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Abstract—This paper proposes a static linear behavior (SLB)
analog fault model for switched-capacitor (SC) circuits. The SC
circuits under test (CUT) are divided into functional macros
including the operational amplifiers, the capacitors, and the
switches. Each macro has specified design parameters from
the design’s perspectives. These design parameters constitute a
parameter set which determines the practical transfer function
of the CUT. The SLB fault model defines that a CUT is faulty if
its parameter set results in transfer functions whose frequency
responses are out of the design specification. We analyzed the
fault effects of the macros and derived their faulty signal-flow
graph models with which the faulty transfer function templates of
the CUT can be automatically generated. Based on the templates,
we proposed a test procedure that can estimate all the parameters
in the parameter set so as to test the CUT with multiple
faults. Different from conventional single fault assumption, the
proposed SLB fault model covers concurrent multiple parametric
faults and catastrophic faults. In addition, it does not need to
conduct fault simulations before test as conventional analog fault
models do. As a result, it addresses the impractically long fault
simulation time issue. A fully-differential low-pass SC biquad
filter was adopted as an example to demonstrate how to design
and use efficient multitone tests to test for the parameter set.
The multitone test results acquired during the test procedure
also reveal the distortion and noise performance of the CUT
though the SLB fault model does not include them.

Index Terms—Analog fault model, mixed-signal testing, para-
metric faults, switched-capacitor (SC).

I. Introduction

APRACTICAL fault model helps to simplify testing prob-
lems. We do not have to know what and where physical

defects are but their faulty effects on the circuit behaviors.
Based on the fault model, efficient tests can be generated to
ensure the quality of the circuits under test (CUT) with a low
test cost. For example, the stuck-at fault model is the most
popular fault model for digital circuits. It has been successfully
applied to test digital circuits for decades [1], [2].

However, analog fault models are not as mature as the
digital ones [3]. Due to the lack of an adequate analog
fault model, functional tests are widely adopted in testing
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analog circuits [1]. Remaining issues are what and how many
functional tests are necessary to ensure the quality of the CUT.

The major issues of developing a practical analog fault
model include the following [1], [2], [4].

1) Zero noise margin: Unlike digital circuits that have large
noise margins, analog circuits have almost zero noise
margins. It is hard to tell a fault-free analog response
from a faulty one in time domain due to the presence of
the intrinsic noise. Hence, most successful test methods
of analog circuits are statistical to alleviate the effects
of noise [1].

2) Nondeterministic transfer functions: The acceptable
transfer function of an analog CUT is nondeterminis-
tic. Any transfer function whose frequency responses
comply with the design specification passes the test.
Therefore, making pass/fail decisions is more confusing
for analog circuits.

3) Too long fault simulation time: Fault simulations are
used to be substantial for efficient test generation
which is one of the main applications of fault models.
Conventionally, analog fault simulations are conducted
with circuit-level simulators such as SPICE to provide
good accuracy at the cost of a longer simulation time.
However, the required analog fault simulation number
is usually very large. Consequently, the required fault
simulation time may become too long to be acceptable.

4) Complex causal relationships: Most analog circuit de-
signs extensively use negative feedbacks to address the
process, voltage, temperature, and noise (PVTN) varia-
tion issues. The feedbacks make analyzing the impacts
of a defect of an element such as a transistor very
difficult in the conventional way. It is analogous to the
scenario that testing sequential digital circuits is more
difficult than testing combinational digital circuits due
to the feedbacks. To test sequential circuits, we usually
have to well control their previous states by using scan
chains. However, it is very laborious and not preferable
to set the previous states of analog feedback circuits
because of the extreme accuracy requirement of analog
signals.

Analog faults are generally classified into two catalogs:
catastrophic and parametric faults [5], [6]. A catastrophic
fault is a fault that changes the circuit netlist such as a
short or an open wire. Catastrophic faults usually result in
a dramatic change of the CUT’s transfer function [3]. On the
other hand, parametric faults represent parameter shifts of the
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components in the CUT such as variations of resistance values,
capacitance values, and trans-conductances and intrinsic gains
of transistors. Parametric faults lead to subtle changes of the
coefficients in the transfer function of the CUT.

The great success of the stuck-at fault model of digital
circuits inspired researches to extend its applications to analog
circuits [7]–[9]. The catastrophic fault models help in generat-
ing efficient tests for quickly sieving out the open/short circuits
in analog CUTs [10].

Parametric faults are more difficult to test [3], [11]–[14].
The main issue of testing parametric faults is that the paramet-
ric fault list of a single parameter consists of infinite possible
values. For example, the PVTN variations would cause the
capacitance value of a nominal 1 pF capacitor to be any value
within 0.9 to 1.1 pF. In other words, every electrical parameter
of a component is a random process whose sample space
is infinite. The infinite parametric fault list makes the fault
simulation time impractically long. To address this issue, [15]–
[18] proposed adopting the structural information of the CUT
to reduce the size of the fault set. Another approach to speed
up fault simulations is truncating the fault list by considering
the most likely faults to occur. Sensitivity analysis can be used
to weight the faults [4], [12], [19]–[22]. Statistical approaches
also provide fast fault simulations [23], [24].

Switched-capacitor (SC) circuits are very popular in imple-
menting CMOS analog circuits. In this paper, we propose a
static linear behavior (SLB) analog fault model for linear SC
circuits. This paper is organized as follows. In Section II, we
first review conventional design procedures of SC circuits and
indicate some useful lessons to learn for testing SC circuits.
Then, we define the SLB fault model on the basis of the
lessons. Section III discusses the fault effects of linear SC
circuits including both parametric and catastrophic faults of
the basic building blocks in SC circuits. We derive the faulty
signal flow graph (SFG) models of the basic building blocks
and show how to automatically generate the faulty transfer
function templates of the CUT with the faulty SFG models.
With the faulty transfer function templates, we propose a test
procedure that can estimate all the parameters in the parameter
set so as to test the CUT in Section IV. We also illustrate
how to design and conduct efficient tests of an example fully-
differential SC biquad filter based on the proposed SLB fault
model. Finally, Section V draws our conclusions.

II. Static Linear Behavior Fault Model

To derive a simple but accurate fault model for SC circuits,
understanding how to design them is very instructive.

A. Conventional Design Procedure of Switched-Capacitor
Circuits

A conventional design procedure of a linear SC circuit is as
what follows [25], [26]. At the beginning, a target z-domain
transfer function is designed according to the design speci-
fication. Next, the transfer function is manipulated to derive
several equations which are used to construct the prototype
circuits with ideal components. Then, the transfer function of
the constructed prototype is analyzed and compared with the

target transfer function to determine the capacitor ratios and
the clock frequency.

The following step is to include the design parameters of
the operational amplifiers (OPAMPs) to the transfer function
of the prototype circuits to determine the requirements of the
design parameters. In this step, the components are replaced
by their linear behavior models. The most critical static design
parameters of OPAMPs are their open-loop gains (OPGs) and
input-referred offsets [27]–[29]. A too small OPG induces sig-
nificant errors to the transfer function, while a too large offset
would saturate the OPAMP or reduce the output swing of the
OPAMP. Therefore, designers usually set some lowest bounds
to the OPGs so that the OPAMPs introduce insignificant errors
to the CUT’s transfer function. It has been shown that the
simulation results of a high-resolution SC �-� modulator
with a linear behavior model considering the OPGs and offsets
show good agreement with the measurement results [30].

Finally, the designer starts circuit-level designs of the
OPAMPs and the switches, and assigns the capacitance values
of the capacitors according to the noise requirements. From
designers’ perspectives, a good design should have moder-
ate design margins to tolerate variations of transistors. In
particular, a successful OPAMP design has simulated design
parameters fitting in the derived requirements, regardless of
what and how transistors are used to build it.

The design procedure provides some lessons.
1) The transfer function of a CUT is the most suitable item

to test if the CUT is faulty.
2) Every design parameter in the transfer function of the

CUT is a parametric fault candidate. In practice, all the
parameters vary simultaneously due to the PVTN vari-
ations. Hence, practical parametric faults are multiple.

3) The OPGs and offsets are the key static parameters of
the OPAMPs that may lead to faulty transfer functions.
Fault-free OPAMPs usually have insignificant impacts
on the transfer function of the CUT.

4) The capacitor ratios rather than the absolute capacitance
values determine the frequency responses of the CUT.
In practice, special layout techniques are often used to
enhance the accuracy of the capacitor ratios [31], [32].

5) Transistors are used to build the desired macros. Electri-
cal properties of individual transistors are not important
as long as the macro’s design parameters do not result in
a transfer function out of the design specification. As a
consequence, linear behavior models are suitable for the
macros constructed by transistors such as the OPAMPs
[27], [33]. Following designer’s circuit partition reduces
the complexity of the test problems and thus is more
appealing.

B. Proposed Static Linear Behavior Fault Model

The proposed SLB fault model examines the accuracy of the
CUT’s z-domain transfer function. We assume the sampling
clock period is not an issue so that the responses of the CUT
are fully settled. On the basis of fully-settled responses, the
frequency responses of the CUT are uniquely determined by
its z-domain transfer function. If a CUT is faulty by the SLB
fault model, it is also faulty when the responses are not fully-
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Fig. 1. Schematic of the SC biquad.

settled. The scenario is analogous to the stuck-at faults versus
the delay faults of digital circuits.

Based on the lessons learned in Section II-A, we define the
SLB fault model as the following.

1) Applicable Circuits: The SLB fault model is applicable
to linear SC circuits whose transfer functions can be expressed
by rational z-domain transfer functions. SC filters are such ex-
amples. For those SC circuits that contain additional nonlinear
circuit blocks such as comparators, they can be divided into the
applicable part and the rest part. Design-for-testability (DfT)
techniques such as IEEE 1149.4 mixed-signal test bus [34]
can be used for the partition during tests.

2) Parameter Set: Every CUT owns a parameter set which
consists of the following parameters.

1) OPAMPs: the OPGs and the input-referred offsets of all
OPAMPs. The OPGs have the minimal specification and
the offsets have the maximal specification.

2) Capacitors: the capacitance ratios of the capacitors to the
corresponding feedback capacitors in the CUT. Note that
the SLB fault model does not set any specification to the
capacitor ratios as to the OPAMPs’ OPGs and offsets.

3) Switches: every delay-free and delayed SC branch
containing the switches has additional catastrophic fault
activators.

Later in Section III, we will discuss why these parameters are
defined as parametric fault candidates in detail. We will also
depict what the SC branches are and define the corresponding
catastrophic fault activators.

3) Fault Model: A CUT is defined to be faulty if its
parameter set results in transfer functions whose frequency
responses are out of the design specification. It is worthy
to note that since the SLB fault model adopts the design
specification as the thresholds to make the final pass/fail
decision of the CUT, these threshold values are deterministic
and independent of the variations of process and operation
conditions. Consequently, the proposed SLB fault model does
not suffer from ambiguous thresholds.

4) Undetectable Parametric Faults and Parametric Fault
Coverage: A parametric fault is said to be undetectable if its
value cannot be derived from the test results.

The parametric fault coverage is defined as the ratio of the
number of the parameters that can be estimated according to
the test results to the total number of the parameters in the
parameter set excluding the catastrophic fault activators of
the SC branches.

5) Equivalent Faults: Two faults are equivalent if they
result in the same transfer function of the CUT.
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TABLE I

Design Parameters of the CUT

Parameters Designated Values Specification
CA 1.147096 pF n/a
CB 16.36952 pF n/a
CC 0.382366 pF n/a
CD 11.47096 pF n/a
CF 1.147096 pF n/a
CG 0.382366 pF n/a
A1 80 dB >60 dB
A2 80 dB >60 dB

6) Fault Masking: A parametric fault is said to be masked
if it becomes undetectable due to the presence of some other
faults.

III. Faults and Faulty Signal Flow Graph Models

of Switched-Capacitor Circuits

In the following, we use a Fleischer–Laker low-pass SC
biquad shown in Fig. 1 as an example to explain the faults in
linear SC circuits and their faulty behaviors. Specifically, we
will derive the SFG models of the basic building blocks of
linear SC circuits under faults. The SFG analysis method is
very popular for analyzing SC circuits [35]. It is a systematic
approach that can automatically generate the transfer functions
of the CUT. With the derived faulty SFG models, an EDA
tool can be built to automatically derive the faulty transfer
function templates of any linear SC circuit. Then, we test for
the parameters in the parameter set according to the templates
and use the tested transfer functions to make the pass/fail
decision based on the SLB fault model.

A. Circuits Under Test

Fig. 1 depicts the schematic of the example CUT. Like
general SC circuits, the SC biquad consists of OPAMPs,
switches, and capacitors. The design specification of the CUT
consists of a passband from DC to 20 kHz, a sampling rate
of 6.144 MHz, a passband gain inbetween −3 to 3 dB, a
passband ripple within ±0.5 dB, a stopband after 1 MHz, and
a minimum stopband attenuation of 40 dB in the stop band.
Following the design procedure described in Section II-A, the
target parameter set and the specification are summarized in
Table I.

B. Fault-Free Signal Flow Graph Models

Fig. 2 shows the common building blocks to implement SC
circuits and their SFG models.

The SFG of a single-ended SC circuit is constructed by
replacing every integrator and SC branch shown in Fig. 2
with the corresponding model listed in Table II. The resulted
SFG of the CUT is shown in Fig. 3. It is worthy to note
that Fig. 3 also represents the SFG of the fully-differential
implementation shown in Fig. 1. After simple manipulations,
the overall input and output relationship (IOR) of the CUT
can be derived from the SFG which is

VO2(z) = STFH2(z)Vi(z) + OTG12VOS1 + OTG22VOS2. (1)

Fig. 2. Common building blocks in linear SC circuits and their SFG models.
(a) Delayed SC branch. (b) SFG of the delayed SC branch. (c) Delay-free SC
branch. (d) SFG of the delay-free SC branch. (e) Purely capacitive branch.
(f) SFG of the purely capacitive branch. (g) Integrator. (h) SFG of the
integrator.

Equation (1) includes the signal transfer function (STF) and
the offset transfer gain (OTG) where the STF is an AC term
expressed as

STFH2(z) =
−STFZ

A (z)STFR
G(z)

DEN(z)
(2)

DEN(z) = STFZ
A (z)STFR

C (z) + STFI
D(z)STFR

F (z)

−STFI
B(z)STFI

D(z) (3)

and the OTGs are DC terms whose values are

OTG12 = (OTGG + OTGC)
−STFZ

A (z)

DEN(z)

∣∣∣∣
z=1

OTG22 = (OTGA + OTGF )
−STFI

D(z)

DEN(z)

∣∣∣∣
z=1

. (4)

By Table II and (1)–(3), the design target of the STF of the
biquad is

VO2(z) =
−CA

CB

CG

CD
z−1Vi(z)

(1 + CF

CB
) − (2 − CACC

CBCD
+ CF

CB
)z−1 + z−2

, (5)

because the fault-free OPAMPs have zero offsets.
The SFG also shows the IOR of the internal output, VO1,

of the CUT is

VO1(z) = STFH1(z)Vi(z) + OTG11VOS1 + OTG21VOS2 (6)
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Fig. 3. SFG of the SC biquad.

TABLE II

Fault-Free SFG Models of the SC Branches and the Integrator

with an Ideal OPAMP

Network Schematic SFG Model
Delayed
branch Fig. 2(a) STFZ(z) = Cz−1 OTGZ = C

Delay-free
branch Fig. 2(c) STFR(z) = −C OTGR = C

Purely
capacitive Fig. 2(e) STFC(z) = −C(1 − z−1) N/A
branch

Integrator Fig. 2(g) STFI (z) = Cfb(1 − z−1) N/A

where

STFH1(z) =
STFR

G(z)(STFR
F (z) − STFI

B(z))

DEN(z)
(7)

and

OTG11 = (OTGG + OTGC) × (STFR
F (z) − STFI

B(z))

DEN(z)

∣∣∣∣
z=1

OTG21 = (OTGA + OTGF )
−STFR

C (z)

DEN(z)

∣∣∣∣
z=1

. (8)

C. Faulty Signal Flow Graph Models of Single-Ended
Switched-Capacitor Circuits

Recall that a faulty CUT is defined as the one whose
transfer functions lead to frequency responses out of the design
specification. Therefore, it is preferable to derive the STF
containing all the design parameters with which we can make
the pass/fail decision once the design parameters are known.
Following the SFG analysis procedure but with the faulty SFG
models of the components is an appealing approach. In the
following, we will discuss the fault effects of the catastrophic
and parametric faults of every building blocks and derive the
corresponding faulty SFG models.

1) Faults of OPAMPs: Every OPAMP is defined to have
two parametric faults including its OPG and input-referred
offset and their corresponding specification.

The catastrophic faults in an OPAMP are very fatal because
the OPAMP itself is a very sensitive design. Short faults of
the transistors in an OPAMP usually result in zero AC output.
Their faulty syndromes are as if the OPAMP has a zero OPG.
Similarly, open faults of the transistors in an OPAMP usually
lead to significant degradation of the OPG and/or increase of
the offset. Nevertheless, the fault effects of the catastrophic
faults of an OPAMP are covered by the two parametric faults
of the same.

Let A1, A2, VOS1, and VOS2 represent the OPGs and the
input-referred offset voltages of the two OPAMPs of the
example CUT, respectively. Detailed circuit analyses show that
the finite OPGs of the OPAMPs change the term STFI(z) in
Table II to be

STFI(z) = Cfbi(αi − βiz
−1) (9)

where

αi = 1 +
CTi

AiCfbi

βi = 1 +
CTi − Ccbi

AiCfbi

. (10)

Cfbi, CTi, and Ccbi represent the feedback capacitance value,
the total capacitance value of all SC branches connecting
to the input node of the OPAMP, and the total capacitance
value of the purely capacitive branches of the ith integrator,
respectively. For the biquad, we have

CT1 = CC + CD + CG + Cp1

CT2 = CA + CB + CF + Cp2

Cfb1 = CD

Cfb2 = CB

Ccb1 = CD + Cp1

Ccb2 = CB + Cp2. (11)
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Cp1 and Cp2 are the parasitic capacitors at the input nodes of
the first and the second OPAMPs, respectively. These two par-
asitic capacitors have no significant effect on the transfer func-
tion of the CUT if the OPGs of the OPAMPs are high enough.

2) Faults of Capacitors: Each capacitor may introduce a
parametric fault if its capacitance results in a faulty STF. Note
that it is the capacitor ratios of the capacitors to the feedback
capacitors of the corresponding integrators that determine the
coefficients of the transfer function, rather than the absolute
capacitance values. Hence, the parametric fault number of the
capacitors in the CUT is equal to the difference of the total
capacitor number and the feedback capacitor number of the
CUT.

The open/short catastrophic faults of a capacitor are equiv-
alent to zero/infinite capacitance values. Therefore, it is suffi-
cient to examine the parametric faults only.

3) Fault Effects of Switches: The switches have digital
functions, turn-on and turn-off. The variations of their on-
resistance values do not matter since we assume every re-
sponse of the CUT is fully-settled. Hence, the stuck-open/short
fault model for digital circuits is suitable for the switches as
well [36].

In Fig. 2, only the delayed and delay-free SC branches
contain switches. Similar to the cases of digital circuits, it
is adequate to assume only one of the four switches of the
same SC branch has a stuck fault at a time. The faulty effects
of the stuck switches can be analyzed by using the charge
conservation principle.

Let us analyze the impacts of the stuck switches on the SFG
model of a delayed SC branch. If S1 or S4 is stuck-open, then
no charge will be transferred to the integrator. So do the stuck-
short S2, stuck-open S2, the stuck-short S3, and stuck-open S3.
These are equivalent faults whose faulty SFG models are the
same as that of the delayed SC branch with a zero C. Similarly,
the circuit analysis results show the delayed SC branch with
a stuck-short S1 has a faulty SFG model equivalent to that of
a purely capacitive branch with the same capacitance C.

The fault effect of the stuck-short S4 in a delayed SC branch
is derived as follows. When φ1 is active, the inverting input
node of the OPAMP is VOS according to the virtual short
property. As a result, the turn-on switch S3 has a voltage
drop of VOS which induces a constant current flowing through
it. Since the integrator has a very large input capacitance
according to the Miller theory, most of the current is drawn
from the OPAMP rather than from the delayed SC branch.
The current will change the stored charges in the feedback
capacitor Cfb by an amount of VOST1/RonCfb, where Ron and
T1 represent the on-resistance of the switch S3 and the active
period of φ1, respectively. Meanwhile, the capacitor C samples
a voltage difference of Vi −VOS . When φ2 is active, the stored
charges in C are transferred to Cfb. By the charge conservation
principle, we have

Vo(z) =
Cz−1Vi(z) − ConVOS

Cfb(α − βz−1)
(12)

where Con is defined as ≡ T1/Ron. Equation (12) indicates the
stuck-short S4 can be considered as a fault-free delayed SC
branch but introducing a different offset.

Most stuck faults of the switches on the delay-free SC
branch have similar fault effects to that of the delayed SC
branch. The only exceptions are the stuck-open S2 and the
stuck-open S3. Detailed analyses show these faults turn the
faulty delay-free SC branch into a purely capacitive one whose
capacitance is C.

Table III lists the catastrophic faults of the switches and
the faulty SFG models of the two kinds of single-ended SC
branches. For the STF parts, the catastrophic faults of the
switches result in either a zero SFG or an SFG of a purely
capacitive branch. For the OTG parts, the faults lead to either
a zero OTG or an OTG of −Con. More generalized faulty SFG
models of the faulty single-ended SC branches are expressed
in the following with the help of the defined catastrophic fault
activators.

The STF, STFZ(z), and the OTG, OTGZ, of the faulty
delayed SC branch are defined as

STFZ(z) = −FCC + (1 − F0)Cz−1 (13)

and

OTGZ = (1 − F0)C − F4(Con + C). (14)

The operand F0 represents the catastrophic fault activator of
the equivalent stuck faults of a delayed SC branch that result in
a zero STF. Meanwhile, FC is the catastrophic fault activator of
the equivalent stuck faults turning the delayed SC branch into
a purely capacitive one. F4 is the catastrophic fault activator
of the stuck-short S4 of the delayed SC branch. The values of
the catastrophic fault activators are either one if the faults are
excited, or zero when the faults are not activated.

Similarly, the STF and the OTG models of the faulty delay-
free SC branch can be written as

STFR(z) = −C(1 − F0) + FCCz−1 (15)

and

OTGR = (1 − F0 − F ′
C)C − F4(Con + C) (16)

where F0, F ′
C, FC, and F4 are the catastrophic fault activators

of the faulty delay-free SC branch.
The overall IOR of the faulty CUT can be derived from the

same SFG shown in Fig. 3 but with the faulty STF and OTG
models expressed by (13)–(16).

It is worthy to note that the faulty STF and OTG models
can cover the cases that multiple catastrophic faults occur on
the same SC branch. For instance, if both stuck-open S1 and
stuck-short S2 occur in a delay-free SC branch, the faulty
STF model is still zero. In addition, the equivalent faults of
FC = 1 are masked by the equivalent faults of F0 = 1. Take
the case that both the stuck-open S1 and the stuck-open S2

occur simultaneously as an example, the resulted faulty STF
is zero. As a consequence, it is not necessary to consider the
faults excited by FC = 1 when we examine the faults activated
by F0 = 1 of the same SC branch.
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TABLE III

Faulty SFG Models of the Single-Ended SC Branches with Catastrophic Faults

Block Catastrophic Catastrophic Fault Activators Faulty STFZ/R(z) Catastrophic Fault Activators Faulty OTGZ/R

Fault List of the STF of the OTG
S1 stuck-open F0 = 1 0 F0 = 1 0
S2 stuck-open F0 = 1 0 F0 = 1 0
S3 stuck-open F0 = 1 0 F0 = 1 0

Delayed S4 stuck-open F0 = 1 0 F0 = 1 0
SC branch S1 stuck-short FC = 1 −C(1 − z−1) As fault-free C

Fig. 2(a) S2 stuck-short F0 = 1 0 F0 = 1 0
S3 stuck-short F0 = 1 0 F0 = 1 0
S4 stuck-short As fault-free � Cz−1 F4 = 1 −Con

S1 stuck-open F0 = 1 0 F0 = 1 0
S2 stuck-open FC = 1 −C(1 − z−1) F ′

C
= 1 0

S3 stuck-open FC = 1 −C(1 − z−1) F ′
C

= 1 0
Delay-free S4 stuck-open F0 = 1 0 F0 = 1 0
SC branch S1 stuck-short FC = 1 −C(1 − z−1) As fault-free C

Fig. 2(c) S2 stuck-short F0 = 1 0 F0 = 1 0
S3 stuck-short F0 = 1 0 F0 = 1 0
S4 stuck-short As fault-free � −C F4 = 1 −Con

D. Faulty Signal Flow Graph Models of Fully-Differential
Switched-Capacitor Circuits

Most SC circuits are fully-differential for better noise immu-
nity and common-mode interference rejection. For the fully-
differential circuits, the parametric faults result in different
coefficients of the transfer function as they do in the single-
ended implementation.

The fault effects of the stuck switches in the fully-
differential SC circuits are somewhat different from their
single-ended counterparts. In a fully-differential SC circuit,
the primary output is composed of the two outputs of the two
differential signal paths. Each path contributes a half of the
fault-free primary output.

Generally speaking, an OPAMP has either a high common-
mode rejection ratio or a zero output due to the failure of the
common-mode feedback. The latter case is covered by the fatal
parametric fault A = 0. Given the OPAMPs having fault-free
CMRRs, a stuck switch only affects one of the two differential
signal paths. As a result, the overall faulty transfer function
of the CUT can be derived from the fault-free half circuit and
the faulty half circuit.

Table IV lists the stuck faults and the corresponding faulty
SFG models of the SC branches in fully differential implemen-
tation. We assume each fully-differential SC branch pair either
is catastrophic-fault-free or has only one of the fault activators
exercised at a time. The generalized STF and the OTG models
of the faulty delayed SC branch can be expressed as

STFZ(z) = −FCC/2 + (1 − F0/2)Cz−1 (17)

and

OTGZ = (1 − F0/2)C − F4(Con + C)/2. (18)

On the other hand, the STF and the OTG models of the faulty
delay-free SC branch are

STFR(z) = −C(1 − F0/2) + FC

C

2
z−1 (19)

and

OTGR = (1 − F0/2 − F ′
C/2)C − F4(Con + C)/2. (20)

The faulty IOR of the fully-differential CUT including all
the possible faults can be derived from the same SFG shown
in Fig. 3 by replacing the SFG models with the corresponding
faulty SFG models expressed by (17)–(20). The resulted STF
of VO2 is

STFH2F (z) =
CACG

CBCD

NUM2F (z)

DENF (z)
(21)

where

NUM2F (z) =
FCA

2
+

(
F0A + F0G

2
− 1

)
z−1 +

FCG

2
z−2 (22)

and

DENF (z) = (23)[
β1β2 +

(
−FCC

2

)
CA

CB

CC

CD

+
FCF

2
β1

CF

CB

]
z−2

+

[(
−F0C + F0A

2
+ 1

)
CA

CB

CC

CD

−
(

α1FCF − β1F0F

2
+ β1

)
CF

CB

− α1β2 − α2β1

]
z−1

− FCA

2

CA

CB

CC

CD

+

(
1 − F0F

2

)
α1

CF

CB

+ α1α2.

The additional subscripts of the fault activators in the above
equations indicate in which SC branch the activated fault is.
Similarly, we have

STFH1F (z) =
NUM1F (z)

DENF (z)
(24)

where

NUM1F (z) = −FCG

2
β2

CG

CD

z−2

−
(

β2 − FCG + FCF

2

CF

CB

+
α2FCG − β2F0G

2

)
CG

CD

z−1

−
(

1 − F0F + F0G

2

)
CF

CB

CG

CD

−
(

α2 − α2F0G

2

)
CG

CD

.
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TABLE IV

Faulty SFG Models of the SC Branches in Fully Differential Implementation

Block Catastrophic Catastrophic Fault Activators Faulty STFZ/R(z) Catastrophic Fault Activators Faulty OTGZ/R

Fault List of the STF of the OTG

S1 stuck-open F0 = 1 Cz−1/2 F0 = 1 C/2
S2 stuck-open F0 = 1 Cz−1/2 F0 = 1 C/2
S3 stuck-open F0 = 1 Cz−1/2 F0 = 1 C/2

Delayed S4 stuck-open F0 = 1 Cz−1/2 F0 = 1 C/2
SC branch S1 stuck-short FC = 1 −C(1/2 − z−1) As fault-free C

Fig. 2(a) S2 stuck-short F0 = 1 Cz−1/2 F0 = 1 C/2
S3 stuck-short F0 = 1 Cz−1/2 F0 = 1 C/2
S4 stuck-short As fault-free � Cz−1 F4 = 1 C/2 − Con

S1 stuck-open F0 = 1 −C/2 F0 = 1 C/2
S2 stuck-open FC = 1 −C(1 − z−1/2) F ′

C
= 1 C/2

S3 stuck-open FC = 1 −C(1 − z−1/2) F ′
C

= 1 C/2
Delay-free S4 stuck-open F0 = 1 −C/2 F0 = 1 C/2
SC branch S1 stuck-short FC = 1 −C(1 − z−1/2) As fault-free C

Fig. 2(c) S2 stuck-short F0 = 1 −C/2 F0 = 1 C/2
S3 stuck-short F0 = 1 −C/2 F0 = 1 C/2
S4 stuck-short As fault-free � −C F4 = 1 C/2 − Con

The values of α1, α2, β1, and β2 follow (10), but the
corresponding values in (11) are modified to be

CT1 = (1 − F0C/2)CC + CD + (1 − F0G/2)CG + Cp1

CT2 = (1 − F0A/2)CA + CB + (1 − F0F/2)CF + Cp2

Cfb1 = CD

Cfb2 = CB

Ccb1 = CD + FCCCC/2 + FCGCG/2 + Cp1

Ccb2 = CB + FCACA/2 + FCFCF/2 + Cp2. (25)

Equations (21)–(25) will be used as the templates in Sec-
tion IV for estimating the capacitor ratios of the example CUT
with the test data.

IV. Design of Efficient Tests Based on the SLB

Fault Model

Several state-of-the-art DfT methods and tools have been
proposed for testing SC filters [20], [36]–[41]. In the follow-
ing, we propose a test procedure and illustrate how to design
efficient tests to test the example CUT shown in Fig. 1 based
on the proposed SLB analog fault model.

Recall our test goals are to estimate as many parame-
ters in the parameter set of the CUT as possible so as to
achieve a high parametric fault coverage, and to check if
any catastrophic fault occurs. Multitone tests well suit for
these purposes. Adopting multitone tests has many advantages.
First, they are standard tests in industry. Second, the statistical
nature of multitone tests addresses the zero noise margin issue
of analog circuits. Third, they reduce the required test time
comparing with single-tone tests. Finally, the test results of
multitone tests contain the noise and distortion of the CUT
though they are not included in the proposed SLB fault model.

A. Proposed Test Procedure to Test for the Parameter Set

To simplify the discussion, let us consider the catastrophic
and parametric faults that do not change the transfer function

templates of the CUT first. The IOR of the CUT can be derived
from (21). The result is

VO2(z)

=
−CA

CB

CG

CD
z−1Vi(z)

(1 + CF

CB
) − (2 − CACC

CBCD
+ CF

CB
)z−1 + z−2 + E(z)

+
CA

CB
(CG

CD
+ CC

CD
)

CC

CD

CA

CB
+

(1+
Cp1
CD

) CF
CB

A1

VOS1

+
(1 + Cp1

CD
)(CA

CB
+ CF

CB
)/A1

CC

CD

CA

CB
+

(1+
Cp1
CD

) CF
CB

A1

VOS2 (26)

where

E(z) � (1 + CF

CB
)(1 + CC+CG+Cp1

CD
)

A1
+

1 + CA+CF +Cp2

CB

A2

−
(

Cp1

CD
+ 2 CC

CD
+ 2 CG

CD
+ 1 + CC

CD

CF

CB
+ CG

CD

CF

CB

A1

+
1 + Cp2

CB
+ 2 CA

CB
+ 2 CF

CB

A2

)
z−1

+

(
CC

CD
+ CG

CD

A1
+

CA

CB
+ CF

CB

A2

)
z−2.

It is very difficult to directly resolve all the parameters
included in (26) with the test results. Hence, we suggest a
test procedure as the following to make the tests easier.

1) Test for the OPGs of the OPAMPs: Recall that fault-
free OPAMPs have insignificant influences on the transfer
functions of the CUT. In other words, the terms containing
A1 and A2 in (26) vanish if A1 and A2 are high enough. For
example, Fig. 4 illustrates the amplitude frequency responses
of the CUT versus various OPGs by assuming the rest of the
circuits are ideal. Low OPGs of the OPAMPs reduce the loop
gains of the integrators. As a result, the closed-loop gains of
the integrators become smaller. For the example CUT, an OPG
of 40 dB is sufficient to fit in the design specification. An
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Fig. 4. Amplitude responses of the CUT versus OPAMPs’ OPGs.

OPG less than 40 dB will result in a passband gain out of the
design specification. This observation suggests that screening
the passband gain of the CUT is a preliminary test for too
low OPGs. If the tested passband gain is out of the design
specification, then no further test is necessary since the CUT
fails. Otherwise, the OPGs have to be tested in order to ease
the estimation of the remaining parameters in the parameter
set.

Note that it may not be necessary to test for how high the
practical OPGs are. The reason is that designers usually add
some design margins to the OPAMPs’ OPGs in practice so as
to enhance the harmonic distortion performance of the CUT
[42]. Since our main goal of testing the OPAMP’s OPG is to
ensure the finite OPGs introducing insignificant errors so as
to simplify the following capacitor ratio estimation procedure,
testing for the real OPG values may not be necessary. For
the example CUT, the frequency responses of the CUT with
60 dB OPGs are almost the same as those with 80 dB OPGs.
Hence, we just want to make sure if the OPAMPs’ OPGs of the
example CUT are higher than 60 dB, even though their actual
values may be 80 dB. If the test results show they are, then the
error term E(z) in (26) approximates to zero. Consequently,
(26) can be simplified as

VO2(z) =
−CA

CB

CG

CD
z−1Vi(z)

(1 + CF

CB
) − (2 − CACC

CBCD
+ CF

CB
)z−1 + z−2

+ (1 +
CG

CC

)VOS1 (27)

which is much simpler to solve.
The test configuration proposed in [43] can be used to test

the OPGs of the OPAMPs. The required auxiliary circuits
can be built off-chip in conjunction with simple DfT circuits
and/or with IEEE 1149.4 mixed-signal test bus in order to
conduct the tests [2]. Fig. 5 shows an implementation example.
The resistors R2, R4, R5, and R10, and the switch S4 of
the original structure in [43] are saved because the CMOS
OPAMPs in SC circuits have zero input bias currents and do

Fig. 5. Example test configuration for measuring the OPG of a single-ended
AUT with IEEE 1149.4.

not drive resistive loads. For every OPAMP under test (AUT)
on the chip, we add two analog boundary modules (ABMs),
two switches (S1 and S4) and two test pins. Note that the test
pins (TP1 and TP2) are optional. We can leave them floating
to save the area of the additional I/O pads. The test access
port (TAP) controller accepts the test commands and controls
the test bus interface circuit (TBIC) and the ABMs.

When testing the OPG of the AUT, the TAP controller
configures the TBIC, ABM1, and ABM2 so that V2, the analog
test bus 1 (AB1), and Vc connect together. Meanwhile, the
output of the AUT Vb passes through the ABM2, the analog
test bus 2 (AB2), the TBIC, and reaches the AT2 pin. The
ABMs of the other AUTs are isolated from the analog test
buses (AB1 and AB2) and the AUT is isolated from the
internal circuits by turning off the switches S1 and S4 in
Fig. 5. The test first turns on S7 to store the offset voltage
of the CUT on the capacitor COS . Then, S7 is turn off and the
OPG is measured according to the amplitude ratio of Vo and
Vi and the resistance ratios.

2) Test for the Capacitor Ratios: The next step is to test for
the capacitor ratios. The CUT has four capacitor ratios under
test including CG/CD, CC/CD, CA/CB, and CF/CB. The test
problem is equivalent to solving (28) given k test frequencies
ωk and the corresponding test results tk

CF

CB

tk(1 − e−jωkT ) +
CACG

CBCD

e−jωkT +
CACC

CBCD

tke
−jωkT

= −tk(1 − e−jωkT )2. (28)

Mathematically, we cannot estimate all the four capacitor
ratios according to (28) no matter how many tk are given. It
is because (28) has the form of three variables; hence, at most
three variables can be found. Observing the DC term of the
primary output in (27) does not help because VOS1 is unknown
yet. It implies the parametric fault coverage never reaches
100% if the primary output is the only observable variable.
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To enhance the fault coverage, we need additional observa-
tion points. The most suitable observation nodes in SC circuits
are the outputs of the OPAMPs because adding test loads
to them does not change the z-domain transfer functions of
the CUT. Hence, we additionally adopt the test results of the
intermediate output VO1(z) to estimate all the four capacitor
ratios. Again, simple DfT circuits and/or IEEE 1149.4 can be
used to observe VO1(z) with a very small on-chip hardware
overhead. By (24), the IOR of VO1(z) approximates to

VO1(z) � (−1 − CF

CB
+ z−1)CG

CD
Vi(z)

(1 + CF

CB
) − (2 − CACC

CBCD
+ CF

CB
)z−1 + z−2

− (1 +
CA

CF

)VOS2 (29)

assuming that the OPAMPs have high enough OPGs. This
equation provides additional independent relationships of the
capacitor ratios

(
CF

CB

tk +
CG

CD

)(1 − e−jωkT ) +
CACC

CBCD

tke
−jωkT +

CGCF

CDCB

= −tk(1 − e−jωkT )2. (30)

By (28) and (30), all the capacitor ratios can be estimated,
now.

3) Test for the Offsets of the OPAMPs: After obtaining
all the capacitor ratios, the offsets of the two OPAMPs can
be calculated according to the DC terms of the measured
spectra, (27), and (29). We now acquire all the parameters
in the parameter set. In other words, a 100% parametric fault
coverage is achieved.

4) Diagnosis After Test: The final step of the test procedure
is to derive the actual STF of the CUT according to the
test data. The pass/fail decision is made based on if the
frequency responses of the tested STF conform to the design
specification.

By the proposed diagnosis after test method, we do not have
to measure the amplitude responses at the other frequencies
and still can ensure whether the frequency responses of the
CUT complies with the design specification.

If one of FCx is excited, there may be no solution since the
templates of the CUT’s transfer functions become different. In
such cases, (21) to (25) can be used as the templates to find
the solutions by activating FCx one at a time.

A final remark on the proposed test procedure is that the
multitone test data are not for making the final pass/fail
decisions, but for preliminary checking if the CUT fails.
Performing the diagnosis after test is a must for making the
final pass/fail decision with the SLB fault model.

B. Design the Multitone Tests

Note that the test results tk are complex numbers. Theoreti-
cally, the test results of a single-tone test of an output provide
us two independent equations to estimate the capacitor ratios.
In practice, the accuracy of the test equipment is limited and
thus the selection of the stimulus tones is not straightforward.
Sensitivity-based methods [20], [44] and statistical analysis
approaches [23], [24] are very helpful to design the required
stimulus tones.

An appealing way to conduct the tests is to check the design
specification and to test for the parameters with the same
tests. This can be achieved by conducting the multitone test
whose stimuli consisting of a low-frequency tone, a tone at
the passband edge, a tone at the corner frequency, and a tone
at the stopband edge for the CUT.

The amplitude response of the low frequency tone di-
rectly shows the passband gain of the CUT. However, the
phase response of the tone is too insignificant to be use-
ful. Hence, the test results at the low-frequency tone usu-
ally provides us only one effective equation for solving the
parameters.

The amplitude response of the tone at the passband edge
in conjunction with that of the low-frequency can be used to
preliminarily check the passband ripple. The passband-edge
tone is an optional one for estimating the capacitor ratios
because the test results of the passband-edge tone are highly
dependent on those of the low-frequency tone for the fault-
free CUT. If the CUT is faulty so that the corner frequency
becomes lower, then the test results of this tone would provide
extra data to estimate the capacitor ratios.

The frequency responses at the corner frequency are usually
significantly different from those of the tones within passband.
Hence, they are useful data for estimating the capacitor ratios.

Similarly, the tested frequency responses at the stopband
edge can be used to preliminarily check the stop band atten-
uation. Since the results are very different from those of the
other three tones, they are essential for estimating the capacitor
ratios.

Depending on the capacitor number and design of the CUT,
additional and/or different test tones may be necessary to solve
the templates. An intuitive suggestion of selecting the stimulus
frequencies is selecting the tones on the poles and zeros of the
CUT’s transfer function or in the transition band so that the
test responses are significantly different.

C. Test Example

A test example of the CUT is given here to show the details.
The first step is to derive the templates of the faulty transfer
functions of the CUT using the proposed faulty SFG models.
The procedure and results have been discussed and shown in
Section III.

Next, we first test for the OPAMPs’ OPGs following the
proposed test procedure. Assume the tested gains are higher
than 70 dB, then the approximations of (27) and (29) are valid.
The two equations will be used as the templates to estimate
the capacitor ratios.

Then, a four-tone test whose stimulus consists of 350 Hz,
20 kHz, 61 kHz, and 1 MHz tones is applied to the CUT. The
four tones locate on a low frequency, the passband edge, the
nominal pole of the CUT, and the stop band according to the
discussion in Section IV-B.

Figs. 6 and 7 show the example four-tone test results. The
blank area of Fig. 6 highlights the design window of the
CUT. It is interesting to note that the amplitude responses
of the internal output, VO1, conventionally do not have design
specification because it is not accessible. If it does, the results
shown in Fig. 7 can be used to test it, too.
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Fig. 6. Example test results of the primary output of the CUT.

Fig. 7. Example test results of the internal output of the CUT.

Fig. 6 indicates the amplitude responses of the primary
output VO2 of the four tones are all within the design window.
It is worthy to note that a CUT passing the four-tone test does
not need to be fault-free. The frequency responses of the four
tones are preliminary checks only. If any one of them does not
comply with the design specification, then the CUT certainly
fails. If they do, we still have to proceed the following steps
before making the final pass/fail decision.

The final steps are to estimate all the capacitor ratios, to
find the offsets of the OPAMPs, and to check the frequency
responses of the derived transfer function with the design
specification. By using the test results of both outputs of the
CUT, (28), and (30), the estimated capacitor ratios are listed
in Table V. Based on the results of Table V and the DC
terms of the output spectra of the four-tone test, the offsets
of the OPAMPs are derived. A too large offset is a substantial
signature for indicating a weak OPAMP and thus it is worthy
to test for.

Finally, the amplitude responses of the CUT are calculated
according to the estimated parameters and plotted in Fig. 6.

TABLE V

Estimated Capacitor Ratios of the CUT According to the

4-Tone Test Results

Parameters Design Targets Estimated Values
CA 0.0701CB 0.1323CB

CC 0.0333CD 0.0654CD

CF 0.0701CB 0.0778CB

CG 0.0333CD 0.0659CD

A1 80 dB >70 dB
A2 80 dB >70 dB

The example CUT passes the test according to the plots. Note
that the estimated CA and CC are twice as large as their design
targets. Such huge deviations may be considered as severe
parametric faults by conventional parametric fault models.
However, there is no reason to reject the CUT because the
CUT’s frequency responses are still within the design window.
The information of Table V is also very useful for diagnosing
a faulty CUT to find the root causes of the failure.

The proposed SLB fault model and test procedure can
be used to test different kinds of SC filters such as high-
pass filters, all-pass filters, and high-order filters as well.
All we have to do are deriving the faulty templates of the
CUT’s transfer functions according to the proposed faulty SFG
models, and designing the tests to estimate all the design
parameters on the templates by following the proposed test
procedure.

D. Distortion and Noise

Although the proposed fault model does not include the
distortion and noise of the CUT, the test results inherently
present their values because multitone tests are standard tests
for them in the industry. This is another advantage of conduct-
ing multitone tests to detect the faults.

Note that the presence of the harmonic distortions due to
moderate nonlinearity of the CUT does not affect the resolved
results of the capacitor ratios. It is because the harmonic
distortions generated by the CUT would affect the stimulus
responses only if the harmonic tones and the other stimuli
locate on the same frequencies. A simple way to avoid this
issue is choosing the stimulus frequencies so that no stimulus
tone locates on the multiples of the others. Similarly, the
noise may be an issue if and only if the noise significantly
deteriorates the test responses on the stimulus frequencies. The
noise issue can be addressed by observing a longer period
of the CUT’s responses. In fact, doubling the observation
period reduces the power spectral densities of the noise on
the stimulus frequencies by 3 dB.

V. Conclusion

We proposed the SLB analog fault model for linear SC
circuits. The fault model partitions the CUT into functional
macros, including the OPAMPs, the capacitors, and the
switches. Each macro has specified design parameters from
the design’s points of view. These design parameters constitute
the parameter set and determine the transfer function of the
CUT. A CUT is defined to be faulty if the tested parameter
set results in transfer functions whose frequency responses are
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out of the design specification. Different from conventional
single fault assumption, the SLB fault model covers concurrent
multiple parametric faults and catastrophic faults. We also
proposed a test procedure to test for all the design parameters
in the parameter set. The test procedure conducts diagnosis
after test instead of fault simulations before test to address the
impractically long fault simulation time issue. An SC low-
pass biquad filter was adopted as an example to demonstrate
the effectiveness of the SLB fault model and the proposed
test procedure. The multitone test results acquired during the
proposed test procedure also reveal the distortion and noise
performance of the CUT though the SLB fault model does not
include them. Extending the fault model to include the timing
related faults would be an interesting topic for future research.
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