
IEEE Communications Magazine • April 2012114 0163-6804/12/$25.00 © 2012 IEEE

INTRODUCTION

The network research community, product devel-
opers, and testers demand network traffic for
testing network applications, systems, and proto-
cols. Two main approaches can generate net-
work traffic: model-based traffic simulation and
trace-based traffic replay. The former simulates
network traffic according to protocol specifica-
tions, and it is easy to configure the desired
parameters such as request formats for each test
case. The latter replays packet traces captured in
real environments, and the realistic traffic
involves complex network scenarios and behav-
iors such as network attacks, peer-to-peer (P2P),
video streaming, online games, as well as propri-
etary protocols that are hard to generate by sim-
ulation. Therefore, replaying trace-based traffic
can trigger many product defects not found by
simulating model-based traffic.

Replaying trace-based traffic is more compli-
cated than it may appear to be at first glance.
An intuitive approach is replaying the traces in
the sequence based on the timestamp of each
packet, which represents the time when a packet
was captured. Tcpreplay (tcpreplay.synfin.net) is
an example. However, this approach may be
unable to efficiently and accurately replay mean-
ingful traffic to devices under test (DUTs), such
as network address translation (NAT) devices or
intrusion detection systems (IDSs). Many exist-
ing works have contributed to raise the efficiency
of traffic replay [1–4] and improve its accuracy
[5–8]. Some studies attempt to replay accurately
at the network or transport layer [5, 6], while
others attempt to do at the application layer [7,
8]. The studies all require complete traces of
packets to guarantee the accuracy of traffic
replay.

In large networks, packets may get lost
during capturing due to limited input/output
(I/O) speed of the network card, memory, or
disk, making existing replay methods unsuit-
able since they need complete traces. We call
this case capture loss throughout this work.
Another significant problem for packet cap-
ture is managing the (potentially) huge stor-
age space requirements . Therefore,
appropriate methods are required to resolve
the problems of capture loss and huge storage
space requirements.

In this work, we design and implement a tool
named SocketReplay, which provides an effec-
tive way to capture and replay large-scale net-
work traffic. SocketReplay involves four
primary features:
• Low-storage capture, which records only par-

tial network traffic according to the traffic
types to significantly reduce storage cost

• Loss recovery, which recovers incomplete
connections due to capture loss to replay a
complete TCP stream

• Stateful replay, which mimics the TCP/IP
stack and replays payloads to maintain the
TCP semantics

• Selective replay, which reproduces the abnor-
mal events, such as bugs of the DUT or
alerts to be analyzed, with minimal replayed
traces to efficiently analyze the events

SocketReplay has been used for our internal
testing, and may be openly available when the
code is stable.

ABSTRACT

Capturing and replaying real flows are impor-
tant for testing network security products. How-
ever, capturing real flows demands a high storage
cost and runs a risk of capture loss, which makes
the replay inaccurate. Replaying real flows
should be accurate and stateful to adapt to the
reaction of the device under test. It should also
efficiently reproduce a defect and help develop-
ers identify the flows triggering defects. There-
fore, this work first presents the (N , M, P)
capture scheme which begins with, for each con-
nection, capturing at most N bytes of application
payload and then at most M bytes of application
payload for at most each of the subsequent P
packets in the same connection. This scheme
reduces 87 percent of storage cost while retain-
ing 99.74 percent of original events. This work
develops a tool named SocketReplay with the
mechanisms of loss recovery, stateful replay, and
selective replay. Loss recovery tracks TCP
sequence numbers to identify capture loss and
recovers incomplete flows with dummy data.
Stateful replay maintains the states in the
TCP/IP stack to replay real flows. Selective
replay incrementally selects flows to replay. The
results show that SocketReplay can accurately
and efficiently reproduce product events and sig-
nificantly decrease the volume of replayed pack-
et traces.

TOPICS IN DESIGN AND IMPLEMENTATION

Ying-Dar Lin, Po-Ching Lin, Tsung-Huan Cheng, I-Wei Chen, and Yuan-Cheng Lai,

Low-Storage Capture and Loss Recovery
Selective Replay of Real Flows

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 114

IEEE Communications Magazine • April 2012 115

BACKGROUND

ISSUES OF TRAFFIC CAPTURE

The quality of the captured traffic affects the
quality of tests or experiments based on packet
traces, but capturing network traffic at high
speed in a large network is nontrivial due to lim-
ited I/O speed and storage. Therefore, storage
cost and completeness of packet traces are two
important issues.

Storage cost: Network traffic from a large
number of hosts can fill up an ordinary hard disk
in a few hours. For example, the average
throughput from 1374 hosts, a portion of our
campus hosts, is around 600 Mb/s. The amount
can fill up a 1 Tbyte hard disk in just 4 h.

Completeness: It is hard to capture every ses-
sion completely in a large network. First, packets
may get lost during capture due to inherent sys-
tem limitations, such as I/O speed. Second, some
connections may have been established before
the capture starts, and the packets prior to the
capture are missed. As a result, the incomplete-
ness decreases the accuracy of replay because
the replaying process may lack some critical
packets.

ISSUES OF TRAFFIC REPLAY
The goal of traffic replay is to trigger potential
events on a DUT, and help the testers and devel-
opers analyze the events. The accuracy and effi-
ciency are two major concerns in the replay. The
accuracy affects the validity of testing a DUT as
well as event triggering. The efficiency of traffic
replay affects the time spent in the replay and
the difficulty in the event analysis.

To accurately replay traffic regarded as valid
network traffic by DUTs, the replay must follow
the states of protocols, especially those of TCP
and application protocols, and send out the cor-
rect packets in the correct order and direction to
test the DUTs. Furthermore, the replay has to
alter the network traffic in response to some
DUTs, say NAT devices, which modify the net-
work traffic passing by.

The efficiency can be measured by the traffic
volume and the time required to reproduce an
event in the traffic replay. For event analysis, the
lower the volume of traffic replayed to repro-
duce events, the easier and faster testers and
developers can analyze them. Reducing the vol-
ume of replayed traffic, however, may acciden-
tally drop critical events of interest, so there are
trade-offs in the efficiency and accuracy of traf-
fic replay.

RELATED WORK
Several tools can replay the packet traces. For
example, TCPreplay simply replays the packets
in a PCAP file (www.tcpdump.org) one by one
at the specified rate, without maintaining the
connection state. Tomahawk (tomahawk.source-
forge.net) or TCPreplay with the help of TCP-
Prep in the same suite can split the packets into
those from the client and those from the server,
and replay them between two network inter-
faces.

Some studies can maintain the states of the

network and transport layers for traffic replay.
TCPopera [5] uses four heuristics to follow the
TCP/IP stack. Monkey [6] replays web traffic by
using socket programming to emulate TCP stack
and Dummynet (info.iet.unipi.it/_luigi/dum-
mynet) to emulate network conditions.
Avalanche (www.spirent.com/ Solutions-Directo-
ry/Avalanche), a commercial product, uses a
trace file to emulate high-volume network traffic
of concurrent users. Furthermore, some studies
[7, 8] support the states of the application layer
for traffic replay. However, these tools are still
insufficient for replaying network traffic cap-
tured from a large network. Although most of
them can inspect the states in the TCP/IP stack,
they cannot recover from capture loss or replay
traffic selectively, which are helpful to accurately
and efficiently reproduce events. We develop a
tool named SocketReplay to solve the prob-
lems in this work.

THE CAPTURE SCHEME AND
DESIGN OF SOCKETREPLAY

This section details the design of SocketReplay
and capture scheme for a large network.

DESIGN GOALS
The capture scheme is intended to store valuable
traffic that is just sufficient to trigger events. In
other words, the scheme ignores parts of the
payloads in some packets that are generally
unlikely to trigger events, and decreases the total
traffic volume replayed to trigger events.

The design of SocketReplay has three goals
for traffic replay:
• Recovering incomplete TCP connections

due to capture loss
• Statefully replaying in the network and

transport layers because many DUTs,
including NAT devices, proxies and security
appliances, may modify TCP/IP headers

• Replaying selected packets to reproduce
events

The design helps product developers easily ana-
lyze the sessions or connections that trigger
events.

LOW-STORAGE CAPTURE SCHEME
In this work, the three thresholds (N, M, P)
determine how much data should be captured
for a connection. Let Li be the payload length
(in bytes) of the ith packet in the connection and
k be the minimum value such that Σk

i=1 Li ≥ N.
If no such k exists, it means the connection is
too short, and the scheme can capture the entire
connection; otherwise, this scheme captures at
least the first Σk

i=1 Li bytes in the application
payloads in a connection. Starting from the (k +
1)th packet (if any), the scheme captures at most
the first M bytes in each payload of at most P
subsequent packets.

N is set based on the assumption that most
events can be triggered within the initial bytes in
one connection and most traffic is from a few
long connections (i.e., the heavy-tail characteris-
tic) [9]. M is set because in some applications
such as MSN and Skype, most application head-
ers appear in the first few bytes of individual

The accuracy and

efficiency are two

major concerns in

the replay. The

accuracy affects the

validity of testing a

DUT as well as event

triggering. The

efficiency of traffic

replay affects the

time spent in the

replay and the

difficulty in the

event analysis.

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 115

IEEE Communications Magazine • April 2012116

packet payloads, and retaining them is helpful
for further analysis and identification of these
applications. This work retains the first P pack-
ets after N bytes to avoid capturing unnecessary
and bulk data (e.g., a large file downloaded from
a web site).

SOCKETREPLAY
SocketReplay is a stateful traffic replay tool suit-
able for a large-scale environment. There are
three stages described as follows:
• Loss recovery reconstructs complete traffic

traces.
• Stateful replay mimics hosts to generate traf-

fic without breaking protocol semantics.
• After triggering events by stateful replay,

selective replay narrows down the scale of
the replayed connections to reproduce
events.

Loss Recovery and Stateful Replay — Loss
recovery parses the incomplete connections and
inserts dummy bytes to recover them. A cap-
tured connection could be incomplete due to the
low-storage capture scheme or capture loss. The
length of missing data can be derived from the
sequence number and acknowledgment number
in the TCP headers of the packets.

Figure 1 illustrates the loss recovery process
packet by packet with a trivial example, in which
six packets are transmitted in a connection
between host A and host B (see the upper part
of this figure). The fourth packet is lost due to
capture loss during the capture process. The
illustration demonstrates how SocketReplay han-
dles the packets in the queue and the stream
buffer to recover the stream bytes from host A
to host B in the replay:
• The first packet is temporarily queued

because we are unsure whether it can reach
the destination when seeing only this packet.

• The sequence number of the second packet
is checked to see whether the two segments
are overlapped. Again, this packet is
queued because we are unsure whether it
can reach the destination.

• The ACK in the third packet from host B
confirms successful transmission of the first
two packets. Therefore, we put 20 bytes of
data into the stream buffer, which stores
the stream bytes to be recovered in the
replay.

• The fourth packet is lost.
• The sequence numbers of the second and

fifth packets are discontinuous due to the
lost packet. The discontinuity may also hap-
pen when the fourth and fifth packets are
out of order. Therefore, we are unsure
which case it is.

• The ACK in the sixth packet implies that
the fourth packet is not captured, and the
data of the fifth packet has been transmit-
ted successfully because the acknowledg-
ment number is correct, but the fourth
packet is unseen. Therefore, we put 20
bytes of dummy data preceding the data of
the fifth packet into the stream buffer.
After the recovery process, the stream buffer

contains 50 bytes of data for the replay. Note
that SocketReplay just replays the packets from
both hosts involved in a connection with two
network interfaces on the same host, rather than
running the applications or replaying the packets
to the application on another host. Therefore,
content loss may affect the analysis of the DUT,
say an IDS, but not the application on either
host of the connection. While this stage can
reconstruct TCP connections, it is unable to
completely recover UDP sessions from loss
recovery due to lacking reliable reconstruction
information in UDP. This is a fundamental limi-
tation of UDP. In addition to determining the
packet order (i.e., the sequence of packets to be
replayed) and emulating TCP connections, as
previous works did [5, 6], this work solves the
packet order problem in this stage by inserting
dummy packets with the correct sequence num-
bers.

Selective Replay — Some events will be trig-
gered after the stage of replaying traces statefully
to a DUT. An event can be an alert of detecting
an attack, a report of finding a virus, and so on,
depending on the DUT. To identify the causes
of events and reproduce the events efficiently, it
is better to find out the critical connections from
the huge packet traces that trigger the events.
This stage can selectively replay critical connec-
tions according to the event information and the
replay log from the stage of stateful replay. The
event information includes event time, connec-
tion information, messages of errors or alerts,
and so on. The replay log includes the time of
connection establishment and termination. This
stage selects only the potential connections to
test whether the event can be reproduced. If not,
more connections are included in the replay.
The algorithm is described below:

S = φ; {the set of selected connections.}
{Step 1}
{5-tuple information: source/destination IP

addresses, source/destination ports, protocol}
if event comes with 5-tuple information then

replay specified connection and call checking();
end if

Figure 1. An example of loss-recovery for an established TCP connection with
packet capture loss.

(1) (2) (3)

(4) (5) (6)

10
Queue

Packet no. 21 3 4 5 6
Direction A→BA→B B→A A→B A→B B→A
Seq., ack. a+10, ba, b b, a+20 a+20, b a+40, b b, a+50

Data length 1010 0 20 10 0

Stream
10 10

10 10 10 10

10 10 10 10 10 10 1020

10 10

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 116

IEEE Communications Magazine • April 2012 117

{Step 2}
if event includes source/destination IP then

replay connections between two hosts and call
checking();

end if
{Step 3}

E = the time at which an event occurs;
T = 0;
if some connections exist over the time E then

replay the connections and call checking();
end if
while E – T ≥ 0 and there are connections closed
between E – T and E do

replay connections during the time slot and
call checking();
increase T by a second;

end while
report failure of reproducing the events ;

function checking()
S = S ∪ {the replayed connections};
if triggered then

Select connections in S for replay and exit;
end if

SOCKETREPLAY COMPONENTS AND
IMPLEMENTATIONS

SocketReplay emulates interactive hosts as a
client or server with two network interfaces. Fig-
ure 2 illustrates the components of SocketRe-
play. Because the volume of real flows is too
large to load all packets from hard disks into the
memory in advance, SocketReplay has to read
and replay packets simultaneously. The details of
the components and implementations are
described as follows.

PREPROCESSOR
The preprocessor uses the libpcap library to read
packets from a hard disk and reassemble the IP
fragments into IP datagrams if necessary. The
preprocessor then outputs TCP and UDP pack-
ets to connection tracks, the buffers in which
packets of the same connection are stored.
Connection Tracks and Loss-Recovery Engine

A great number of connections will be estab-
lished in a large environment. To quickly find
out to which connection track a packet belongs,
SockeReplay uses a hashing algorithm described
as follows. The current implementation supports
only IPv4, and the extension to IPv6 is left to the
future work.
• SocketReplay sorts the source and the

destination IP addresses so that packets in
both directions of a connection are mapped
to the same hash.

• For either of the two IP addresses, Socke-
tReplay splits the 32-bit address into two
16-bit values and performs a bitwise XOR
on them.

• SocketReplay performs 8-bit left-shift
operation on the 16-bit value from the larg-
er IP address (appending an 8-bit 0’s), and
performs a bitwise XOR on the 24-bit value
with the 16-bit value from the lower IP
address.

• SocketReplay derives a 24-bit hash value
in the hash table as an index to a certain

connection track. Because some of the con-
nections between two hosts may belong to
the same session, SocketReplay tracks
these connections in a linked list.
If the captured data is found incomplete

during the tracking, the loss-recovery engine
will inspect the TCP states and recover the
missing data to make every connection com-
plete. Socket Replay can be configured to start
replaying when reading a certain number of
packets into the connection tracks. It does not
have to read all the captured packets in the
packet trace.

REPLAY ENGINE
The replay engine is implemented using socket
programming to establish connections with
reverse engineering, so SocketReplay needs
to bind many IP addresses and port numbers
to the interfaces connected to the DUT. The
diversity of IP addresses in the captured traces
may influence product testing. For example,
the IP addresses of the DUT interface and the
firewall rules may be not configurable to
accommodate such diversity. Therefore, Sock-
etReplay maps each IP address appearing in
the packet traces to an IP address in a “/24”
subnet, and it assigns the subnet of IP address-
es to the network interface in advance. The
mapping and assignment are not performed
during replay to avoid degrading the perfor-
mance of traffic replay. If the “/24” subnet is
unable to accommodate the total number of IP
addresses in the packet traces, we will enlarge
the subnet by lowering the “/N” value for the
mapping.

The replay log has the information such as
time and the five tuples of each replayed con-
nection. After a packet is sent through an inter-
face, SocketReplay checks whether it is
received on the other network interface. If
SocketReplay fails to receive the sent packet,
it also logs the event on the replay log.

Figure 2. SocketReplay components.

DUT

U
ser space

Kernel space

Loss-recovery engineConnection tracks

ip_route_output_slow

_mkroute_output fib_validate_source

Selective replay interface

Socket API

Replay engine

Preprocessor

Five tuple
Start time
End time

Replay
log

pcap

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 117

IEEE Communications Magazine • April 2012118

KERNEL MODIFICATION

SocketReplay uses the socket API to emulate
various clients and servers appearing in the
packet trace on the same host, so it is necessary
to modify the routing policy in the kernel. This
work modified three functions in the source of
Linux kernel version 2.6.20.3. First, the function
ip_route_output_slow in
net/ipv4/route.c is modified to overwrite the
outgoing interface, so that packets with the
mapped IP addresses mentioned earlier can be
sent from the desired outgoing interface. Sec-
ond, the function __mkroute_output in
net/ipv4/route.c is modified to overwrite the
default gateway. SocketReplay therefore can for-
ward the packets to gateway devices such as
NAT in the replay when it is necessary. Third,
the function fib_validate_source in
net/ipv4/fib_frontend.c, which verifies the
validity of source addresses, is modified to accept
packets coming from the same host.

SELECTIVE REPLAY INTERFACE
The selective replay interface implements the
mechanism described earlier. SocketReplay
knows how to replay selectively according to the

event message from the DUT and the replay log
from the replay engine. An event message con-
tains at least a timestamp. If it contains five-
tuple information, SocketReplay starts from
step 1 in the 3-step procedure. If it contains a
source and a destination address, SocketRe-
play starts from step 2. If it contains only the
timestamp, SocketReplay starts from step 3.

EVALUATION
In this section, we evaluated the capability of
lowstorage capture, loss-recovery and selective
replay of SocketReplay in a large-scale envi-
ronment. The evaluations of low-storage capture
focus on storing two types of events in network
traffic: attack and virus. The evaluation of loss
recovery and selective replay focuses on the abil-
ity of recovering capture loss and reducing the
volume of selected traffic.

In the evaluation, we mirrored the network
traffic of 1374 hosts from a core router to a cap-
ture device. SocketReplay then replayed real
flows into an all-in-one commercial security
appliance that can detect events such as attacks
and viruses. The logs of these events from the

Figure 3. a, c) Number of triggered events after setting the thresholds (N, 0, 0) and (N, M, ∞); (b, d) Percentage of storage cost and trig-
gered events after setting the thresholds (N, 0, 0) and (N, M, P).

Size of N bytes
0

318

N
um

be
r

of
 e

ve
nt

s

316

320

322

324

326

328

330

10000 20000

(2000,317)

(5000,324)

30000

(a)

40000 50000 60000
Size of N bytes

0

40

Pe
rc

en
ta

ge

0

30

20

10

50

60

70

80

90

100

50000 100000 150000

(b)

200000 250000

Size of M bytes
0

4N
um

be
r

of
 e

ve
nt

s

0

2

6

8

10

12

14

16

200 400 600

(c)

800 1000 1200

Number of P packets
0

40
Pe

rc
en

ta
ge

0

20

60

80

100

500

(d)

1000 1500

Triggered event
Storage cost

Triggered events
Storage cost

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 118

IEEE Communications Magazine • April 2012 119

system log were collected after the replaying
process.

TEST RESULTS FOR LOW-STORAGE CAPTURE
We tried several combinations of the thresholds
(N, M, P) described earlier to find out the best
combination that produces the most events and
reduces storage space efficiently for these two
types of events. Since different security appli-
ances analyze network traffic in various ways
(e.g., using different detection rules), it is not
generally possible to specify the optimal thresh-
olds for every appliance. SocketReplay users can
use an approach similar to that below to tune
the thresholds for a specific appliance.

Attack — This work collects 1929 attack events
triggered by replaying real flows to the security
appliance. SocketReplay can reproduce these
events with step 1 of selective replay. Also, only
333 connections that trigger an event have data
lengths longer than 2000 bytes.

We set the threshold to (N, 0, 0), meaning
SocketReplay replays the first N bytes of appli-
cation payload in the connections, and observe
whether the security appliance can detect the
events. As Fig. 3a shows, we found that 317 of
333 events from the connections longer than
2000 bytes were triggered by simply replaying
the first 2000 bytes of data per connection, and a
few more events were triggered when we adjust-
ed N from 5000 to 50,000. We picked 16 events
not triggered when using the thresholds (2000; 0;
0), and increased N to see the percentage of
triggered events and storage cost, as Fig. 3b
shows. If we want to cover most events, N should
be very large, demanding large storage space.
Therefore, replaying 2000 bytes of data in each
connection should be sufficient to trigger most
attack events.

Next, we conducted another experiment with
the thresholds (2000, M, ∞) to replay 16 events
that cannot be triggered by using thresholds
(2000, 0, 0). As Fig. 3c shows, we found that
when M is 200 bytes, 11 of 16 events are trig-
gered.

We then adjusted the threshold P to find out
the relation of storage cost and events triggered
by the thresholds (2000, 200, ∞). As Fig. 3d
shows, we found that when P is set to 1300, 11
events are all triggered, and 87 percent of stor-

age is reduced. Also, when P is set to 200, 8 of
11 events are triggered, and 90 percent of stor-
age is reduced.

To sum up, besides N, the threshold M is
effective to trigger more attack events. If we set
the thresholds (N, M, P) to be (2000, 200, 1300),
the low-storage capture scheme can record 99.74
percent of events that can be triggered by Sock-
etReplay and reduce 87 percent of storage cost.
We set P to 1300 in order to trigger rare events
that cannot be triggered with the thresholds (N,
M, 200).

Virus — This subsection finds out the capture
scheme for collecting virus events. This work col-
lected computer viruses from VX Heavens
(vx.netlux.org), which contains massive, continu-
ously updated virus samples and sources. We
manually transferred viruses in 44 FTP sessions
to trigger events from anti-virus systems and
captured these sessions. Next, we applied the
three thresholds of SocketReplay to replay these
sessions and observe whether they can trigger
these events again.

The dotted curve of Fig. 4a presents the dis-
tribution of virus sizes. This curve shows that 20
percent of viruses are larger than 100 kbytes,
longer than the payload length of attack traffic.
Figures 4a and 4b present the percentage of trig-
gered events by SocketReplay to replay 44 FTP
sessions with the thresholds (N, 0, 0) in the solid
curves. We do not consider adjusting M and P in
this case because the virus samples are a contin-
uous byte stream during transmission, and it is
meaningless to retain the application headers in
individual packets by adjusting the two thresh-
olds. Although 89 percent of the viruses are
longer than 8 kbytes, replaying the first 8 kbytes
of each connection can trigger 50 percent of the
virus events. We observed that replaying the first
60 kbytes is sufficient to trigger 93 percent of
virus events and reduce 70 percent of storage
cost.

TEST RESULTS FOR LOSS RECOVERY
Completeness is an important factor to accurate-
ly replay on security appliances. We prove this
by conducting two simple experiments on a com-
plete connection that can trigger an event by
TCPreplay. First, we removed the three-way
handshake and replayed the connection again.

Figure 4. Virus size distribution and thresholds (N, 0, 0) for reproducing virus events.

Virus size

(a)

Bytes

% of triggered alerts

% of triggered events for each N bytes

0

20

0

60

40

80

100

100000 200000

(8000, 50%)

(8000, 11%)

40%

300000 400000 500000 600000

N

(b)

Bytes
0

20

0

60

40

80

100

20000 40000 60000 80000 100000

Virus size distribution
N bytes

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 119

IEEE Communications Magazine • April 2012120

We found it failed to trigger the event because
security appliances did not track this connection
on its session table. Second, we removed a data
packet after the three-way handshake and
replayed it again. We found it also failed to trig-
ger the event because the sequence numbers of
packets are unreasonable for security appliances.

We sampled 22,185 real flows within 30 s.
Figure 5 illustrates the status of each flow.
There are 10,660 (9017+1643) flows estab-
lished before the capture starts, so we cannot
capture their three-way handshake. There
were 7753 (7527+226) unidirectional flows
because some hosts sent a SYN packet, but
the destination host refused or did not reply to
the establishment. There are also 3772
(3323+449) flows that have complete three-
way handshake, 254 flows that have capture
loss found by inspecting acknowledgement
numbers, and 2318 (1643+226+449) flows are
closed by a reset packet (RST). From the
experiment, if we use TCPreplay to replay all
the traff ic , the shaded area of 10,914

(9017+1643+254) flows cannot be accurately
replayed on security appliances. However,
SocketReplay can replay them accurately by
the loss-recovery mechanism.

Next we examined the effectiveness of loss
recovery and stateful replay by using TC
(tldp.org/HOWTO/ Traffic-Control-HOWTO) to
simulate capture loss. We compared SocketRe-
play and TCPreplay to see how the capture loss
affects the reproduction of 1929 attack events.
Figure 6 presents that the proportion of trig-
gered events of SocketReplay and the rate of
capture loss are decreasingly proportional
because some of the lost packets are critical to
trigger events. However, the proportion of trig-
gered events of TCPreplay drops quickly with
increasing capture loss because capture loss
affects the accuracy of all the replayed connec-
tions.

TEST RESULTS FOR SELECTIVE REPLAY
Attack Events — This work collects 1929 attack
events from real flows triggered by a security
appliance. SocketReplay successfully reproduced
the events with the first step of selective replay
(i.e., replaying the connections with the same 5-
tuple information as that of the events), which is
efficient to replay from large packet traces.

Virus Events — An FTP session contains a con-
trol connection and a data connection. Both
should be included to reproduce the complete
session. Moreover, in the active mode or the
passive mode of FTP protocol, the control con-
nection sends the IP address and port number,
which should be coherent with those of the data
connection. In this work, we collect virus events
triggered by transmitting virus through FTP pro-
tocol to ensure that FTP sessions can be replayed
accurately on security appliances. SocketReplay
can successfully reproduce all these virus events
in the second step of selective replay (i.e., replay-
ing the connections of the same pair of source
and destination hosts as that of the events),
which is efficient to replay from large packet
traces.

CONCLUSIONS
The low-storage capture scheme and replay tool
SocketReplay provide a total solution to testing
with real flows from large-scale environments.
The thresholds of the capture scheme should be
adjusted according to the traffic source, traffic of
concern, and types of DUT. We develop a three-
step procedure to determine the thresholds (N,
M, P). In a campus-scale environment, the
thresholds (2000, 200, 1300) are suitable for cap-
turing attack traffic, which triggers 99.74 percent
of original events and reduces 87 percent of stor-
age; the thresholds (60000, 0, 0) are suitable for
capturing traffic with viruses, which triggers 93
percent of original events and reduces 70 per-
cent of storage. By loss recovery replay, Socket -
Replay can first recover the lost data and then
replay the recovered traffic trace to trigger
events accurately. Furthermore, SocketReplay
can reproduce events efficiently with selective
replay. This work provides an accurate and effi-
cient way to play with real flows.

Figure 5. Status of real flows.

Capture loss

1643

449

Reset2267527

Unidirection

3323

254

9017

No three-way handshake

Three-way handshake

Figure 6. The effect of capture loss on event reproductions for SocketReplay
and TCPreplay.

Capture loss
0%

20%

%
 o

f
tr

ig
ge

re
d

ev
en

ts

0%

40%

60%

80%

100%

20% 40% 60% 80%

Socket replay
TCP replay

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 120

IEEE Communications Magazine • April 2012 121

ACKNOWLEDGMENTS

This work was supported in part by the National
Science Council in Taiwan, and in part by grants
from Cisco and Intel.

REFERENCES
[1] W. Feng et al., “TCPivo: A High-Performance Packet

Replay Engine,” Proc. ACM SIGCOMM Wksp. Models,
Methods, and Tools for Reproducible Network
Research, Aug. 2003.

[2] G. A. Covington et al., “A Packet Generator on the
NetFPGA Platform,” Proc. 17th Annual IEEE Symp.
Field-Programmable Custom Computing Machines, Apr.
2009.

[3] T. Ye et al., “Divide and Conquer: PC-Based Packet
Trace Replay at OC-48 Speeds,” Proc. Testbeds and
Research Infrastructures for the Development of Net-
works and Communities, Feb. 2005.

[4] P. Kamath et al., “Generation of High Bandwidth Net-
work Traffic Traces,” Proc. Int’l. Symp. Modeling, Analy-
sis and Simulation of Computer and Telecommun. Sys.,
Oct. 2002.

[5] G. H. Hong and S. F. Wu, “On Interactive Internet Traf-
fic Replay,” Proc. Symp. Recent Advanced Intrusion
Detection, Sept. 2005.

[6] Y. C. Cheng et al., “Monkey See, Monkey Do: A Tool for
TCP Tracing and Replaying,” Proc. 2004 USENIX Annual
Tech. Conf., June 2004.

[7] W. Cui et al., “Protocol- Independent Adaptive Replay
of Application Dialog,” Proc. 13th Annual Network and
Distrib. Sys. Security Symp., Feb. 2006.

[8] J. Newsome et al., “Replayer: Automatic Protocol Replay
by Binary Analysis,” Proc. ACM Conf. Computer and
Commun. Security, Oct. 2006.

[9] S. Kornexl et al., “Building a Time Machine for Efficient
Recording and Retrieval of High-Volume Network Traf-
fic,” Proc. ACM Internet Measurement Conf., Oct.
2005.

BIOGRAPHIES
YING-DAR LIN (ydlin@cs.ccu.edu.tw) is a professor of com-
puter science at National Chiao Tung University (NCTU),
Taiwan. He received his Ph.D. in computer science from the
University of California at Los Angeles (UCLA) in 1993. He
served as the CEO of Telecom Technology Center during
2010–2011 and a visiting scholar at Cisco Systems in San
Jose, California, during 2007–2008. Since 2002 he has
been the founder and director of the Network Benchmark-
ing Laboratory (NBL, www.nbl.org.tw), which reviews net-
work products with real traffic. He also cofounded L7

Networks Inc. in 2002, which was later acquired by DLink
Corp. He recently, in May 2011, founded the Embedded
Benchmarking Laboratory (www.ebl.org.tw) to extend into
the review of handheld devices. His research interests
include design, analysis, implementation, and benchmark-
ing of network protocols and algorithms, quality of service,
network security, deep packet inspection, P2P networking,
and embedded hardware/software codesign. His work on
multihop cellular has been cited over 500 times. He is cur-
rently on the editorial boards of IEEE Transactions on Com-
puters, IEEE Network, the IEEE Communications Magazine
Network Testing Series, IEEE Communications Surveys and
Tutorials, IEEE Communications Letters, Computer Commu-
nications, and Computer Networks. He recently published a
textbook, Computer Networks: An Open Source Approach
(www.mhhe.com/lin), with Ren-Hung Hwang and Fred
Baker (McGraw-Hill, 2011). It is the first text that inter-
leaves open source implementation examples with protocol
design descriptions to bridge the gap between design and
implementation.

PO-CHING LIN [M] (pclin@cs.ccu.edu.tw) received his B.S.
degree in computer and information education from
National Taiwan Normal University, Taipei, in 1995, and his
M.S. and Ph.D. degrees in computer science from NCTU in
2001 and 2008, respectively. He joined the faculty of the
Department of Computer and Information Science, Nation-
al Chung Cheng University (CCU), Chiayi, Taiwan, in August
2009. He is currently an assistant professor. His research
interests include network security, network traffic analysis,
and performance evaluation of network systems.

TSUNG-HUAN CHENG (raijin@cs.nctu.edu.tw) received his B.S.
and M.S. degrees in computer science from NCTU in 2007
and 2009, respectively. His research interests include net-
work security and network forensics. He is currently a soft-
ware engineer with MediaTek Company since 2010.

I-WEI CHEN (iwchen@nbl.org.tw) is the executive director of
NBL at NCTU. He received B.S. and M.S. degrees in com-
puter and information science from NCTU. He joined NBL
in 2003. At NBL he is engaged in development of testing
technologies for network and communication devices. He
is especially interested in technologies using real-world net-
work traffic to test products.

YUAN-CHENG LAI (laiyc@cs.ntust.edu.tw) received his Ph.D.
degree in computer science from NCTU in 1997. In August
2001 he joined the faculty of the Department of Informa-
tion Management at National Taiwan University of Science-
and Technology, Taipei, where he has been a professor
since February 2008. His research interests include wireless
networks, network performance evaluation, network securi-
ty, and content networking.

By loss recovery

replay, SocketReplay

can first recover the

lost data and then

replay the recovered

traffic trace to trigger

events accurately.

Furthermore,

SocketReplay can

reproduce events

efficiently with selec-

tive replay. This work

provides an accurate

and efficient way to

play with real flows.

LIN LAYOUT_Layout 1 3/22/12 3:20 PM Page 121

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

