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We investigate the steering dissipative dynamics of a two-level system (qubit) by means of the
modulation of an assisted tunneling degree of freedom which is described by a quantum-oscillator
spin-boson model. Our results reveal that the decoherence rate of the qubit can be significantly
suppressed and simultaneously its quality factor is enhanced. Moreover, the modulated dynamical
susceptibility exhibits a multi-peak feature which is indicative of the underlying structure and mea-
surable in experiment. Our findings demonstrate that the interplay between the combined degrees
of freedom and the qubit is crucial for reducing the dissipation of qubit and expanding the coherent
regime of quantum operation much large. The strategy might be used to fight against deterioration
of quantum coherence in quantum information processing. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3700437]

The emergent field of quantum information processing
has spurred research activities on the controlled manipula-
tion of a qubit. The requisite quantum coherence is very frag-
ile, and lost through interaction with environment or other
sources. Such interactions degrade the information and in as
much as it does exist in nature, how would one implement
realistic quantum manipulation at a rate much faster than de-
coherence occurs? By introducing a dynamical structure with
assisted tunneling, we obtain an effective modulation of dis-
sipation, which leads to an engineered decay of the qubit. It
avoids the fast loss of coherence of quantum states, which is
one of basic prerequisites for quantum information process-
ing. It is applied in different areas of forefront fundamental
research and new emerging topics.1

One of the key challenges for solid state qubits is to
perform quantum coherent manipulation despite the decoher-
ence resulting from the environment. For example, gener-
ally, a critical element for manipulation is the interdot tun-
neling barrier of coupled quantum dots (QD), which have
been designed and realized in the hetero-structure and other
solid state schemes.2, 3 However, those are principally set by
the geometrical constrictions between the QDs defined in the
fabrication3 even if tunnel-barrier transmittances can be mod-
ified by gate voltages. Thus, it is an important challenge in
experiment to increase the tunneling coupling to preserve co-
herent dynamics against decoherence due to uncontrollable
degrees of freedom.3

In this paper, we propose a powerful efficient mecha-
nism to obtain robust coherent dynamics of a qubit even in
a strongly dissipative environment. A qubit coupled to a har-
monic oscillator has been implemented by different systems
in experiment, such as an exciton in a QD coupled strongly
to a phonon in an ultrahigh-Q phonon cavity, or a cooper-pair
box coupled to a nanomechanical oscillator.4–6 We propose a
realistic setup where assisted-tunneling between qubit states

is used to control efficiently the dynamics by coupling ele-
ments, a harmonic oscillator acting as a controllable degree
of freedom. Specifically, the oscillator can be implemented
using the intrinsic lattice vibration of a phonon cavity, i.e.,
single frequency optical phonons,4 or the collective motion
of a designed quantum structure, e.g., a suspended nanome-
chanical oscillator or carbon nanotube on a gate.7, 8 Thus, we
consider a class of systems with induced tunneling assisted by
the oscillator,

Hs = −�

2
σx + ε(t)

2
σz + ω0a

†a + g0

2
(a† + a)σx, (1)

where � is the tunneling element,9 ε(t) the bias, and σ x and
σ z are Pauli matrices. In QD qubit structures, � is propor-
tional to the overlap of wave functions in the two QDs, ε(t)
is the voltage difference between the dots which is tuned to
zero in the measurement. g0 is linear coupling between the
qubit and the oscillator, which determines the assisted tun-
neling strength, while a and a† bosonic operators with fre-
quency ω0. When ε(t) = 0, Eq. (1) becomes the independent
boson model (IBM) with the Hamiltonian HIBM = −�σ x/2
+ ω0a†a + g0(a† + a)σ x/2, describing a two-state system
coupled with a dynamic structure. This is a basic model for
many physical and chemical processes.10

In order to show how the dynamical fluctuations in the
solid-state environment influence the coherent properties of
the qubit, the coupling of qubit states to the heat bath is de-
scribed by the spin-boson model (SBM),11–13

H = Hs +
∑

k

ωkb
†
kbk +

∑
k

gk

2
(b†k + bk)σz, (2)

b
†
k (bk) is the creation (annihilation) operator of a bo-

son mode with frequency ωk, and gk denotes the cou-
pling constant. In this work an Ohmic bath is considered
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and its spectral density is characterized by:
∑

k g2
k δ(ω − ωk)

= 2αω exp(−ω/ωc), where α is the dimensionless coupling
constant and ωc is the cut-off frequency.

Here employing an analytical approach based on uni-
tary transformations and perturbation theory, we calculate the
steered non-Markovian non-equilibrium dynamics, equilib-
rium dynamics, and the susceptibility of the model at T = 0.
The approach puts the qubit’s and oscillator’s degrees of free-
dom on equal footing. It works well for the coupling constant
0 ≤ α < 1 and any bare tunneling �, and then can reproduce
the well-known results of the SBM.14–21 In this paper we set
¯ = 1 and kB = 1.

Unitary transformations, H ′′ = eS2eS1He−S1e−S2 , are ap-
plied to H and their aim is to take into account the cor-
relation between the spin and bosons.22, 23 We propose
the following form for the generators, S1 = g0

2ω0
(a† − a)σx ,

S2 = ∑
k

gk

2ωk
ξk(b†k − bk)[σ−eX + σ+e−X], where σ± = (σ z

± iσ y)/2 and X = (a†−a)g0/ω0. Here we introduce in S2

a k-dependent function ξ k and its form will be determined
later. The transformation can be performed to the end and
the transformed Hamiltonian is divided into three parts,
H ′′ = H ′′

0 + H ′′
1 + H ′′

2 ,

H ′′
0 = −η�

2
σx + ω0a

†a +
∑

k

ωkb
†
kbk + 
, (3)

H ′′
1 =

∑
k

Vk(b†kσ−eX + bkσ+e−X), (4)

where the energy shift 
 = − g2
0

4ω0
− ∑

k

g2
k

4ωk
ξk(2 − ξk),

the renormalized coupling Vk = gk
η�

ωk
ξk , ξk = ωk

ωk+η�
,

η = exp[−∑
k

g2
k

2ω2
k

ξ 2
k ], and H ′′

2 = H ′′ − H ′′
0 − H ′′

1 . H ′′
0 is

the unperturbed part of H′′ and, obviously, it can be solved
exactly in which the spin (qubit), the oscillator, and the
environment are decoupled. The eigenstate of H ′′

0 is a direct
product: |s〉|na〉|{nk}〉, where |s〉 is the eigenstate of σ x:
σ x|s1〉 = |s1〉 and σ x|s2〉 = −|s2〉, |na〉 is the Fock state of the
oscillator, and |{nk}〉 is the eigenstate of environment with nk

bosons for mode k. In particular, |{0k}〉 is the vacuum state
in which nk = 0 for every k. The ground state of H ′′

0 is |g0〉
= |s1〉|0a〉|{0k}〉. H ′′

1 and H ′′
2 are treated as perturbation and

they should be as small as possible. For this purpose ξ k and
η are determined to make H ′′

1 |g0〉 = 0 and 〈g0|H ′′
2 |g0〉 = 0,

respectively, whose forms are essential in our
approach.

In our method H ′′
0 is treated as the unperturbed Hamilto-

nian, H ′′
1 the perturbation which contains the terms of single-

bath-boson transition, and H ′′
2 is neglected since it contains

the terms of multi-bath-boson non-diagonal transitions or the
terms of simultaneous transition of bath-bosons and oscilla-
tor. In H ′′

0 , the tunneling has already been renormalized by η

which comes from the contribution of all diagonal transitions
of bath-boson.10

The equation of motion in the Heisenberg picture for
any operator σ (t) = exp (iH′′t)σexp (−iH′′t) is iσ̇ = [σ,H ′′],
where the time derivative is abbreviated by a dot. Then, we

can derive the chain of equations as follows:

σ̇+ = iη�σ+ + i
∑

k

Vkb
+
k σxe

X, (5)

σ̇− = −iη�σ− − i
∑

k

Vke
−Xσxbk, (6)

i
d

dt
(b+

k σx) = −ωkb
+
k σx − Vkσ+e−X, (7)

i
d

dt
(σxbk) = ωkσxbk + Vke

Xσ−. (8)

Quantum fidelity can measure environment-induced de-
coherence. It is defined as F(t) = Tr(ρ(0)ρ(t)). Thus, suppose
the initial state is |ψ(0)〉 = 1√

2
[|s1〉 + |s2〉]|0a〉|{0k}〉 with

〈ψ(0)|σ z|ψ(0)〉 = 1 and 〈ψ(0)|σ x|ψ(0)〉 = 0. The average of
the operator σ (t) is denoted as σ̄ (t) = 〈ψ(0)|σ (t)|ψ(0)〉 and
we can obtain the integro-differential equations,

˙̄σ+(t) − iη�σ̄+(t) = −
∑

k

V 2
k

∫ t

0
dt ′σ̄+(t ′)eiωk(t−t ′)Ft ′,t ,

(9)

˙̄σ−(t) + iη�σ̄−(t) = −
∑

k

V 2
k

∫ t

0
dt ′σ̄−(t ′)e−iωk (t−t ′)Ft,t ′ ,

(10)

where Ft ′,t=〈0a|e−X(t ′)eX(t)|0a〉 and Ft,t ′ = 〈0a|e−X(t)eX(t ′)|0a〉
can be evaluated by Feynman Disentangling of operators.10

These are non-Markovian. In this work, we pursue controlled
non-Markovian transient dynamics. The integro-differential
equations can be solved by Laplace transformation and the
result for F (t) = [1 + σ̄z(t)]/2 = [1 + P (t)]/2 is

F (t) = 1

2
+ 1

2π

∫ ∞

−∞

�(ω) cos(ωt)dω

[ω − η� − �(ω)]2 + �2(ω)
, (11)

where

�(ω) = e−λ

∞∑
l=0

λl

l!

∑
k

V 2
k

ω − ωk − lω0
, (12)

�(ω) = πe−λ

∞∑
l=0

λl

l!

∑
k

V 2
k δ(ω − ωk − lω0) (13)

with λ = g2
0/ω

2
0. These equations are the main result of the

work. �(ω) and �(ω) are obtained at T = 0.
We summarize our results in Fig. 1. One can see a damp-

ing oscillation of the SBM at λ = 0 due to dissipation.16, 17 Fi-
delity decays due to interference with the environment. When
tuning on the coupling to the oscillator λ > 0, quantum dy-
namics exhibits robust coherent behavior even in the strong
dissipative regime. Furthermore, as λ increases (the oscillator-
qubit coupling becomes strong at a fixed ω0, or the frequency
of the oscillator decreases at a fixed g0.), F(t) shows much
weaker damping behaviors and coherence becomes more ro-
bust (see Fig. 1(a)).
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FIG. 1. (a) Time evolution F(t) modulated by the oscillator with different λ.

(b) Spectral density G(ω) = ∑
k

g2
k
4 δ(ω − ωk) and modulated spectral den-

sity Gsa(ω) = e−λ
∑∞

l=0
λl

l!

∑
k V 2

k δ(ω − ωk − lω0). When λ = 0, it become
Gsb(ω) = ∑

k V 2
k δ(ω − ωk). (c) Quality factor as a function of λ for differ-

ent dissipative strength. (d) Phase diagram of coherent-incoherent transition
in the presence of oscillator tuning. The scaling result αc = 0.5 of the SBM
(�/ωc � 1) is shown by the red dot.

From Fig. 1(b) it is clear that the coupling to the oscilla-
tor has a significant effect on the energy spectrum. �(ω) de-
termines the dissipative effects and also relates the spectral
density. For the SBM (λ = 0), by using the second-order
perturbation theory, we get �(ω) = π

∑
k g2

k δ(ω − ωk)/4
= πG(ω), while from the transformed Hamiltonian (Eqs. (3)
and (4)), we obtain �(ω) = π

∑
k V 2

k δ(ω − ωk) and give the
effective spectral density Gsb = �(ω)/π . By analogy, the mod-
ulated spectrum density Gsa is defined as Gsa(ω) = �(ω)/π
= e−λ

∑
l

λl

l!

∑
k V 2

k δ(ω − ωk − lω0), which has a multi-peak
structure with a shoulder in the lower energy in contrast to the
bare Ohmic spectrum. As λ increases, the shoulder becomes
lower and at the same time clear ridges and peaks above the
shoulder emerges. It has been known that the low-frequency
part of spectrum function determines the dissipative behaviors
of qubit.13 Thus, as the engineered spectrum Gsa possesses the
less weight of low frequency part it leads to the steered dy-
namics with dissipative reduction. Therefore, tuning the cou-
pling of the qubit to the oscillator can control the decoherence
process of the qubit.

In the Hamiltonian Eq. (1), quantum oscillator with
an assisted-tunneling channel is introduced to change quan-
tum decoherence. By means of unitary transformations, one
can see obviously that there happens the mixing (b†kσ−eX

+ h.c.) between the assisted-tunneling channel of quan-
tum oscillator and the dissipative channel of bosonic reser-
voir. Thus it results in neutralizing the inevitable decoher-
ence effect caused by the noisy environment. The pref-
actor e−λ in the fidelity dynamics is a signature of this
result. Furthermore, the reduction of the decoherence rate
originates from the Poisson distribution with the dressing fac-
tor e−λ in �(ω). Therefore, the coherence of the qubit with
a dissipative environment can be significantly enhanced and
improved.

The quality factor is defined as Q = ωeff/�(η�), in which
ωeff is the effective Rabi frequency of the qubit, and �(η�)
is the engineered decay rate modulated by the oscillator.
Figure 1(c) displays the quality factor as a function of λ.
As λ increases, Q shows a steep increase from 6.09 to 205
for α = 0.1, a remarkable enhancement by two orders of
magnitude. Note that ωeff is the solution of the equation ωeff

− η� − �(ωeff) = 0.16, 20, 22 The solution is positive real only
when α < αc. For α > αc there is no solution ωeff > 0 so that
α = αc determines the critical point corresponding to a
coherent-incoherent transition. For λ = 0, it is easy to ob-
tain the well-known result αc = 1/2 in the scaling limit
� � ωc.22 Figure 1(d) shows the phase diagram of the
coherent-incoherent transition. It is clear that the coherent
regime becomes much broader with increasing λ. In other
words, the oscillator provides both a degree of freedom to
steer the qubit dynamics and also a broad parameter space
to efficiently manipulate its coherence.

Another important quantity is the susceptibility,19–21

χ ′′(ω) = 1

2π

∫ ∞

−∞
dteiωt 〈[σz(t)σz − σzσz(t)]〉H , (14)

where 〈. . .〉H = Tr[exp (− βH). . .]/Tr[exp (−βH)]. The corre-
lation function is calculated at T = 0 as follows.

〈exp(iH t)σz exp(−iH t)σz〉H ≈ (〈eiH̃ tσ−e−iH̃ t σ+〉H̃
+〈eiH̃ tσ+e−iH̃ t σ−〉H̃ )Ft,0. (15)

Here we assume that in the transformed Hamiltonian Ha

= ω0a†a is uncorrelated with H̃ = H ′′ − Ha . The correlation
functions can be calculated by means of Green’s function and
the result is

〈eiH̃ tσ−e−iH̃ tσ+〉H̃ 〈e−X(t)eX〉Ha

= 1

π

∫ ∞

0
dω

γ (ω)

[ω − η� − R(ω)]2 + γ 2(ω)
e−iωt e−φ(t),

(16)

where φ(t) = λ(1 − e−iω0t ). Then, it is substituted into
Eq. (14) and for ω ≥ 0,

χ ′′(ω) = e−λ

π

∞∑
l=0

λl

l!

× γ (ω − lω0)

[ω − lω0 − η� − R(ω − lω0)]2 + γ 2(ω − lω0)
,

(17)

where R(ω) = ∑
k

V 2
k

ω−ωk
and γ (ω) = π

∑
k V 2

k δ(ω − ωk). For

λ = 0, χ ′′(ω) = π−1γ (ω){[ω − η� − R(ω)]2 + γ 2(ω)}−1 is
the result of SBM,18, 22 while for α = 0, χ ′′(ω) = e−λ

∑
lλ

lδ(ω
− lω0 − �)/l! is that of IBM.10

Figure 2 shows clearly the Poisson distributed character
of the susceptibility spectrum (Figs. 2(a) and 2(b)). Without
the coupling to the oscillator, the spectrum has a Lorentzian
shape with a single peak near η� which is a well known
aspect of the SBM.17, 18 Turning on the coupling to the os-
cillator, one can see that a multi-peak structure emerges, in
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FIG. 2. (a) and (b) χ ′′(ω) as a function of ω/ω0 for different λ. (c) The
correlation function C(t). (d) C(t) vs σ̄z(t) ≡ P (t). Note C(0)=1=P(0) is
numerically exact.

which there is a finite frequency interval ω0 between any
two nearest-neighbor peaks, which is the intrinsic frequency
of the oscillator. Moreover, the weight of every peak would
be redistributed with increasing λ. Specifically, the position
of the highest peak will shift, at the same time the height
and width of every peak also change. All these features in
the spectrum can be detected and confirmed experimentally
in the optical spectrum of QDs. In Fig. 2(c), we plot the
symmetrized equilibrium correlation function C(t) = 〈{σ z(t),
σ z}〉/2, where {A, B} = AB + BA.21 As λ increases, the os-
cillatory character shows up chorally multi-peak structure in
the susceptibility because C(t) and χ ′′ satisfy the correlation
C(t) = ∫ ∞

0 dωχ ′′(ω) cos(ωt). In the absence of dissipation
(α = 0), our result immediately recovers the exact result of the
IBM.10 Besides, without the coupling to oscillator (λ = 0), the
dynamics C(t) illustrates a dissipative behavior with a decay
rate γ (η�),22 and C(t) = σ̄z(t) in this case.19 While the dissi-
pative and controllable components coexist, C(t) has a much
different character from P(t), namely C(t) �= σ̄z(t) (Fig. 2(d)).
One of important reasons is the different initial preparation
conditions for two physical quantities.13 In particular, C(t) is
an equilibrium correlation function while σ̄z(t) needs an ini-
tial preparation process and then performs a non-equilibrium
time evolution. From a mathematical viewpoint, the kernel of
σ̄z(t) accounts the total effect of summing multi-boson (lω0,
l = 0, 1, 2. . .) self-energy in Eq. (11) (quantum coherent su-
perposition), resulting in damped oscillations with the corre-
sponding modulated decay rate. The kernel of C(t), on the
other hand, considers the contribution of each multi-boson
term independently, and C(t) takes account of the summation
of separate term as a Poisson distributed weight in Eq. (17)

(incoherent superposition). Therefore, C(t) is different from
σ̄z(t).

In summary, we study the controllable dissipative dynam-
ics coherently tuned with a harmonic oscillator using an an-
alytical approach based on unitary transformations. We show
that the modulated decay rate is controlled and its quality fac-
tor improved under suitable steer of the oscillator. In other
words, when the oscillator is tuned appropriately, the coher-
ence of the system exhibits becomes significantly more ro-
bust. The scheme is realistically done, from an experimen-
tal point of view, i.e., the oscillator can be modeled by a
nanostructural oscillator, a quantum beam, an optical phonon
mode, or even a cavity mode. The mechanisms discussed in
this paper may be used in designing and constructing qubit-
manipulation tools to preserve coherence, and also in find-
ing applications to the dynamics of light-harvesting com-
plexes and quantum information transfer.24, 25 The results of
this work hold for zero temperature. The issue of decoherence
for finite temperature is interesting and in progress.
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