2009 for the CO2
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Fig. 3. The results of the MAPE with different power i in the NGBMi (1,1) for emissions
over the out-of-sample period between 2004 and 2009.
emissions and the real GDP variables. For each variable, the GM
models used six-year (GM-6, 1997e2002 or 1998e2003), five-year
(GM-5, 1998e2002 or 1999e2003) and four-year (GM-4,
1999e2002 or 2000e2003) data as the in-sample period, and the
ARIMAs used only one in-sample period from 1980 to 2002 or
1980e2003. This in-sample period was used to build the models,
and the out-of-sample period was used to evaluate the prediction
accuracy by using the RMSE, MAE and MAPE statistics. For each
variable, the best GM model was determined by the smallest MAPE
value. The original data set for the best GM-k (k ¼ 6, 5 or 4) model
was employed to build the NGBM�OPmodel, where the parameter i
was determined using the numerical iterative method with the
MAPE value. Figs. 3e5 show the impact on the results of the MAPE
in the NGBMwhen the parameters i are set to �0.2 to 0.2, with 0.01
increments, for emissions, energy consumption and output,
respectively. They show that the numerical iterative method is an
effective optimisation algorithm that is suitable for the parameter i
selection of the NGBM. In particular, for all tested i, 0.1, �0.1
and�0.08 resulted in the smallest MAPE values in the NGBMimodel
for emissions, energy consumption and real GDP, respectively.
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Fig. 5. The results of the MAPE with different power i in the NGBMi (1, 1) for real GDP
over the out-of-sample period between 2004 and 2009.



Table 6
Out-of-sample comparisons among the NGBM�OP, GM and ARIMA models.

ARIMA GM-4 GM-5 GM-6 NGBM�OP

Forecasts of CO2 emissions (billion metric tons) (2004e2009) i ¼ 0.1, n ¼ 5
RMSE 1.53 1.55 0.57 0.68 0.35
MAE 1.68 1.21 0.50 0.67 0.26
MAPE 23.74% 17.91% 7.84% 11.08% 4.72%
Forecasts of energy consumption (Quadrillion Btu) (2003e2008) i ¼ �0.1, n ¼ 4
RMSE 21.45 8.30 16.87 22.47 4.97
MAE 19.57 7.96 16.04 21.20 4.17
MAPE 26.64% 11.42% 22.33% 29.36% 6.26%
Forecasts of real GDP (Constant 2000 US$ Billion) (2004e2009) i ¼ �0.08, n ¼ 4
RMSE 331.18 172.05 209.12 230.97 40.15
MAE 264.08 143.59 176.66 196.31 27.45
MAPE 10.18% 5.65% 6.98% 7.78% 1.10%

Table 7
The parameters a and b in both the GM and NGBM�OP models.

Parameter Emissions Energy consumption Real GDP Emissions Energy consumption Real GDP

GM-5 GM-4 GM-4 NGBM�OP NGBM�OP NGBM�OP

a �0.1277 �0.0969 �0.0914 �0.0994 �0.1279 �0.1186
b 2.1837 30.5185 1127.1 1.9728 43.1760 1971.5

Table 8
Forecasts of emissions, energy consumption and GDP for China, 2009e2020.

Year Emissions (billion
metric tons)

Energy consumption
(quadrillion Btu)

GDP (constant
2000 US$ billion)

Actual NGBM�OP Actual NGBM�OP Actual NGBM�OP

2005 5.51 5.51 68.25 68.25
2006 5.82 5.59 72.89 71.58
2007 6.26 6.36 78.00 79.29 2456.68 2456.68
2008 6.80 6.98 85.06 84.26 2692.53 2668.87
2009 7.71 7.54 87.62 2940.23 2961.37
2010 8.05 89.93 3243.07 3226.91
2011 8.53 91.46 3484.94
2012 9.00 92.42 3743.48
2013 9.45 92.93 4006.85
2014 9.89 93.08 4277.81
2015 10.32 92.95 4558.36
2016 10.75 92.57 4850.08
2017 11.18 92.00 5154.33
2018 11.61 91.27 5472.36
2019 12.03 90.41 5805.33
2020 12.46 89.43 6154.37
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Five observations can be made. First, the NGBM�OP have
a strong forecasting performance because all of the MAPE values
are ranging from 1.10% to 6.26%, while the ARIMA and GM models
have a good or reasonable forecasting performance [54]. The results
are shown in Table 6. Second, the optimal GM (1, 1) models for
emissions, energy consumption and real GDP are GM-5
(MAPE ¼ 7.84%), GM-4 (MAPE ¼ 11.42%) and GM-4
(MAPE ¼ 5.65%), respectively, which have the smallest values of
MAPE among the GM-k models. The estimated values of parame-
ters a and b for each GM are shown in Table 7. Third, Figs. 3e5 show
that the proposed numerical iterative method is an effective opti-
mization algorithm for choosing optimal parameters i in the NGBM
to improve the accuracy of the model. Fourth, the NGBM�OP for
emissions, energy consumption and real GDP are NGBM-0.1
(MAPE ¼ 4.72%), NGBM-0.1 (MAPE ¼ 6.26%) and NGBM�-0.08
(MAPE ¼ 1.10%), respectively. The estimated values of parameters
a and b for each NGBM�OP are shown in Table 7. Finally, this study
uses the proposed NGBM�OPmodels to forecast three variables for
China from 2009 to 2020. The forecast data, together with the
actual data, are presented in Table 8. The prediction results show
that China’s emissions, energy consumption and real GDPwill grow
at a compound annual growth rates (CAGRs) of 4.47%, �0.06% and
6.67%, respectively in the next decade to 2020.

5. Discussion

This study employs univariate multi-period forecasting
approach to predict variables about the green energy system for
China. The employed approach includes three models, namely,
ARIMA, GM and NGBM�OP. For the out-of-sample period
2004e2009, the MAPE values of NGBM�OP are ranging from 1.10%
to 6.26%. The results are compared with leading research in the
areas of energy forecasting, e.g., Wang et al. [39], Lee and Tong [40]
and Pi et al. [41] for China, and Kumar and Jain [42] for India. Wang
et al. used three univariate models, namely, discrete grey model
(DGM), rolling DGM (RDGM) and p value RDGM to forecast coal
production in China. During the out-of-sample period 2006e2010,
the MAPE values of Wang et al. range from 1.28% to 14.52%, and
their p value RDGM model has the best forecasting performance,
e.g., MAPE ¼ 1.28%. Lee and Tong proposed an improved grey
forecastingmodel that combines residualmodificationwith genetic
programming sign estimation to forecast energy consumption in
China. For the out-of-sample period 2004e2007, Lee and Tong’s
MAPE value is 20.23%. Pi et al. used three univariate models,
namely, GM, Remnant GM and improved GM to forecast China’s
electricity demand and energy production. For the out-of-sample
period 1990e2006, the MAPE values of Pi et al. are ranging from
2.7% to 8.6%, where the improved GM shows the best forecasting
performance, e.g., the MAPE values are 2.7% and 4.6% for electricity
and energy production, respectively. Additionally, Kumar and Jain
applied three univariate models, namely, Grey-Markov, Grey-
Model with rolling mechanism and singular spectrum analysis to
forecast consumption of conventional energy (petroleum, coal,
electricity and nature gas) in India. For two out-of-sample forecasts
(2006e2007), the MAPE values of Kumar and Jain’s models are
ranging from 1.6% to 3.4%.

According to Lewis’s criteria [54] and the above discussion, the
proposed NGBM�OP presents a highly accurate forecast for clean
energy economy (emissions, energy consumption and real GDP) in
rapid growth market such as China. As we can see that the pre-
dictedMAPE values are lesser than or equal to 6.26%, which is much
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lesser than Lewis’s criteria, 10%. However, due to the recent
uncertain global economics, high-tech progresses and changing
social structures in a country, for each five year period, it is strictly
recommended revising the results using NGBM�OP to obtain more
accurate outcomes.
6. Conclusions

In this paper, it is attempted to model and forecast CO2 emis-
sions, energy consumption and real GDP for China based on co-
integration technique and intelligent grey prediction model.
Using recent four- to six-year historical data, the proposed
univariate NGBM�OP obtained robust results in terms of MAPE,
RMSE andMAE, when compared with both ARIMA and GMmodels.
All of the MAPEs of NGBM�OP for out-of-sample are ranging from
1.10% to 6.26%. Performance evaluation results clearly show that
NGBM�OP can be used safely for future projection of these indi-
cators in clean energy economy. Future projections have also been
carried out for these indicators using NGBM�OP for the period
between 2009 and 2020. The prediction results show that China’s
emissions, energy consumption and real GDP will grow at
a compound annual growth rates (CAGRs) of 4.47%, �0.06% and
6.67%, respectively in the next decade to 2020. The CAGRs over the
next decade (2011e2020) are lower than the CAGRs (8.65%, 8.67%
and 10.11%, respectively) over the past decade. It indicates that
China will effectively conserve resources, protect the environment
and respond actively to climate change.

Based on co-integration technique, the estimated values showed
that there was a long-run equilibrium relationship between emis-
sions, energy consumption and real GDP, and emissions appeared
to be real output inelastic and energy consumption elastic over the
period 1980e2008 in China. Therefore, energy consumption was
a more important determinant of emissions than real output, and
the estimates did not support an EKC hypothesis. In addition,
estimated results indicate that when energy consumption does not
change, real output is significantly negative impact on emissions.
During the period 1980e2008, the correlation coefficient between
carbon emissions and energy efficiency (GDP/Energy ratio, PPP $
per kg of oil equivalent) [55] is �91.67%, and the correlation coef-
ficient between energy efficiency and real GDP is 96.52%. Therefore,
economic growth has a negative impact on emissions in China.
Figure for 2008 shows that China’s GDP/Energy ratio is 3.88, which
is lower than 6.26 in USA or 5.54 in India. However, the ten-year
average growth rate in GDP/Energy ratio is 11.27%, which is
higher than the 9.05% in USA or 9.46% in Germany. Additionally,
China’s energy intensity fell 19.1% over the past five years [2]. The
results indicate that the government made vast gains in increasing
energy efficiency, although China has relatively low energy effi-
ciency. Therefore, we suggest that China should adopt the dual
strategy of increasing investment in energy infrastructure, reducing
the loss in power transmission and distribution and stepping up
energy conservation policies to reduce any unnecessary wastage of
energy. In other words, energy conservation is expected to increase
the efficient use of energy, thus promoting economic growth and
environmental quality.
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