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This work investigates the high-accuracy phase discriminator

in 1-bit software-defined receiver (SDR) for three signal-to-noise

ratio (SNR) ranges: low SNR, high SNR and moderate SNR.

Unlike traditional approaches, our approach first distinguishes

which SNR range an application falls into, and this SNR

information is then utilized to select a proper phase discriminator

to achieve high accuracy. For low-SNR applications, traditional

arctangent phase discriminator (APD) is adopted and the

analysis of asymptotic performance is derived. For high-SNR

applications, the noise-balanced digital phase discriminator

(NB-DPD) is adopted to improve accuracy [1]. Between them,

for moderate-SNR applications, a novel SNR-aided phase

discriminator (SNRaPD) is proposed. The analytical and

simulation results verify the superiority of the proposed approach

for applications in different SNR ranges. The determination of

moderate SNR range is critical and discussed finally.
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I. INTRODUCTION

In discrete phase estimation, the arctangent phase

discriminator (APD) is widely adopted since it

achieves maximum likelihood estimation (MLE) in

additive white Gaussian noise (AWGN) [2, p. 167].

With full precision, i.e., infinite analog-to-digital

conversion (ADC) bits, the APD attains MLE no

matter what the signal-to-noise ratio (SNR) is.

However, this is not the case for realistic phase

discriminators that have finite precision using few-bit

ADC, especially those with 1-bit ADC. In this work,

we study the accurate 1-bit carrier phase discriminator

and propose an SNR-aided approach to enhance

the ultimate accuracy in 1-bit software-defined

receiver (SDR). Note that both the received signal

and local reference signal are 1-bit quantized before

the digital computations in SDR. Analyses of

asymptotic performance and the relationship between

the phase estimation accuracy and the SNR are also

provided.

In this 1-bit scenario, efficient bitwise processing,

e.g., multiplication becomes exclusive-OR operation,

can be adopted to greatly reduce computational

load, and the required storage of local reference

signal is also minimized. Because of efficient

bitwise processing and the avoidance of automatic

gain control (AGC) in modern applications [3—7],

the estimation using 1-bit ADC has induced wide

interest. The prior researches related to our work

are introduced as follows. First, the problem

of parameter estimation for a single sinusoid

was previously investigated in [8]—[11]. In [11],

Cramér-Rao bound (CRB) of 1-bit quantization could

be derived under the assumption of independence

between quantized samples. The effects of 1-bit

sampling and quantization were also discussed.

Unfortunately, due to the lack of a closed form of

probability mass function of samples [11, eq. (10)],

the derivation of MLE of carrier is intractable.

Next, the dithering techniques were used to

improve the estimation performance. In [12]

and [13], the asymptotic bias of 1-bit quantized

mean estimation problems was addressed. Other

relevant studies fell in the field of the limiter phase

detector [14, 15, ch. 10], which utilizes a limiter

to prevent overload of the received signal. As

we consider a limiter as a binary quantizer with

infinite samples, some results in this field can

be used to verify the asymptotic results of our

work in low SNR. For high SNR, the asymptotic

phase estimation bias of APD has been mentioned

and an improved phase discriminator, called

digital phase discriminator (DPD), is proposed in

[16]. The proposed DPD achieves much higher

asymptotic accuracy than that of the traditional

APD. However, the DPD does not perform well
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Fig. 1. System structure of 1-bit SDR.

in low SNR environments due to its sensitivity to

noise. For spaceborne measurement techniques

utilizing accurate phase estimation in SDR, e.g.

total electron content (TEC) measurements and the

precise orbit determination (POD) [19—23], where the

ambient SNR may vary widely, performance can be

further improved by including the SNR in the phase

estimation.

In this paper, the traditional inphase-quadrature

(I-Q) structure using 1-bit ADC is investigated and

the SNR-dependent mean value of the I-Q channel

output is studied in Section II. In Section III, the

phase estimation with APD and a modified DPD

(the noise-balanced digital phase discriminator

(NB-DPD)) are described. The SNR-aided phase

discriminator (SNRaPD) scheme is then presented,

and the improvement in accuracy is illustrated

in Section IV. The performance of SNRaPD is

simulated and compared with the average CRB. In

addition, an adequate stop criterion and the range

of applications regarding SNR of SNRaPD are

also discussed. It is followed by the conclusions in

Section V.

II. SYSTEM MODEL

The system model for carrier phase estimation in

the 1-bit SDR is shown Fig. 1. The received signal is

denoted by

r(t) = sin(2¼fct+Á)+ º(t) (1)

where fc is the carrier frequency, Á is an unknown

phase, and º(t) is the AWGN. Since the phase

estimation is of interest, the output frequency of the

numerically controlled oscillator (NCO) is assumed

equal to the incoming carrier frequency. Let Ts be the

sampling period. The discrete-time 1-bit quantized r(t)

is given by

r[k] = sgn[r(kTs)]

= sgn[sin(2¼fckTs +Á)+ º(kTs)] (2)

where

sgn[x] =

½
1 if x¸ 0
¡1 if x < 0

:

In addition, let the sampling frequency be fs = 1=Ts.

We denote
fc
fs
= h+

q

p
(3)

where h is the greatest integer less than or equal to

fc=fs, and p and q are mutually prime integers. The

mixer output of the inphase channel is given by

ak = sgn[r(kTs)] ¢ sgn[sin2¼fckTs]
= sgn[sin(©k +Á)+ ºk] ¢ sgn[sin©k] (4)

where ©k = 2¼fckTs, and ºk = º(kTs) is a zero-mean

Gaussian random variable with variance ¾2.

Consider the p samples at t= kTs, k =

0,1,2, : : : ,p¡ 1. The normalized I-Q channel outputs
are, respectively, denoted by

Ip =
1

p

p¡1X
k=0

sgn[sin(©k +Á) + ºk] ¢ sgn[sin©k] (5a)

Qp =
1

p

p¡1X
k=0

sgn[sin(©k +Á) + ºk] ¢ sgn[cos©k]:

(5b)

It can be proved that the samples of phases

f©0,©1, : : : ,©p¡1g are uniformly distributed over
[0,2¼) with a separation of 2¼=p between neighboring

©is [16]. Note that when we mention that p is

“sufficiently” large later, it means that 2¼=p is

significantly smaller than the accuracy required in

the estimation. According to Appendix I, the mean

values and variances of the I-Q channel outputs are

given by

¹Ip =
1

p

" X
©k2[0,¼)

(1¡ 2Pk) +
X

©k2[¼,2¼)
(2Pk ¡ 1)

#
(6a)

¹Qp =
1

p

24 X
©k2[0,¼=2)[[3¼=2,2¼)

(1¡ 2Pk) +
X

©k2[¼=2,3¼=2)
(2Pk ¡ 1)

35
(6b)

¾2Ip = ¾
2
Qp
=
4

p2

p¡1X
k=0

Pk ¡P2k : (7)

where

Pk =Q

μ
sin(©k +Á)

¾

¶

Q(x) =
1p
2¼

Z 1

x

exp

μ
¡z

2

2

¶
dz:

Note that the range of summation is defined according

to the value of ©k in (6), and Pk is a function of

©k. In (7), the variance of the 1-bit quantized I-Q

outputs consists of the effect of channel noise and

quantization noise. Since f©0,©1, : : : ,©p¡1g are
uniformly distributed over [0,2¼), the mean value of

I-channel output in (6a) can be further derived by
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¹Ip =
1

p

24p
2
¡

X
©k2[0,¼)

2Q

μ
sin(©k +Á)

¾

¶
+

X
©k2[¼,2¼)

2Q

μ
sin(©k +Á)

¾

¶
¡ p
2

35
=
1

p

24 X
©k2[¼,2¼)

2Q

μ
sin(©k +Á)

¾

¶
¡

X
©k2[0,¼)

2Q

μ
sin(©k +Á)

¾

¶35 : (8)

From (1), the SNR of the sinusoidal signal is given by

SNR=
1

2¾2
: (9)

Equation (8) can then be written as

¹Ip =
1

p

" X
©k2[¼,2¼)

2Q(° sin(©k +Á))¡
X

©k2[0,¼)
2Q(° sin(©k +Á))

#
(10)

where ° =
p
2SNR.

Suppose we choose fs such that p is sufficiently

large in (3). According to Appendix II, the mean

value of I-channel output of (10) can be represented

as a power series, which is given by

¹Ip = A

1X
m=0

°2m+1

m!23m(2m+1)

£
"
mX
l=0

(¡1)l
μ
2m+1

l

¶
cos(2m+1¡2l)Á
2m+1¡ 2l

#
(11)

where A= 4=
p
2¼3=2.

Similarly, the mean value of Q-channel output of

(6b) is denoted by

¹Qp =
1

p

24 X
©k2[0,¼=2)[[3¼=2,2¼)

¡2Q(° sin(©k +Á))

+
X

©k2[¼=2,3¼=2)
2Q(° sin(©k +Á))

35 : (12)

By a similar derivation of (11), the power series

representation of ¹Q is given by

¹Qp = A

1X
m=0

(¡1)m°2m+1
m!23m(2m+1)

£
"
mX
l=0

μ
2m+1

l

¶
sin(2m+1¡2l)Á
2m+1¡ 2l

#
:

(13)

In addition, according to Appendix II, the power

series of the variances of the I-Q channel outputs of

(7) are represented by

¾2Ip = ¾
2
Qp

=
1

p
¡ 2

p¼

" 1X
m=0

μ
4m+2

2m+1

¶
°4m+2

(m!23m+1(2m+1))2

+2

1X
x=0

1X
y=x+1

μ
2x+2y+2

x+ y+1

¶

£ (¡1)x+y°2(x+y)+2
x!y!23(x+y)+2(2x+1)(2y+1)

#
:

(14)

The above results are obtained for p samples. When

the mean values and variances are generalized to N =

mp samples, where m is an integer, the normalized I-Q

channel outputs are given by

Im =
1

N

X
k

sgn[sin(©k +Á)+ ºk] ¢ sgn[sin©k]

(15a)

Qm =
1

N

X
k

sgn[sin(©k +Á)+ ºk] ¢ sgn[cos©k]:

(15b)

The mean values of the I-Q channel outputs are the

same as (11) and (13), respectively. The variance can

be expressed as

¾2I = ¾
2
Q

=
1

N
¡ 2

N¼

" 1X
m=0

μ
4m+2

2m+1

¶
°4m+2

(m!23m+1(2m+1))2

+2

1X
x=0

1X
y=x+1

μ
2x+2y+2

x+ y+1

¶

£ (¡1)x+y°2(x+y)+2
x!y!23(x+y)+2(2x+1)(2y+1)

#
:

(16)

The relationship between the mean values of the

I-Q channel outputs is shown in Fig. 2. Here, only the

relationship in the 1st quadrant is illustrated because

of the symmetry of the trigonometric function. As can

be seen in Fig. 2, the relationship between the I-Q

channel outputs varies with SNR. The relationship
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Fig. 2. Relationship between mean values of I-Q channel outputs (first quadrant).

approximates a circle when the SNR is low, but

deviates from a circle with increasing SNR. When

SNR!1, the relationship becomes a straight line.
Since the phase is estimated from the I-Q channel

outputs in Fig. 1, the phase estimation should be

adjusted according to the SNR to achieve high

accuracy. In the following sections, accurate phase

estimations regarding SNR are introduced. Note that

in order to evaluate the achievable phase accuracy,

the assumption of zero frequency offset is inherently

applied to the following analyses and simulations.

III. ACCURATE 1-BIT PHASE DISCRIMINATOR

In this section, we introduce phase discriminators

that have been proposed in the literature, i.e., DPD

[16], NB-DPD [1], and APD, for 1-bit quantized data

and discuss their performance regarding SNR.

A. High SNR

When SNR!1, ºk in (15) can be neglected.
Moreover, when the number of samples N is large, by

law of large numbers (LLN), the I-Q channel outputs,

denoted as (Im,Qm), approximate their mean values,

i.e., Im! ¹I and Qm! ¹Q. The relationship between

the I-Q channel outputs is then denoted by

¹I +¹Q = 1: (17)

The relationship is a straight line as shown in Fig. 2.

In this situation, the phase can be estimated by DPD

to achieve higher accuracy than that of APD [16].

Applying the system model of Fig. 1 in [16], the

phase estimation according to (Im,Qm) is given by

Á̂DPD = sgn(Qm)
¼

2
(1¡ Im): (18)

Fig. 3. Simulated results of NB-DPD regarding SNR.

The mean-squared error (MSE) of DPD will be

negligible with a sufficiently large N.

However, in the high SNR environment, there still

exists small noise variance in the I-Q channel outputs,

and the relationship between the mean I-Q outputs

deviates from a straight line as shown in Fig. 2. Since

DPD is sensitive to noise, the modified DPD, called

NB-DPD, is provided to improve phase estimation

in this situation. The phase estimated by NB-DPD is

given by [1]

Á̂NB-DPD = sgn(Qm)
¼

2

μ
1¡ Im

jImj+ jQmj
¶
: (19)

Let the root mean-squared error (RMSE) of NB-DPD

be denoted by "NB-DPD =

q
E[(Á̂NB-DBD¡Á)2]. Using

Monte Carlo simulation methods for 100 trials,
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Fig. 4. Geometric representation of performance of APD on I-Q

plane.

"NB-DPD regarding SNR is shown in Fig. 3. As

expected, "NB-DPD decreases with increasing SNR. In

addition, it decreases slightly with N in high SNR.

Apparently, the NB-DPD can achieve high phase

estimation accuracy in high SNR.

B. Low SNR

When the SNR is low, we have °¿ 1 in (11)

and (13). Thus, the mean values of the I-Q channel

outputs are approximated by

¹I =
4°p
2¼3=2

cosÁ (20a)

¹Q =
4°p
2¼3=2

sinÁ: (20b)

This proves the circular relationship of the I-Q

channel output in the low SNR environment as shown

in Fig. 2. The results are also consistent with Pouzet’s

conclusion, when we consider a limiter as a binary

quantizer with an infinite number of samples [14, 15,

ch. 10]. Since the mean I-Q channel outputs have an

approximately circular relationship, APD is a good

choice in low SNR. In addition, the variances of the

I-Q channel outputs of (16) are approximated by

¾2I = ¾
2
Q

=
1

N

μ
1¡ °

2

¼

¶

¼ 1

N
(21)

when the SNR is low.

The performance of APD in low SNR can be

analyzed using geometry as shown in Fig. 4. First,

let point A : (¹I ,¹Q) denote the mean values of the I-Q

outputs on a circle with radius R and polar phase Á.

According to (20), the radius R is given by

R =
q
¹2I +¹

2
Q

=
4°p
2¼3=2

=
4
p
SNR

¼3=2
: (22)

Next, let B : (Im,Qm) be the measured I-Q channel

outputs. The distance between A and B is denoted by

d =
q
(Im¡¹I)2 + (Qm¡¹Q)2: (23)

The carrier phase estimated from (Im,Qm) with APD is

given by

Á̂APD = atan2

μ
Qm
Im

¶
= Á+¢Á (24)

where atan2(x) denotes the arctangent-2 function

and ¢Á is the phase estimation error. Without loss of

generality, let ¢Á¸ 0. From the law of sines, we have

d

sin¢Á
=

R

sin(¼¡'¡¢Á) : (25)

Assume ¢Á¿ 1. Then sin¢Á¼¢Á, and
sin(¼¡'¡¢Á)¼ sin(¼¡'). Equation (25) is
approximated by

¢Á¼ d

R
sin(¼¡Á): (26)

Suppose ' is uniformly distributed over [0,¼). For a

fixed d, the expected value of ¢Á2 with respect to ' is

denoted by

E'[¢Á
2] =

1

¼

Z ¼

0

d2

R2
sin2(¼¡')d'

=
d2

2R2
: (27)

Assume d and ' are mutually independent. According

to the definition of variance and (21), the expected

value of d2 is given by

Ed[d
2] = E[(Im¡¹I)2 + (Qm¡¹Q)2]
= ¾2I +¾

2
Q

=
2

N
: (28)

From (27) and (28), the MSE of phase estimation is

denoted by

Ed[E'[¢Á
2]] =

Ed[d
2]

2R2

=
1

NR2

=
¼3

16N ¢SNR : (29)
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Fig. 5. Analytical and simulated results of APD regarding SNR.

In addition, the RMSE of APD is given by

"APD =
q
Ed[EÁ[¢Á

2]]

=
¼3=2

4
p
N ¢SNR (radian)

=
80p

N ¢SNR (degree): (30)

From (30), "APD is inversely proportional to the

square root of the product of SNR and N. The

analytical and simulated "APD are shown in Fig. 5.

The simulated results are obtained by Monte Carlo

simulation for 100 trials. From Fig. 5, the simulated

results approach the analytical ones in low SNR.

Note that the analytical "APD is provided in part

since the result is valid only when low SNR is

assumed. From Fig. 5, a minimal "APD exists at the

specific SNR in the simulated cases. Below that

SNR, "APD increases with decreasing SNR, whereas

"APD increases when the SNR is above that SNR.

According to Fig. 2, since the relationship of the

mean values of the I-Q outputs deviates from a circle

with increasing SNR, the increase in "APD is due

to the estimation bias of the APD, which is shown

below.

C. Moderate SNR

Between the high SNR and the low SNR,

the relationship between the mean I-Q outputs is

complicated according to Fig. 2. The estimation bias

of NB-DPD and APD is examined by means of the

asymptotic performance. Suppose N is sufficiently

large. By LLN, the I-Q channel outputs of (15)

approach their mean values, i.e., Im! ¹I and Qm!
¹Q. The asymptotic performance of NB-DPD and

Fig. 6. Asymptotic performance of NB-DPD and APD regarding

SNR.

APD are defined by

Á̂AsNB-DPD
¢
=sgn(¹Q)

¼

2

Ã
1¡ ¹I

j¹I j+ j¹Qj

!
(31)

Á̂AsAPD
¢
=atan2

μ
¹Q

¹I

¶
: (32)

The corresponding squared phase errors are given

by eND = (Á̂AsNB-DPD¡Á)2 and eA = (Á̂AsAPD¡Á)2,
respectively. We further denote the asymptotic

estimation error by

"AsNB-DPD = (ēND)
1=2 (33)

and
"AsAPD = (ēA)

1=2: (34)

Note that the averaged values of eND and eA, i.e.,

ēND and ēA, are used in (33) and (34), since they are

functions of Á. The "AsNB-DPD and "AsAPD regarding

SNR are shown in Fig. 6. From Fig. 6, "AsNB-DPD and

"AsAPD are small in high and low SNR, respectively.

Specifically, "AsNB-DPD < 0:1 deg if SNR> 12 dB, and

"AsAPD < 0:1 deg when SNR<¡10 dB. However,
"AsNB-DPD becomes significant when the SNR

decreases whereas "AsAPD becomes significant when

the SNR increases. Here, the range of SNR in which

both "AsNB-DPD and "AsAPD are not negligible is

considered “moderate” SNR. For example, SNR

between ¡10 dB and 12 dB in this case (phase
accuracy requirement < 0:1 deg) is denoted as the

moderate SNR. Obviously, for the moderate SNR,

the accuracy of NB-DPD and APD are degraded

and bounded by estimation bias, even though N is

sufficiently large. Note that even though the estimation

error due to noise variance decreases with square root

of SNR in APD as indicated in (30), the accuracy

of APD is degraded because of estimation bias in

moderate SNR. This result explains the degradation of

"APD in moderate SNR as shown in Fig. 5. Above all,
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although NB-DPD and APD perform well in high and

low SNR, respectively, their performance is degraded

by the estimation bias in moderate SNR. Focusing on

the moderate SNR, we develop an approach to reduce

the estimation bias and thus improve the accuracy in

the following section.

IV. SNR-AIDED PHASE DISCRIMINATOR

A. Proposed Approach

Since the mean I-Q outputs vary with SNR

as shown in Fig. 2, the SNR should be taken into

consideration in achieving high-accuracy phase

estimation. Therefore, the SNRaPD is developed to

improve the accuracy by using the SNR information.

Let (¹I ,¹Q) be the mean values of the I-Q output

and (Im,Qm) be the measured I-Q channel output. In

SNRaPD, we define a measure by

L(Á) = (Im¡¹I)2 + (Qm¡¹Q)2

= (¸1(Á))
2 + (¸2(Á))

2 (35)

where ¸1(Á) = Im¡¹I , ¸2(Á) =Qm¡¹Q, and Á is
the unknown phase to be estimated. In addition,

let ¤(Á) = [¸1(Á),¸2(Á)]
T, where “T” denotes

transpose and L(Á) =¤(Á)T¤(Á). When the SNR
information is given, ° is known, and the relationship

of (¹I ,¹Q) with respect to phase angle can be uniquely

determined. When (Im,Qm) are given, suppose the

most likely phase is what minimizes L(Á) as follows:

Á̂SNRaPD = argminfL(Á)g: (36)

This is the main idea of SNRaPD.

In optimization theory, the foregoing descriptions

are known as the nonlinear least-square problem.

Newton’s method can be used to search Á̂=

argminfL(Á)g [18]. The vector of the first derivatives
of ¸1(Á) and ¸2(Á) is given by

J(Á) =

·
d¸1(Á)

dÁ

d¸2(Á)

dÁ

¸T
: (37)

In addition, let

H(Á) = ¸1(Á)h1(Á)+¸2(Á)h2(Á) (38)

where

h1(Á) =
d2¸1(Á)

dÁ2

h2(Á) =
d2¸2(Á)

dÁ2
:

Then using Newton’s method, Á is updated

iteratively by

Ái = Ái¡1¡ (J(Ái¡1)TJ(Ái¡1) +H(Ái¡1))¡1J(Ái¡1)T¤(Ái¡1)

(39)

where the Ái denotes the phase obtained after the ith

iteration.

Fig. 7. Performance of SNRaPD regarding SNR.

In SNRaPD, depending on the available SNR

information, the initial phase Á0 can be estimated

by NB-DPD or APD, and accuracy can then be

improved iteratively by (39). The iteration will stop

when jÁi¡Ái¡1j< ±, where ± is a small number.
In the 1-bit SDR shown in Fig. 1, let the carrier

frequency fc = 15:421111 MHz, the sampling

frequency fs = 4:096 MHz, and N = 10
5. In this

case, according to (3), we have p= 4096000 and

2¼=p will be significantly smaller than the estimation

accuracy described later. The performance of SNRaPD

is evaluated by Monte Carlo simulation. In the

simulation, the stop criterion is ± = 10¡3 deg, and
the estimated phase is given by Á̂SNRaPD = Ái. The

RMSE defined by "SNRaPD =

q
E[(Á̂SNRaPD¡Á)2] is

the average of 100 trials as shown in Fig. 7. From

Fig. 7, the estimation errors by NB-DPD and APD are

reduced with SNRaPD. For example, at SNR= 0 dB,

the RMSE of NB-DPD is 2.017 deg and that of

SNRaPD is 0.2625 deg. A 7.7 times improvement

is achieved. At SNR= 10 dB, the RMSE of APD

is 2.769 deg and that of SNRaPD is 0.119 deg. A

23 times improvement is achieved. The proposed

SNRaPD greatly improves the accuracy of phase

estimation, especially in moderate SNR. Regarding the

number of iterations of Newton’s method in SNRaPD,

normally less than four iterations are required from

our simulation results. In addition, as mentioned in

Section III, NB-DPD and APD perform well in high

and low SNR, respectively. Hence, fewer iterations

are required in SNRaPD when the initial phase is

estimated by NB-DPD in high SNR and by APD in

low SNR.

B. Cramér-Rao Bound

The CRB for 1-bit quantized complex-valued

signals was derived in [11]. The performance of

SNRaPD is compared with the CRB of the estimated
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Fig. 8. MSE of SNRaPD (markers) and AvCRB (solid lines).

phase. For simplicity, we only consider the real-value
case. The probability mass function of r[k] in (2) is
given by

fr(q;Á) = Pr(q ¢ r[k]> 0;Á)

=
1p
2¼¾

Z 1

0

exp

μ
¡ (r¡ q ¢ sin(©k +Á))

2

2¾2

¶
dr:

(40)
The Fisher information is then obtained by

I(Á) =

N¡1X
k=0

X
q=§1

1

fr(q;Á)

@fr
@Á
(q;Á)

@fr
@Á
(q;Á)T

=
1

2¼¾2

N¡1X
k=0

Ã(©k +Á;1=¾) (41)

where

Ã(©k +Á;1=¾) =
4cos2(©k +Á) ¢ exp

¡
¡ 1

¾2
sin2(©k +Á)

¢
1¡ erf

¡¡
1=
p
2¾
¢
¢ sin(©k +Á)

¢2
erf(x) =

2p
¼

Z x

0

exp(¡t2)dt:

To investigate the achievable performance of
SNRaPD, we assume that the frequency in (41) is
zero, i.e., ©k = 0, and the phase is a uniform random
variable. We define the average Fisher information by
averaging (41) over phases, which is denoted by

Ī =
1

2¼

Z 2¼

0

I(Á)dÁ

=
N

2¼¾2
Ã̄(1=¾) (42)

where Ã̄(1=¾) = (1=2¼)
R 2¼
0
Ã(Á;1=¾)dÁ.

Taking the inverse of the average Fisher
information, we have the average CRB given by

AvCRB=
¼

N ¢SNR ¢ Ã̄(1=¾) (43)

where SNR is defined by (9).

The MSE of SNRaPD defined by "2SNRaPD =

E[(Á̂SNRaPD¡Á)2] is compared with the AvCRB in
Fig. 8. The AvCRB is plotted with solid lines, and

the "2SNRaPD is denoted by markers. The performance

of SNRaPD is obtained from Monte Carlo simulation

using 100 trials. In Fig. 8, "2SNRaPD is close to AvCRB

and their difference approaches zero with increasing

SNR. Thus the accuracy of SNRaPD is certified. Note

that the difference between AvCRB and "2SNRaPD is

similar for different values of N.

C. Stop Criterion

As mentioned at the end of Section IVA, although

estimation bias is reduced by SNRaPD, and Á̂SNRaPD =

argminfL(Á)g is achieved by Newton’s method, noise
variance still exists in Á̂SNRaPD. As a result, the strict

criterion jÁi¡Ái¡1j< 10¡3 (deg) may result in a need
for extra iterations, but the performance cannot be

improved. From (35), the first derivative of L(Á) is

given by

dL(Á)

dÁ
= 2

·
¸1(Á)

d¸1(Á)

dÁ
+¸2(Á)

d¸2(Á)

dÁ

¸
= 2JT(Á)¤(Á): (44)

Note that the original criterion jÁi¡Ái¡1j< 10¡3 is
consistent with dL(Á̂SNRaPD)=dÁ= 0, since Á̂SNRaPD =

argminfL(Á)g. As we consider the noise variance with
(44), a new stop criterion is defined for SNRaPD as

follows. Let Á= Ác+¢Ác in (44), where Ác is the

true phase, and ¢Ác is the phase error due to noise

variance. Since the AvCRB of (43) is the theoretical

bound of variance, let ¢Ác =
p
AvCRB. The new stop

criterion is defined by

j2J(Ái)T¤(Ái)j< j2J(Ác+¢Ác)T¤(Ác+¢Ác)j:
(45)

Note that the absolute value is used since the

same result but with opposite polarity is obtained

by Á= Ác¡¢Ác. In addition, the criterion
j2J(Ác+¢Ác)T¤(Ác+¢Ác)j is a function of Ác, and
the minimal value occurs when Ác = k¼=2. Hence,

the criterion is further defined by j2J(Ác+¢Ác)T¤
¢ (Ác+¢Ác)jÁc=k¼=2 to guarantee that the criterion is
valid for all phases.

Example. Determination of the Stop Criterion:

Let SNR= 6 dB, N = 105, and Ác = 0
±. According

to (43), ¢Ác =
p
AvCRB= 0:12215±. Applying

Á= Ác+¢Ác = 0:12215
± to (44), we have

j2J(0:12215±)T¤(0:12215±)j= 0:001712. Hence, the
iteration will stop when j2J(Ái)T¤(Ái)j< 0:001712.
A similar RMSE is achieved with the new stop

criterion according to the simulation results, which

verifies our supposition. Moreover, the number

of iterations is reduced with the new criterion.

Recall that the original criterion is consistent with

dL(Á̂SNRaPD)=dÁ= 0. Since Newton’s method
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Fig. 9. Comparison of RMSE of SNRaPD and that of NB-DPD and APD.

will reach the criterion of dL(Á)=dÁ= 2jJT(Ác+
¢Ác)¤(Ác+¢Ác)j before that of dL(Á̂SNRaPD)=dÁ= 0,
the number of iterations is reduced accordingly.

Finally, most computational loads of SNRaPD

fall in computing ¸1(Á) and ¸2(Á) as well as their

derivatives, which involve ¹I and ¹Q of (11) and

(13), respectively. In practice, we use M terms to

approximate ¹I and ¹Q rather than infinite sums.

Moreover, we can calculate and store coefficients in

a table in order to further mitigate the computational

burdens. For applications with SNR less than 0 dB,

M = 8 is sufficient to well approximate ¹I and ¹Q
with RMSE smaller than 10¡6. In addition, less
than four iterations are normally required from our

simulation results. Therefore, the computational burden

of SNRaPD is feasible for today’s fast processors.

D. Range of Application

The range of application of SNRaPD is studied

by comparing "SNRaPD with "NB-DPD and "APD. The

simulated results regarding SNR and N are illustrated

in Fig. 9. From Fig. 9(a), compared with NB-DPD,

the improvement in the accuracy of SNRaPD is

significant in moderate SNR. Note that the range of

the moderate SNR may vary according to N and the

required phase accuracy in different applications.

Moreover, in N = 105 and N = 106 cases, the

improvement is negligible when the SNR is above

12 dB and 17 dB, respectively. As N increases to

107, SNRaPD can consistently improve the accuracy

to some degree for SNR below 20 dB. Similarly,

in comparing SNRaPD with APD, the accuracy

is greatly improved in moderate to high SNR as

shown in Fig. 9(b). The improvement is negligible

when the SNR is below ¡4 dB, ¡8 dB, and ¡12 dB,
respectively.

The above discussion illustrates the superiority

of the proposed SNRaPD in moderate SNR. As the

ambient SNR is increased to the moderate range,

the SNRaPD can potentially be used and provide

improved accuracy in spaceborne measurement

techniques, such as TEC measurements on a beacon

receiver or the POD on a GNSS receiver [19—23].

For example, when N = 106 and SNR= 0 dB on the

400 MHz beacon signal, the phase error is 0.08 deg

and 0.94 deg for SNRaPD and APD, respectively.

The estimation error of SNRaPD is approximately

an order better than that of APD. If more samples

are allowed, the superiority of SNRaPD over APD

remains significant even when the SNR is lower than

0 dB as shown in Fig. 9(b).

V. CONCLUSIONS

In this paper, the high-accuracy phase estimation

for 1-bit SDR is investigated. Specifically, the

received signal and local reference signal are both
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1-bit quantized for efficient bitwise processing in

1-bit SDR. We propose SNRaPD using the SNR

information to reduce the estimation bias and achieve

the high-accuracy phase estimation. The mean

values and variances of the I-Q channel outputs

in 1-bit SDR are given by (11), (13), and (16),

and the SNR-dependent relationship of the mean

I-Q channel outputs is explicitly shown in Fig. 2.

For high-accuracy phase estimation, NB-DPD can

be used in high SNR as shown in Fig. 3. For the

low SNR, APD is selected according to (20), and

its performance is illustrated in Fig. 5. However,

according to the asymptotic performance of NB-DPD

and APD as shown in Fig. 6, the estimation bias

becomes significant and can have a negative effect on

the accuracy in moderate SNR. Focusing on this SNR

range, we proposed SNRaPD using Newton’s method

to reduce bias and improve the resulting accuracy as

shown in Fig. 7. The accuracy of SNRaPD is certified

by comparing the MSE with the AvCRB in Fig. 8.

In order to save the computation, an adequate stop

criterion for SNRaPD with concerning noise variance

is also defined by (45).

In addition, further studies on the accuracy of

SNRaPD may be needed when the SNR estimation

error and the frequency offset appear in realistic

applications. Generally, the error in SNR estimation is

small in high SNR while the SNRaPD is less sensitive

to the SNR error in low to moderate SNR, which

has been shown in Fig. 2. On the other hand, the

frequency offset not only causes variations in phase

estimation but also affects the achievable accuracy,

i.e., 2¼=p as mentioned in Section II.

Finally, the range of the application of SNRaPD

is investigated by comparing the associated RMSE

with that of NB-DPD and APD as shown in

Fig. 9. Potential applications of SNRaPD and the

corresponding performance on SNR= 0 dB are also

mentioned. It is worthwhile to mention that the range

of application of SNRaPD (moderate SNR) expands

with increasing N. Note that because of the simplicity

of our signal model, e.g., ignoring the frequency

variation, the limitation of integration time, and the

mismatch of PN codes, the actual improvement in

the beacon signal measurement or the GNSS signal

tracking may need further investigation. Furthermore,

since the proposed SNRaPD requires the knowledge

of SNR which is not available in many applications,

the joint phase and SNR estimation is needed. This

will be our next step.

APPENDIX I. DERIVATION OF MEAN AND
VARIANCE OF I-Q CHANNEL OUTPUTS

According to (4), for ©k 2 [0,¼), we have sin©k ¸
0. In inphase (I) channel, the conditional probabilities

are denoted as

Pr(ak = 1 j ©k) = Pr(sin(©k +Á) + ºk ¸ 0 j ©k)
= 1¡Pk (46)

Pr(ak =¡1 j ©k) = Pr(sin(©k +Á) + ºk < 0 j ©k)
= Pk: (47)

Thus the mean and variance of ak are given by

¹ak = 1 ¢Pr(ak = 1 j ©k) + (¡1) ¢Pr(ak =¡1 j ©k)
= 1¡2Pk (48)

¾2ak = E[a
2
k]¡¹2ak

= 1¡ (1¡ 2Pk)2

= 4(Pk ¡P2k): (49)

Similarly, for ©k 2 [¼,2¼), we have sin©k · 0. The
conditional probabilities are denoted as

Pr(ak = 1 j ©k) = Pr(sin(©k +Á) + ºk < 0 j ©k)
= Pk (50)

Pr(ak =¡1 j ©k) = Pr(sin(©k +Á) + ºk ¸ 0 j ©k)
= 1¡Pk: (51)

The associated mean and variance are given by

¹ak = 2Pk ¡1 (52)

¾2ak = 4(Pk ¡P2k): (53)

Assume the noise component in each sample is

independent. Since ©ks are uniformly distributed over

[0,2¼), we have

¹Ip =
1

p

24 X
©k2[0,¼)

(1¡ 2Pk) +
X

©k2[¼,2¼)
(2Pk ¡ 1)

35 (54)
¾2I =

4

p2

p¡1X
k=0

Pk ¡P2k : (55)

Similarly, by the same calculation, the mean

and variance for the quadrature (Q) channel are

obtained by

¹Qp =
1

p

24 X
©k2[0,¼=2)[[3¼=2,2¼)

(1¡ 2Pk) +
X

©k2[¼=2,3¼=2)
(2Pk ¡ 1)

35
(56)

¾2Q =
4

p2

p¡1X
k=0

Pk ¡P2k : (57)
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APPENDIX II. POWER SERIES REPRESENTATION OF
MEAN AND VARIANCE OF I-Q CHANNEL OUTPUTS

The power series representation of the Q-function

is given by [17]

Q(x) =
1

2
¡ 1p

2¼

1X
m=0

(¡1)mx2m+1
m!2m(2m+1)

: (58)

Hence, (10) is rewritten by

¹Ip =
1

p

8<: X
©k2[¼,2¼)

"
1¡ 2p

2¼

1X
m=0

(¡1)m(° sin(©k +Á))2m+1
m!2m(2m+1)

#
¡

X
©k2[0,¼)

"
1¡ 2p

2¼

1X
m=0

(¡1)m(° sin(©k +Á))2m+1
m!2m(2m+1)

#9=;
=

r
2

¼

1X
m=0

(¡1)m°2m+1
m!2m(2m+1)

8<:1p
24 X
©k2[0,¼)

sin(©k +Á)
2m+1¡

X
©k2[¼,2¼)

sin(©k +Á)
2m+1

359=; : (59)

Suppose we choose fs such that p is sufficiently large

in (3), (59) is approximated by

¹Ip
»=
r
2

¼

1X
m=0

(¡1)m°2m+1
m!2m(2m+1)

(
1

2¼

"Z ¼

0

sin2m+1(©+Á)d©¡
Z 2¼

¼

sin2m+1(©+Á)d©

#)
(60)

where d©= 2¼=p! 0. By the power series

representation of the integrand involving the odd

power of sin(x) [17, sec. 9.2.1], (60) can be further

written as

¹Ip =
4p
2¼3=2

1X
m=0

°2m+1

m!23m(2m+1)

"
mX
l=0

(¡1)l
μ
2m+1

l

¶
cos(2m+1¡ 2l)Á
2m+1¡ 2l

#
: (61)

The derivation of the mean value of the Q-channel

output is omitted because of similarity. In addition,

using (58), the variances of the I-Q channel outputs of

(7) are derived by

¾2Ip = ¾
2
Qp

=
4

p2

p¡1X
k=0

8<:
"
1

2
¡ 1p

2¼

1X
m=0

(¡1)m(° sin(©k +Á))2m+1
m!2m(2m+1)

#
¡
"
1

2
¡ 1p

2¼

1X
m=0

(¡1)m(° sin(©k +Á))2m+1
m!2m(2m+1)

#29=;
=
1

p
¡ 2

p2¼

p¡1X
k=0

24 1X
m=0

(° sin(©k +Á))
4m+2

(m!2m(2m+1))2
+2

1X
x=0

1X
y=x+1

(¡1)x+y(° sin(©k +Á))2(x+y)+2
x!y!2x+y(2x+1)(2y+1)

352

»= 1

p
¡ 2

p¼
¢ 1
2¼

Z 2¼

0

24 1X
m=0

(° sin(©+Á))4m+2

(m!2m(2m+1))2
+2

1X
x=0

1X
y=x+1

(¡1)x+y(° sin(©+Á))2(x+y)+2
(x!y!2x+y(2x+1)(2y+1)

35d©: (62)

By the power series representation of the integrand

involving the even power of sin(x) [17, sec. 9.2.1],

(62) can be further written as

¾2Ip = ¾
2
Qp

=
1

p
¡ 2

p¼

24 1X
m=0

μ
4m+2

2m+1

¶
°4m+2

(m!23m+1(2m+1))2
+2

1X
x=0

1X
y=x+1

μ
2x+2y+2

x+ y+1

¶
(¡1)x+y°2(x+y)+2

x!y!23(x+y)+2(2x+1)(2y+1)

35 :
(63)
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