
 

 

Digital Image Restoration for Phase-Coded Imaging Systems 
 

Chen-Yu Tseng *, Sheng-Jyh Wang*, Chir-Weei Chang**, Po-Chang Chen**,  
Chuan-Chung Chang**, Yi-An Chen* 

* Dept. of Electronics Engineering, National Chiao Tung Univ.,  
1001 Ta-Hsueh Road Hsinchu,Taiwan, R.O.C. 

** Optoelectronics Research Laboratories, Industrial Technology Research Institute Research 
195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu, Taiwan 31040. R.O.C. 

ABSTRACT   

This paper proposes a digital image restoration algorithm for phase-coded imaging systems. In order to extend the depth-
of-field (Dof), an imaging system equipped with a properly designed phase-coded lens can achieve an approximately 
constant point spread function (PSF) for a wide range of depths. In general, a phase-coded imaging system produces 
blurred intermediate images and requires subsequent restoration processing to generate clear images. For low-
computational consumer applications, the kernel size of the restoration filter is a major concern. To fit for practical 
applications, a pyramid-based restoration algorithm is proposed in which we decompose the intermediate image into the 
form of Laplacian pyramid and perform restoration over each level individually. This approach provides the flexibility in 
filter design to maintain manufacturing specification. On the other hand, image noise may seriously degrade the 
performance of the restored images. To deal with this problem, we propose a Pyramid-Based Adaptive Restoration 
(PBAR) method, which restores the intermediate image with an adaptive noise suppression module to improve the 
performance of the phase-coded imaging system for Dof extension. 
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1. INTRODUCTION  

In recent years, imaging systems equipped with properly designed phase-coded lens have been proposed to extend the 
depth-of-field (DoF). In [1] and [2], Dowski and Cathey proposed wave-front coding optics to make the point-spread 
function (PSF) and the optical transfer function approximately invariant to misfocus. Inspired by wave-front coding, 
Sung et al. designed new phase-coded optics for applications of mobile phone lens in [3] to reduce the focus-related 
aberration. In general, these phase-coded imaging systems produce intermediate images which are constantly blurred due 
to the corresponding focus-invariant PSF, and image restoration is required to generate clear output images.  

The process of image restoration can be seen as a decoding process or a computational software lens to compensate the 
blurring PSF of the actual optical system.  However in practice, it is difficult to estimate the actual optical PSF of the 
imaging system due to the manufacturing inaccuracy. In [4], Chen et al. developed a flow to design restoration filters 
with no need of the optical PSF information. In that approach, they took a shot of a well-designed test chart with the 
extended DoF (EDoF) camera to obtain the blurred image. Since the original test chart is known as the target image, a 
minimum mean-square-error (MMSE) restoration filter can be obtained based on the target image and the blurred image.  

However, for applications concerning computational cost, such as mobile cameras, a large-size restoration filter is not 
practical. Moreover, noise boosting is a serious problem that always degrades the quality of the restored images. In this 
paper, we propose a Pyramid-Based Adaptive Restoration (PBAR) method, which decomposes the intermediate image 
into the form of Laplacian pyramid and restores each level individually. In this pyramid scheme, different levels refer to 
different frequency bands. For the coarse level, the computational complexity is low and we perform precise restoration 
to achieve better visual quality. On the other hand, since the inaccuracy of restoration in higher frequency bands may not 
cause noticeable artifacts for human visual perception, we adopt a less precise reconstruction filter to reduce the 
computational cost. Besides, since noise in different levels may cause different perceptual influence, we also propose a 
level-variant noise model to achieve adaptive noise suppression at different pyramid levels during the restoration process. 
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With this PBAR method, we can efficiently restore the blurred intermediate images with effective noise suppression. 
This improvement greatly enhances the performance of the phase-coded imaging system for Dof extension. 

 

2. PYRAMID BASED ADAPTIVE RESTORATION  

In this section, we first briefly introduce the procedure to estimate the restoration filter based on the Minimum Mean-
Square-Error (MMSE) restoration algorithm. We further extend this MMSE restoration process to a pyramid-based 
scheme to reduce the kernel size of the restoration filters. Finally, the proposed Pyramid-Based Adaptive Restoration 
(PBAR) is described which can effectively avoid the noise boosting problem during restoration and may improve the 
performance of the phase-coded imaging system. 

 

2.1 Restoration Filter Estimation 

In [4], Chen et al. developed a flow for designing restoration filters with no need of the optical PSF information, as 
illustrated in Figure 1. They first prepared a well-designed test pattern and captured it with the phase-coded imaging 
system to get a blurred intermediate image. Since the target image (known test pattern) and the blurred image are given, 
the Minimum Mean-Square-Error (MMSE) estimation is performed to construct the restoration filter, which is used to 
restore all blurred images of their imaging system.  

 
Figure 1. Design flow of MMSE filter. 

 

To introduce the MMSE filter, we first model the optical channel as a linear shift-invariant system: 
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where I and B denote the original image (known test pattern) and blurred image, respectively, H is the corresponding 
point-spread function in dimensions P and Q, and N is the additive noise. The general restoration process can be 
expressed as: 
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(2) 

Î  is the restored image with the restoration filter W in dimensions M and N. In order to make the output image close to 
the original target image, the objective function J is defined based on the mean-square-error expectation: 
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To minimize the mean square error, partial derivative is perform over J with respect to W(k,l). To simplify the problem, 
we assume the noise component is independent of the original image and the partial derivative can be deduced as below: 
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(4) 

The minimum mean-square-error solution occurs when the partial derivative is equal to zero. That is, the MMSE filter 
can be calculated based on the following equations: 
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(5) 

Since the target image I and the blurred image B are given, the coefficient of the MMSE filer W can be calculated based 
on the deduction described in [4]. 

In (5), the parameters M and N correspond to the kernel size of the restoration filter. A more precise restoration requires 
a larger filter size. However, for practical applications, it is usually not acceptable to adopt a large-size filter. On the 
other hand, the actual noise component may not be truly independent of the original image. Sometimes, the image noise 
is more like a signal-dependent Poisson-Gaussian noise [5]. This signal-dependent noise conflicts with the assumption 
we applied in (4) and may cause apparent degradation in the quality of the restored image. To handle these two 
aforementioned problems, we propose a PBAR algorithm, which is to be introduced in following sections. 

 

2.2 Pyramid-Based Restoration (PBR) Filter 

In this section, we propose a design flow of the pyramid-based restoration. In this approach, we effectively reduce the 
kernel size of the restoration filter with only slight loss in perceptual quality. The flowchart is illustrated in Figure 2, 
where we first individually decompose the target image and the intermediate image into the form of Laplacian pyramid 
[6]. The iterative rule of the Gaussian-Laplacian pyramid method can be formulated as below, for i increasing from 0 to 
N-1. 

ii IgI ⊗=+1' , (6) 

11 ' ++ −= iii IIL , (7) 

( ) 211 ' ↓++ = ii II . (8) 

In (6)~(8), iI  denotes the image of ith level of Gaussian pyramid, 0I  denotes the original image, iL  denotes the residual 
image of ith level of the Laplacian pyramid, g  denotes a Gaussian filter, and 2↓  denotes the down-sampling process. 

After having decomposed the target image and the blurred image into the Laplacian pyramid representation, we extract 
level-pairs from both of these two pyramids level by level. Each level-pair contains one target image and one blurred 
image, denoted as T

iL and B
iL , respectively, for Ni <≤1 (residual levels). For Ni = (the top level), we denote the pair 

as T
NI  and B

NI . Applying the MMSE method for each level-pair individually, the level-restoration filter iw  can be 
calculated for Ni ≤≤1 .  
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Figure 2. Design flow of a three-level pyramid-based restoration. 

 

After the estimation of the MMSE restoration filters, the flowchart of this pyramid-based restoration is designed as 
illustrated in Figure 3. The intermediate image is decomposed into the form of Laplacian pyramid. After that, the level-
based restoration is performed for each level, successively from the top to the bottom of the pyramid. For the top level, 
the correspond restored layer R

NI  can be derived by 

B
NN

R
N IwI ⊗= .  (9) 

For the subsequent levels (residual levels), the iterative rule can be formulated as 
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where i is the level index decreasing from N-1 to 0, and RI0  denotes the final output image. 

In this pyramid scheme, different levels refer to different frequency bands. In this approach, the coefficients of the 
restoration process for each level can be adjusted to fit for manufacturing requirements. For the coarse level, the 
computational complexity is low due to the down-sampling processes in the pyramid computation. On the other hand, 
since the inaccuracy of restoration in higher frequency bands may not cause noticeable artifacts for human visual 
perception, we adopt a less precise reconstruction filter in the finer level to reduce the computational cost. 

Figure 4 (b) shows the output image by directly using a 15×15 restoration filter. Figure 4 (c) shows the output image by 
applying the pyramid-based restoration with a 7×7 restoration filter for each level. Their perceptual performances are 
similar, but the proposed method effectively reduces the kernel size of the restoration filter. 
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Figure 3. The flowchart of a three-level pyramid-based restoration. 
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(b) Output image with a 15×15 restoration filer (a) Intermediate image  

(c) Output image with a 3-level pyramid-based restoration, 

7×7 restoration filter for each level  
Figure 4. (a) Original image, (b) output image with a 15×15 restoration filter, and (c) the result of pyramid-based 

restoration. 

 

2.3 Pyramid-Based Adaptive Restoration (PBAR) with Noise Suppression 

Image acquisition noise is always a serious problem for restoration. Image noise may seriously degrade the quality of the 
restored image. As mentioned above, the actual noise component may not be truly signal-independent [5]. This fact 
conflicts with the assumption adopted in the deduction of the MMSE restoration. To deal with this problem, a Pyramid-
Based Adaptive Restoration (PBAR) is proposed. Based on the pyramid-based restoration introduced in the preceding 
section, the parameters in each level can be individually adjusted in the PBAR approach, depending on the 
corresponding noise level. 

In [5] Foi et al. proposed a signal-dependent noise model for the raw data of image sensors. For each pixel, the signal-
dependent model represents the noise standard-deviation as a function of the expectation value of the pixel intensity. The 
observed signal is modeled as 

)())(()()( xxyxyxz ξσ+= , (12) 

Proc. of SPIE Vol. 7723  77231N-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/25/2014 Terms of Use: http://spiedl.org/terms



 

 

where z is the observed pixel intensity at the position x, y is the original intensity, σ is a function of y, and ξ  is zero-
mean  random noise with its standard deviation equal to 1.  In [5] Foi et al. assumed that the noise term is composed of 
two parts: the signal-dependent Poisson component pη  and the signal-independent Gaussian component gη . That is, 

gp xyxxy ηηξσ += ))(()())(( . (13) 

The variance of the Poisson component depends on the value of the original intensity y. This component follows the 
Poisson distribution and we have { } )())((var xayxyp =η , with a  being a parameter corresponding to the sensor 

hardware. On the other hand, for the Gaussian component, the noise variance is a constant value b . The overall noise 
variance function can be represented in a linear form as 

bxayxy += )())((2σ . (14) 

In this noise model, the coefficients a  and b  depend only on sensor hardware. They can be estimated empirically [5]. 
Based on this noise model, a Pyramid-Based Adaptive Restoration (PBAR) is proposed as illustrated in Figure 5. 
Moreover, by adopting this noise model, we can also avoid the noise boosting problem during restoration. 
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Figure 5. The flowchart of a three-level scheme of the pyramid-based adaptive restoration. 
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In Figure 5, a three-level scheme of PBAR is illustrated where the noise suppression module is added after the level-
restoration for each residual level. Since the general noise model is signal-dependent as expressed in (14), our proposed 
adaptive noise suppression module is a function described as below: 
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In (15), )(xL
R
i  is the output residual value of the ith level at the pixel position x. This value is produced from the noise 

suppression function ( ))(ˆ),( xIxLs R
i

R
ii  that removes the noise component involved in  R

iL , depending on the noise-

threshold ( ))(ˆ xIth R
ii , which is defined as 

( ) i
R
ii

R
ii bxIaxIth +≡ )(ˆ)(ˆ . (16) 

In (16), ia  and ib  are noise parameters. This noise-threshold function is based on the noise model described in (14). The 
parameters depend on the corresponding sensor parameters that can be estimated based on Foi’s method [5]. Furthermore, 
we directly use the intensity value of )(ˆ xI R

i  to approximate the original intensity value )(xy . This is because the noise 
component has mostly been removed through the sequent Gaussian filtering during the process of pyramid 
decomposition.  

3. EXPERMENTAL RESULTS  

The experiment platform is set as shown in Figure 6. Figure 6(a) is the imaging system containing an extended depth-of-
field (EDoF) camera and a personal computer for image restoration. The EDoF camera is equipped with a singlet coding 
lens without cover glass and IR cut, as shown in Figure 6 (b). The focal length is 4mm. Compared to the system with 
traditional lens, this phase-coding imaging system can effectively extend the depth of focus, as shown in Figure 7. 

 
(a) Phase-coded Imaging System 

EDoF Camera 

Restoration System 

(b) Singlet Coding Lens 

 
Figure 6. Experiment platform. 
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(a) Output Image of a Conventional Camera (b) Output Image of the EDoF Camera 
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 Figure 7. Experiment platform. 

 

The intermediate images produced from the EDof camera are further passed through the restoration process. The 
restoration results are shown in Figure 8 and Figure 9, which are the 2nd-level and the 1st-level residual images from the 
Laplacian pyramids of the intermediate image, the PBR output image, and the PBAR output image. The magnitude of 
these residual images is post-enhanced five times for easier observation. The enhanced results show that the noise 
boosting effect can be effectively reduced through the PBAR method. This PBAR method does successfully improve the 
performance of the phase-coded imaging system as shown in Figure 10. 

 

(a) Intermediate image, )(2 xLB  (b) Restored image, )(2 xLR  (c) Adaptive Restored image, )(2 xL
R

 
Figure 8. (a)The 2nd-level intermediate residual image, and the output residual images of (b) PBR and (c) PBAR.  
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(a) Intermediate residual image, BL1  

(b) Output residual image of PBR, RL1  

(c) Output residual image of PBAR,
R

L1  

(a) Intermediate image 

(c) Output residual image of PBAR  

(b) Output residual image of PBR  

 
Figure 9. (a)The 1st-level intermediate residual image,     

and the output residual images of (b) PBR 
and (c) PBAR. 

Figure 10. (a)The intermediate image, and the output 
images of (b) PBR and (c) PBAR. 
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4. CONCLUSIONS  

In this paper, a pyramid-based adaptive restoration algorithm for phase-coded imaging system is presented. In this 
approach, the blurred intermediate image is decomposed into the form of Laplacian pyramid and each level is restored 
individually. This approach provides the flexibility to adjust parameters at each level in order to fit for the design 
specification, such as kernel size of the restoration filter. Moreover this PBAR algorithm provides noise-suppressed 
results based on a signal-dependent noise model. This PBAR algorithm can successfully suppress the noise boosting 
problem and improve the output quality of the EDoF system. 
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