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Abstract  Spatial data objects that possess attributes in the optimization domain and the
geographic domain are now widely available. For example, sensor data are one kind of spatial
data objects. The location of a sensor is an attribute in the geographic domain, while its reading
is an attribute in the optimization domain. Previous studies discuss dual clustering problems
that attempt to partition spatial data objects into several groups, such that objects in the same
group have similar values in their optimization attributes and form a compact region in the
geographic domain. However, previous studies do not clearly define compact regions. There-
fore, this paper formulates a connective dual clustering problem with an explicit connected
constraint given. Objects with a geographic distance smaller than or equal to the connected
constraint are connected. The goal of the connective dual clustering problem is to derive clus-
ters that contain objects with similar values in the optimization domain and are connected
in the geographic domain. This study further proposes an algorithm CLS (Clustering with
Local Search) to efficiently derive clusters. This algorithm consists of two phases: the Con-
Graph (standing for Connective Graph) transformation phase and the clustering phase. In the
ConGraph transformation phase, CLS first transforms the data objects into a ConGraph that
captures geographic constraints among data objects and selects initial seeds for clustering.
Then, the initial seeds selected nearby data objects and formed coarse clusters by exploring
local search in the clustering phase. Moreover, coarse clusters are merged and finely turned.
Experiments show that CLS algorithm is more efficient and scalable than existing methods.
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Fig.1 An example of the dual clustering problem, where objects have optimization and geographic attributes

1 Introduction

Spatial data, such as sensor network data and object movement logs, have recently become
more widely available [4,10,14,15,17,19,21,26,28]. Spatial data usually have two kinds of
attributes: optimization attributes and geographic attributes [16, 18,23]. For example, sensors
deployed along freeways are utilized to collect readings (e.g., speed readings of vehicles) and
monitor traffic status. Clearly, sensor readings are an attribute in the optimization domain,
while the location of sensors represents an attribute in the geographic domain. Using spatial
data, clustering techniques can find sensors with similar readings. Specifically, given a set
of sensors with their locations and sensor readings, traditional clustering approaches parti-
tion sensors according to their similarity [5,9,11,25]. Most clustering algorithms calculate
similarity as a distance function and determine the dissimilarity between any two sensors
based on their optimization attributes [8,12]. Therefore, this kind of clustering algorithm
aims to minimize the dissimilarity between each cluster.! In the aforementioned example
(i.e., sensors for monitoring traffic status of freeways), sensors with similar sensing readings
are grouped together. However, this approach may group two sensors whose locations are far
away due to their similar sensing readings. Clearly, it is also necessary to consider geographic
attributes. As such, this study proposes a dual clustering problem for clustering objects over
optimization and geographic domains. Intuitively, optimization (respectively, geographic)
attributes belong to the optimization (respectively, geographic) domain. The goal of dual
clustering over the optimization and geographic domains is to group objects if their optimi-
zation attributes are similar. Objects in the same cluster form a compact region in terms of
geographic attributes [6,7,16,18,20,23,24,27].

Consider the example in Fig. 1a, where the value distribution of objects’ geographic
(respectively, optimization) attribute appears in Fig. 1b (respectively, Fig. 1¢). With the set
of objects in Figs. 1a, 2a shows the result of dual clustering. As Fig. 2a shows, there are five
clusters and objects in the same cluster are marked with the same symbol. Figure 2b, ¢ shows
that objects in the same cluster are connective and have similar values in the optimization
domain.

Previous research [16,23] explores the dual clustering problem and proposes efficient
methods. However, previous approaches fail to specify geographic constraint clearly. In the
dual clustering problem discussed in the study by Lin et al. [16,23], objects in the same
cluster form a compact region in the geographic domain. Another paper by Lin et al. [16]
proposes an Interleaved Clustering-Classification (ICC) algorithm that interlaces clustering

I Attributes used to measure the dissimilarity are called optimization attributes because the optimization
objective of clustering is to minimize the dissimilarity between each cluster.
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Fig. 2 Clustering results for the example in Fig. 1

Table 1 Comparison of ICC, BINGO, and CLS

Algorithms 1cc BINGO CLS

Geographic domain Complete-link T-region (grid) Connected constraint
Optimization domain SVM Expanding T-regions Local search

Data transformation None NeiGraph 0% ConGraph 0%
Seed selection None Random selection Heuristic selection

and classification processes to discover clusters from spatial data objects. This approach
applies a support vector machine (SVM) [1] to the optimization domain in the classification
phase and uses a complete-link algorithm [13] to the geographic domain in the clustering
phase. However, SVM parameters are difficult to determine, and the time complexity caused
by the complete-link method is tremendous. Previous authors [23] proposed an improvement
to the ICC, called BINGO, which is a three-phase algorithm: binding information, generating
clusters, and tuning borders. The binding-information phase first partitions the geographic
domain into several grids in a top-down manner until each grid is a T-region. Objects in
the same grid are within a distance threshold T in the optimization domain. The first phase
further constructs a NeiGraph by representing each T-region as a node ,and an edge means
the two nodes are next to each other. However, although two nodes are next to each other, they
may not be in close proximity, due to the nature of the grid. The generating-clusters phase
selects representative nodes in NeiGraph as seeds and then expands the seeds through their
edges to form clusters. Finally, after the objects change, the tuning borders phase updates
the cluster borders. Although the method in the study by Tai et al. [23] is more efficient
than that in Lin et al. [16], the NeiGraph transformation is still inefficient because the time
complexity of transformation is O (%), where n is the number of objects. This approach also
poorly defines the compact region, which is strongly related to the size of the grid instead of
the distances in the geographic domain. For example, suppose that two sensors with similar
sensing readings are deployed in different cities. The BINGO algorithm would still cluster
them as a compact region if the grid size was large. This paper presents a connective dual
clustering problem with an explicit connected constraint in the geographic domain to guar-
antee the closeness of objects in a cluster. The requirement of clustering results considered
in this paper is that objects in the same cluster should have a geographic distance, satisfies
the connected constraint, and minimizes the dissimilarity of each cluster. Table 1 compares
the different features of ICC, BINGO, and CLS algorithms.

To the best of our knowledge, this is the first study to define geographic constraints
in the dual clustering problem clearly. By defining an explicit geographic constraint, the
proposed dual clustering problem is more meaningful. This paper also proposes a CLS
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Table 2 Notations and symbols

used in this paper Notation Description
0; Spatial object i
S; Optimization domain of o;
L; Geographic domain of o;
vlj The jth attribute in S;
1 Ij The jth attribute in L;
dg The number of dimensions in the optimization domain
dy, The number of dimensions in the geographic domain

(clustering with local search) algorithm, to discover connective dual clusters using a local
search mechanism. The proposed CLS algorithm consists of two phases: the ConGraph trans-
formation phase and the clustering phase. The first phase uses an efficient transformation
mechanism to capture the geographic information of spatial objects into pairwise relation-
ships between objects if the geographic distances between spatial objects are smaller than
or equal to the geographic constraint given. Unlike BINGO [23], the proposed method only
considers geographic attributes in this phase. Furthermore, several objects are selected as
cluster seeds for clustering. In the second phase, each seed searches for its member locally,
deriving coarse clusters via ConGraph. These coarse clusters are then merged and finely
tuned to produce the final clusters. Because seeds should be judiciously selected, this study
also proposes a seed selection method. The extensive experiments in this study evaluate the
performance of the proposed algorithm. Experimental results show that the CLS algorithm
is efficient and scalable compared with existing methods.

The rest of the paper is organized as follows. Section 2 presents the preliminaries. Sec-
tion 3 presents the proposed algorithm. Section 4 conducts a performance evaluation. Finally,
Sect. 5 offers conclusions.

2 Preliminaries

As in the study by Lin et al. [16], spatial data objects in this study possess two kinds of
attributes. One is the attribute in the optimization domain, and the other is the attribute in the
geographic domain. Table 2 summarizes the symbols and notations used in this paper.

As in prior works [16,23], the distance between two spatial objects serves as the dissimi-
larity measurement. Among a variety of distance functions, the Euclidean distance is the most
widely employed. Thus, we have the following two distance functions in the optimization
domain and the geographic domain.

Definition 2.1 (Distance functions) For two objects o; and 0}, the distance measurement in
the geographic domain is formulated as
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Based on the definition of distance functions earlier, it is possible to determine the cost
of a cluster in the optimization domain. Assume that a cluster C; has a set of objects (e.g.,
(01,02, ..., 0|C,.|)), where |C| is the number of objects in C;. The cost of cluster C; in the
optimization domain is then g(C;) = ﬁ Zl.:"l‘ distopi (0, cen ), where cen is the cen-
. ) p p 1 1 1 2 1 dy
troid of C; and is derived as (jz 2 0ieC; Si el 2 0ieC; Siv e ] 2 oec; i )- Conse-
quently, the average cost of a set of clusters is defined as follows:

Definition 2.2 (Average cost of clusters) Let SC = Cy, Ca, ..., Ci be a set of clusters. The
cost of SC is defined as f(SC) = Zk I€il o (C;), where n = Zf-;l |Cil.

i=1 "n

The constraint in the geographic domain is used to cluster objects such that their distance
in the geographic domain is within a threshold. If objects are in the same cluster, they are
connected. The definition of the connected constraint is as follows.

Definition 2.3 (Connected constraint) Given a clusters C;, where |C;| > 1, and a thresh-
old r,Yo;,0; € C; ANoj # 0j,disteeo(0;,0j) < r or there is a sequence of objects
Ouls Ou2s -+ 0yp € Cy such that disteey(0i,041) =< 71, distgeo(0y1,042) < 7,..., and
distgeo(Oun, 0j) <.

From the definitions earlier, the problem addressed in this paper is that, given the number
of clusters k, a distance threshold r and n spatial objects oy, 02, .. ., 0, with their attributes
in the optimization domain and the geographic domain derive a set of clusters, denoted
as SC = (Cy, Cy, ..., Cy), such that (1) each object o; belongs to only one cluster C;, (2)
objects in the same cluster are connected, and (3) the average cost (i.e., f(SC)) is minimized.

3 The CLS algorithm: clustering with local search

This study proposes the CLS algorithm to cluster the spatial objects from both geographic and
optimization domains with connected constraint. The CLS algorithm includes two phases:
the ConGraph (standing for connected graph) transformation phase and the clustering phase.
First, a ConGraph is constructed according to the geographic attributes of spatial objects,
where an edge exists two spatial objects if they satisfy the connected constraint. Once con-
structing a ConGraph is constructed, the CLS algorithm selects some nodes as seeds to
discover possible clusters. Thus, the clustering phase uses a local search mechanism to dis-
cover connective dual clusters from seeds in the ConGraph. The main idea of local search
is to locally search nearby spatial objects. However, several issues must be dealt with. For
example, it is necessary to determine which cluster can be extended and which object should
be selected as a cluster member. The following sections present the details of each phase.

3.1 Phase 1: ConGraph transformation

This phase transform an organized ConGraph together with several seeds. To avoid checking
the connected constraint in clustering phase, use the ConGraph (connected graph) to rep-
resent the connection between data objects. Therefore, the pairwise relations of ConGraph
make it possible to determine the connected constraint of each pair of data objects efficiently
in the geographic domain. A ConGraph is defined as follows:

Definition 3.1 (ConGraph) Given a set of spatial objects O = {oq, ..., 0,} and a threshold
r, a ConGraph is a graph G = (O, E), where a vertex is an object 0; and an edge e(0;, 0;)
between o; and o exists if distgeo(0;,0;) < 1.
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Fig. 3 An example of the ConGraph transformation phase

However, obtaining a ConGraph is expensive if a huge amount of objects is given. Intu-
itively, it is necessary to compute all distances of each object pair and then verify whether
the corresponding distance is within r. Therefore, this study proposes proposed an efficient
transformation method that partitions the geographic space into a grid space and assigns
each object into the cell in which it resides in geographic location [2]. The advantage of this
transformation is that it can avoid the pairwise computation of all objects. In the example
shown in Fig. 3a, since the connected constraint is r, the size of cells is set to 2r-by-2r, and
only 4 cells must be explored to find the neighbors of a vertex. For example, there are 11
objects in Fig. 3a labeled with their ID, and the transformed ConGraph is shown in Fig. 3b.
For the purpose of a concisely representing, the nodes in ConGraph is arranged as grid.
The information of optimization domain is omitted here. As Fig. 3b shows, the geographic
information of objects is transformed into pairwise relationships.

3.1.1 Time and space analysis of transforming ConGraph

Assume that there are n objects. Let m be the maximum size of cells. The time complexity of
constructing the hash table is O (n), and the space complexity is also O (n). Finding all edges
for a vertex requires 0 (29c . m) which is smaller or equivalent to O (n). Thus, the total time
complexity is O (29 - m - n) or O (n%). When the density of each cell and the dimensions of
the geographic domain are low, d;, and m can be viewed as constants. Therefore, finding the
edges for a vertex requires only O(1), and thus, finding all edges is O (n). In this case, the
total time complexity is O (n).

Once the ConGraph is constructed, pick some vertices as seeds and perform the cluster-
ing phase. Note that the selection of initial seeds significantly affects on the cluster results
[3,16,23,25]. Consider the example in Fig. 3a, where o1, 03, 0, and 07 are selected as seeds.
Two problems arise here. First, the upper connected graph in Fig. 3b is broken into four parts.
Second, the objects in the lower two groups will not be labeled as a cluster because there
is no connectivity via seeds. Therefore, the seeds should be as far apart as possible in the
geographic domain. On the other hand, seeds should be much different from each other in
the optimization domain to fit the objective function f(SC), defined in Definition 2.2.
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Fig. 4 An example of filtering during seed selection

To select seeds as far apart as possible, this study uses the advantage of cells in the
ConGraph transformation. Since the objects have been placed into cells in the geographic
domain, it is possible to treat these cells as temporary clusters because they are inherently
far apart in the geographic domain. Therefore, the medoids for each cell on optimization
domain are regarded as the candidate seeds. However, the number of candidate seeds may
be large when the size of cell is small. To reduce the number of candidate seeds, iteratively
filter out half candidate seeds in the cell with higher variance. Define variance of a cell as
> oecen distopt (0, cen)?, where cen is the centroid of the cell. Stop filtering process when the
number of cells is smaller than k. In addition, to consider the optimization domain, randomly
select one candidate as the first seed after deciding the candidate seeds. Then, greedily select
the farthest candidate as the next seed until the number of seeds is k. Choose the minimum
distance since this operation can reveal the most difference between seeds. Let S and U be
the set of selected seeds and the unselected candidates, respectively. The best selection of the
next seed is arg max, ey mingegs distop (s, u), which is the most different from all selected
seeds compared with the other unselected candidates.

Figure 4 shows an example of the seeds selection. The number in each circle indicates its
attribute in the optimization domain, and the locations of data objects are their geographic
attributes. Figure 4a shows the objects before filtering. After filtering the high variance
cells, the results are shown in Fig. 4b, where black nodes are the medoids of cells. The
following discussion uses their attribute in the optimization domain as their identification
numbers. Assume that o is the first seed. Then, o1 would be selected since it is the far-
thest candidate in the optimization domain compared with 019. Using the sum of distance
to select seeds would select 012. However, 01 has a similar attribute in the optimization
domain to 01¢. On the other hand, with minimum distance, o5 would be selected as the third
seed.

3.1.2 Time analysis of seed selection

For n objects, b cells, and k clusters, computing the variance of all cells requires O (n), fil-
tering the cells requires O (b), and finding k£ most different medoids from max (k, b/2) cells
requires O (b - k?). Therefore, the total time complexity is O(n + b + b - k?). In the worst
case, each object forms an unique cell (i.e., b = n), and the time complexity is O (n - k2).
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3.2 Phase 2: clustering phase

This phase expands seeds according to the proposed local search mechanism until the clusters
remains stable, which is called coarse clustering. The clusters obtained from coarse cluster-
ing are called coarse clusters. Then, fine clustering merges coarse clusters according to the
connected constraint. The following paragraphs give detailed descriptions, examples, and
algorithms.

Initially, each seed can be viewed as a cluster and each cluster selects one data object as
its member until no more unclustered data objects can be assigned to any clusters. However,
there are two challenges held for each cluster: selecting a proper new member and changing
the representative in each iteration. In coarse clustering, the new member is selected only
from the neighbors of representative in a cluster. Then, the neighbor with minimum distance
to the cluster center is selected as the new member. Next, the new member becomes the
representative to reduce the cost of finding a new representative and calculating distances
between representative and unclustered objects. Only one cluster can expand in each iteration
to guarantee that each data object is assigned to the nearest cluster.

Algorithm 3.1 is the coarse clustering algorithm. This algorithm first selects k seeds from
the results in the previous phase as initial representatives. Indeed, the centroid of each clus-
ter is also the representative (from line 3 to 7). Adapting the concept of local search [22],
those neighbors of these representative objects are extracted. In lines 9 to 15, the distances
of these neighbors to the corresponding centroids in the optimization domain are calculated
and pushed into a priority queue. Then, only the neighbor with the smallest distance value is
selected for the nearest cluster, and the centroid of the corresponding cluster will be updated.
Moreover, the representative object for the corresponding cluster is replaced by the new
member. This procedure is repeated until no unclustered neighbors remain. After this proce-
dure, the unclustered objects are assigned to the nearest cluster if the connected constraint is
observed, as shown in lines 17 to 20.

Algorithm 3.1 Coarse clustering

Input: An integer k, a graph G = (O, E) and attributes of O
Output: A set of clusters SC, where |SC| > k

let N, (0;) (respectively, N.(0;)) be the unclustered (respectively,
clustered) neighbors of o;
/* initialization */
select k vertices as the initial seeds and each seed forms a cluster C;
foreach seed o; do

let d be the smallest distance distopt (0, 0;),0; € Ny (0;)

add pair (d, o;) into a priority queue P Q
end
/* local search */
while P Q.not_empty do

remove (d, o;) from P Q with the smallest d

let C; be the cluster of 0;, and cen; be the centroid of C,

let d, u be the smallest distance distqp(cen;, 0;) and

the corresponding vertex, where o; € N, (0;)

add u into cluster C; and update cen;

add pair (d, u) into PQ
end
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Fig. 5 An illustrative example for the coarse clustering

/* fix unclustered objects */
foreach unclustered o; € O do
if [Nc:(0))| > 0
then add o; to the nearest cluster of 0; € N.(0;) and
update the corresponding centroid
else o; forms a new cluster
end
return the union of all clusters SC

Figure 5 shows an example of the coarse clustering. Figure 5a depicts the ConGraph.
There are seven objects, and their coordinates are the attributes in the optimization domain.
Assume that we would like to cluster the seven objects into three groups. The procedure of
CLS is shown in Fig. 5b. The initial seeds are o1, 0; and 03, and each seed forms a cluster
(i.e., C4, Cp and C,) in Step 0. Then, the centroid of each cluster is calculated in the opti-
mization domain. P Q is a priority queue to store data pairs (d2, 0;), where d is the distance
between the centroid and the nearest unclustered neighbor of o;. Here, we use d? for the
purpose of clearly representing. In Step 1, o4 is selected and included into cluster C,. Then,
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the unclustered neighbors of 04 (i.e., 05, 0¢) are searched in the ConGraph. Since the distance
between o5 and the centroid of C,, is the smallest one, the data pair (9, 5) will be inserted into
P Q. The same operation can be used iteratively to achieve the clustering results in Step 5.
However, there is no representative objectin P Q, and o7 has not been clustered. It is therefore
necessary to check the connected constraint and assign o7 to the nearest cluster, which is C,.
Therefore, the final result of coarse clustering ends in Step 6.

3.2.1 Time analysis of the coarse clustering

For n objects and k clusters, the initialization costs O (n - k*). A priority queue can be imple-
mented by a heap which requires O (k) to insert a new object or remove the top object.
Therefore, the total time complexity for operating the priority queue is O (n log k). The best
representative object does not appear in each iteration. Instead, the new appended object is
chosen as the representative object. Because there is a trade-off between the quality of clus-
ters and running time, the time complexity of the local search is O (|E| 4 nlog k). Finding
unclustered objects requires O(|E|), while generating SC requires only O (n). The overall
time complexity of this phase is O (n - k> + | E|).

The coarse clusters discovered by local search might be fragments of the connective dual
clusters due to the nature of local search. Therefore, merge the coarse clusters belonging to
the same connective dual cluster. Fine clustering can obtain the final connective dual clus-
ters from coarse clusters. The connectedness of two clusters is defined in Definition 3.2,
which describes whether they can be merged. The final results of connective dual clusters
are obtained after recursively merging two connected clusters with the smallest distance
between their centroids until the number of clusters is k. To minimize the average cost, use
the agglomerative hierarchical clustering with the mean distance [9]. Specifically, if there
are more than k disconnected subgraphs in the ConGraph, the number of clusters is also
more than k due to the connected constraint. Therefore, there is no suitable solution in this
situation.

Definition 3.2 (Connectedness of clusters) Two clusters C; and C; are connected if and only
if do, € C; and Jo,, € C; such that distge(0r, 04) < 7.

3.2.2 Time analysis

The agglomerative hierarchical clustering with average link requires O (k%) where k' is the
number of clusters found by coarse clustering. If sorted lists maintain the distances between
each cluster to the other clusters, the time complexity can be reduced to O (k"> logk’).

3.3 Overall time and space complexity

Given n objects, the number of clusters k, and the threshold of the connected constraint r, the
transformation phase requires O (n%), while the coarse clustering phase requires O (n - k> +
|E|). The agglomerative hierarchical clustering with the mean distance requires O (k2 log k'),
where k’ is the number of coarse clusters and k < k’ < n generally. Thus, the overall time
is bounded by the transformation time, O (n?). The space overheads are cells and graphs,
which require O (E) space.
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4 Performance study

This section first describes the experimental environment, including the data generator, the
suits of test cases, and the evaluation methods in Sect. 4.1. Then, Sect. 4.2 conducts a cost
evaluation. All experiments were executed with a 2.4- GHz Intel CPU and 8 GB of memory.

4.1 Experiment settings

The simulation model in this study used the color of objects to represent their optimization
attributes. The optimization domain is a three-dimensional attribute in a RGB color model.
For example, value (255, 255, 0) in the optimization domain is shown by the color yellow.
On the other hand, the geographic domain is the location of objects represented by X-axis
and Y-axis. The following discussion uses (x, y) and (cr, cg, cb) to represent attributes in
the geographic domain and attributes in the optimization domain, respectively.

4.1.1 Generation of synthetic data

A synthetic data generator was constructed to create ground truth test data. This generator
required parameters k and r, where k indicates how many clusters should be generated, and
objects with the same clusters are within distance r in the geographic domain. For each
cluster, pivot points were generated uniformly from 0 to 799 first, and then, attributes in the
geographic domain were generated to pass through these pivot points iteratively. The number
of pivot points was generated randomly, and each pivot point has different x or y from the
previous one. After the pivot points were generated, the first pivot point was the attribute of
the first object, and the next value of x was x + dir(x, x")w(t), where x’ is the value of the
next pivot point, dir(x, x") = f_‘x’i‘ and w(r) = r with the probability (t;zr), t € [—r,r]and
t is an integer. The term w(¢) produces larger integers with higher probability, and dir (x, x”)
is 1 or —1 according to the relative position between x and the destination x’. Therefore,
the generated points tend toward to x” with higher probability, but they may be backward
locations, too. y is also generated by the same function. Each (x, y) is the attribute in the
geographic domain of a new object. After reaching the pivot point (x’, y’), the next pivot point
is used until no pivot points remain. This approach can generate random points in the form of
many intersected “horizontal and vertical lines.” To produce denser points, such that objects
in each cluster have more neighbors, use the same pivot points again after all pivot points are
passed. This approach may create a diagonal line between the last pivot and the first pivot.

After the objects in each cluster have their attributes in the geographic domain, the attri-
butes in the optimization domain are generated according to the normal distribution N (i, o).
The data generation in the optimization domain is similar to the method in the study by Lin
etal. [16]. The terms cr, cg, andcb are generated according to the same process and are there-
fore explained using only one attribute below. First,  and o are generated uniformly from 0 to
255 and from 1 to 32, respectively. Then, each object has the value from N (i, o). This value
isreplaced by 0 (or 255) if itis bellow O (or above 255). Therefore, objects in each cluster have
similar attributes in the optimization domain, and all clusters obey the connected constraint.

Figure 6 shows an example of synthesized data with r = 5 and k = 5. In this figure,
five clusters overlap with each other and each cluster forms a “closed line” in the geographic
domain. Objects in the same cluster are represented by the same symbol and color. The data
objects over two domains appear in Fig. 6a, b, which is seen as the ground truth. Figure 6c, d
show the results of CLS over two domains. Only a few objects are in the wrong clusters. The
following section presents detailed experiments to evaluate CLS.

@ Springer



164 Z.-X. Liao, W.-C. Peng

0

onEEEEE

(¢) Projection in the geographic domain (d) Projection in the optimization domain

Fig. 6 An example of generated data with r = k = 5 and the result of CLS: (a) and (b) show the data over
two domains; (¢) and (d) show the result of CLS over two domains

Fig. 7 Setting of test suits 140000 ;'_
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4.1.2 Test cases

To evaluate the scalability and efficiency of the proposed algorithm, this study analyzes 40
test cases with different numbers of data objects. These objects can be divided into eight
suits according to their number of clusters, which varied from 5 to 40. Figure 7 shows the
number of clusters and the average number of objects for each test suit. As mentioned in
Sect. 4.1.1, the ranges of all attributes in the geographic domain and in the optimization
domain are [0, 799] and [0, 255], respectively. Let the average distance between objects be
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Fig. 8 An example of forty Aa—
clusters

5 for all test cases to guarantee that the parameters r and k are known when evaluating the
performance of each method. Therefore, the data set could be as complicated as Fig. 8, which
shows 40 clusters and more than 1,30,000 data objects. Obviously, it is difficult to distinguish
all clusters using both their color and location.

4.1.3 Competitor

To evaluate the enhancement of adopting connected constraint and local search, the experi-
ments in this study compare the clusters discovered with BINGO [23] and two traditional clus-
tering algorithms. Since the performance of ICC [16] is worse than that of BINGO, this study
does not include ICC as a competitor. In addition, we modified two traditional clustering algo-
rithms, k-means and Jarvis-Patrick clustering, to facilitate the problem of discovering connec-
tive dual clusters. The first modified algorithm is called Connected K-means (abbreviated as
CK-means), and follows the two phases of CLS. Actually, CK-means adopts K-means instead
of local search mechanism for coarse clustering. The second modified algorithm is called
Connected Jarvis-Patrick Clustering (abbreviated as CJP). This method derives the coarse
clusters by performing conventional Jarvis-Patrick clustering on the transformed ConGraph,
where the weight of edges is defined as the distance on optimization domain. Finally, for both
CLS and CK-means, the connective dual clusters are acquired by merging the coarse clusters.

4.1.4 Measurement

This study uses four measures to evaluate the accuracy of the discovered clusters: precision,

recall, F-measure, and the relative cost. These four measurements are illustrated in detail

below. Let Cq, C3, ..., Cy be the clusters found by the algorithm under evaluation, and let

CT,CT,,...,CTy b/e the true clusters according to the setting of the experiments. The

w Similarly, the recall R = M, and the F-
> IGil > =1 ICT;

measure [25]is F = ?,LJFI;. Assuming that there are 1,00,000 objects, the correct result is 100
clusters and the largest cluster contains 2,000 objects. If each object forms unique clusters,

then P = 1.0 and R = g5 = 0.001. Therefore, F = 0.002. On the other hand, if there is

only one cluster that contains all objects, then P = 1[2)8880 = 0.02 and R = 1.0. Therefore,

precision is P =
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Fig. 9 Overall results of CK-means, CLS, CJP, and BINGO

F = 0.04. The last measurement is the relative cost of clusters, which compares the cluster

cost SC with the ground truth SCy,.. The relative cost is W

4.2 Performance evaluation

This section reports the results of several experiments with three goals in mind. The first one
is to evaluate the correctness of the discovered clusters. The second one is to evaluate the
effectiveness of fine clustering. The CLS, CK-means, and CJP algorithms, which consist of
fine clustering, are compared for their discovered clusters after fine clustering. The third one
is to evaluate the accuracy of initial seed selection method. Experimental results show that
the proposed method can discover initial seeds that are as good as the average accuracy of
random selection. Thus, it saves time and increases accuracy in selecting initial seeds.

4.2.1 Overall comparison

Figure 9 shows the results of the experiments with our algorithms, BINGO and the two
modified traditional approaches. According to Fig. 9a, b, CLS performs better than BINGO,
CK-means, and CJP, especially when the number of clusters increases. Although BINGO
can achieve higher accuracy than CK-means and CJP for larger data sets, it still performs
worse than the proposed CLS algorithm. On the other hand, CLS achieves 50% accuracy
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Table 3 Summary of the quality . ) )
of the coarse and fine clustering Algorithms Ave. B Ave. P Ave. R Avg. cost
CLS w/o fine 0.673 0.778 0.598 36.864
CLS 0.705 0.618 0.841 38.967
CK-means w/o fine 0.756 0.806 0.720 22.042
CK-means 0.404 0.294 0.990 53.174
CIJP w/o fine 0.381 0.465 0.427 55.615
cJp 0.197 0.132 0.893 102.365

on all of the 40 test cases. In addition, the recall evaluation is depicted in Fig. 9c, where
the result of BINGO is much worse than other methods. Although CLS did not have higher
recall values than CK-means and CJP in all test cases, it still outperforms other methods in
evaluating the F measure score. Figure 9d compares the average relative cost with the true
average cost. Finally, Fig. 10 shows the number clusters discovered by each method. Both
CLS and BINGO can find the actual number of clusters, while CK-means and CJP find out
many more clusters than the ground truth. This is because k-means and JP clustering cannot
cluster the data objects that have similar attributes in the optimization domain but dissimilar
attributes in the geographic domain, breaking the ConGraph into fragments.

4.2.2 Comparison between coarse and fine clustering

This section evaluates the effectiveness of fine clustering. The idea of fine clustering is to
combine two similar clusters that have good precision into a new larger cluster so that it can
maintain a high precision and a higher recall. Table 3 shows the average F measure score,
precision, recall, and cluster cost for each method, where “CLS w/o fine,” “CK-means w/o
fine,” and “CJP w/o fine” represent the clusters found by CLS, CK-means, and CJP before
fine clustering. The fine clustering could improve the recall value but decrease the precision
of each method. For CLS, the decrease in precision is insignificant that the F' measure score
increases after fine clustering. Although fine clustering can improve the recall of CK-means
to 0.99, the F measure score and precision become much worse.

4.2.3 Initial seed evaluation

To determine the quality of the proposed method in choosing the initial seeds from ConGraph,
this study performed CLS with random seeds 10 times for each test case and compared the
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Fig. 11 Detailed results between the proposed seed selection and random selection in test case 38

Table 4 Result of test case 38:
comparison between random and
proposed seeds selection in CLS
algorithm

Seeds selection methods ~ Avg.F Avg. P Avg. R Avg. cost

Random 0.536 0.438 0.694 1.123
CLS 0.548 0.426 0.770 1.02

results with the CLS with the proposed seed selection methods. Figure 11 shows the result of
test case 38 with k = 40, which has largest number of objects and clusters, and the average
F-measures of random and proposed seed selection are most similar. Figure 11 represents the
results of the proposed method as horizontal lines, showing that the results of random seeds
would perform better or worse than the proposed method due to different random results. In
addition, Table 4 depicts the average values of F measure, precision, recall, and relative cost for
both proposed and random seed methods. As Table 4 shows, the results of all values are highly
similar, and the difference between the average F measure of eight test suits is only 0.003.

From this experiment, although random seeds outperform the proposed initial seeds in
some cases, they often cause very poor results. To achieve similar results with the proposed
method, the random seed selection method must try different random results and thus wast
time on computing and searching suitable initial seeds. On the other hand, proposed seed
selection can generally achieve stable and good results. For large scale data, the usefulness
of proposed seed selection becomes more significant since the time cost of one execution is
very expensive.

5 Conclusion

This paper presents a dual clustering problem with an explicit geographic constraint, which
is a general dual clustering problem. The proposed CLS algorithm consists of two phases: the
ConGraph transformation phase and the clustering phase. This algorithm derives a set of clus-
ters in which objects in the same cluster have similar values in the optimization domain and
are connected. The ConGraph transformation phase, according to the geographic attributes,
builds a ConGraph to capture connectivity relationships. The CLS algorithm also explores
cells to construct the ConGraph efficiently and select the initial seeds for clustering. Using the
ConGraph, the CLS algorithm could find the coarse clustering result by searching the local
nearest data object. Using the advantage of local search, the coarse clusters are generated
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efficiently without checking all connections between cluster members and unclustered data
objects. Then, fine clustering results are obtained by combining the coarse clusters that sat-
isfy the connected constraint. To prove that the proposed CLS algorithm is efficient, this
study presents a complexity analysis of the overall CLS algorithm and each of its phases.
Experimental results show that CLS can discover more natural clusters than other methods.
Moreover, the efficiency evaluation results indicate that CLS is scalable and efficient.
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