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Abstract

Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence
of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is
present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the
development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–
activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry
studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore
involved in catalysis. Crystal structures of HpSK?SO4, R57A, and HpSKNshikimate-3-phosphateNADP show a characteristic
three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate.
The structure of the inhibitor complex, E114AN162535, was also determined, which revealed a dramatic shift in the elastic
LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the
active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism.
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Introduction

In recent years, major problematic bacterial infections have

been described for methicillin-resistant Staphylococcus aureus, Entero-

coccus faecium, Staphylococcus pneumonia, Klebsiella species, Acinetobacter

baumannii, Pseudomonas aeruginosa, Mycobacterium tuberculosis, and

Escherichia coli [1–3]. The high prevalence of resistant bacteria

and complex resistance, including multidrug-resistant pathogens,

has been of particular concern. There are, however, limited

antibacterial therapeutic options for the treatment of nosocomial

infections for multidrug-resistant Gram-negative bacteria [4].

Health professionals are very aware of the urgent need for novel

antibiotic agents against Gram-negative bacteria [5]. Despite a

growing need for new and more effective antibiotics (or other

means) to cure problematic bacterial infections, few new agents

have been found in recent years owing to a substantial decline in

research and development investment in the face of a challenging

economic climate [6,7].

The shikimate pathway is comprised of seven enzymatic

components that convert erythrose 4-phosphate and phospho-

enolpyruvate into chorismate, for subsequent synthesis of aromatic

compounds [8]. This pathway is present in microbial cells,

apicomplexan parasites, and plants but is absent in animals; this

makes it an attractive target pathway for the development of new

antimicrobial agents, herbicides, and antiparasitic agents [9–18].

Of note, 5-enolpyruvylshikimate 3-phosphate synthase (the sixth

enzyme in the shikimate pathway) has been successfully targeted

with glyphosate, one of the world’s best-selling herbicides [19,20].

Disruption in M. tuberculosis of aroK, the gene encoding shikimate

kinase (SK, EC 2.7.1.71), the fifth enzyme of the shikimate

pathway, further suggests that this pathway is essential for

antimicrobial drug discovery [21].

SK catalyzes the specific phosphorylation of the 3-hydroxyl

group of shikimic acid, using ATP as a co-substrate. Several SK

structures are available (from E. coli, Erwinia chrysanthemi,

Campylobacter jejuni, Aquifex aeolicus and Arabidopsis thaliana [22–

27]), and also from two important pathogens, M. tuberculosis and

Helicobacter pylori (MtSK and HpSK, respectively) [28–33]. SKs

belong to a class of P-loop kinases that share a homologous a-b-a
fold [23,34]. These structures have an active site created by

conserved residues and occupied by ATP and shikimate. The

occupancy of this site by substrates/products is associated with

inducing an open-to-closed conformational change by a flexible

loop, and domain movement for SKs [32]. Such movement, as is

the case for many other kinases, is essential for catalytic turnover

[34]. Understanding the critical residues involved in ligand

binding and conformational flexibility is therefore essential in

aiding design of potential selective inhibitors [35,36].
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The likelihood of HpSK as a target enzyme for potential drug

and herbicide discovery prompted us to investigate the detailed

structure-activity relationship of the binding pocket. Here, we

report the crystal structures of HpSK?SO4, R57A, and HpSKN
shikimate-3-phosphate (S3P)NADP, which reveal that three con-

served Arg residues (R57, R116, R132), the side chain of D33, and

the aromatic ring of F48 are involved in binding to shikimate. We

also determined the X-ray structure of the E114A mutant SK-

inhibitor complex using a selective inhibitor (NSC162535;

IC50 = 4.9 mM) identified from virtual docking analysis. Site-

directed mutagenesis and isothermal titration calorimetry (ITC)

together revealed the key binding residues and a NSC162535/

induced-fit mechanism.

Results

Site-directed mutagenesis of shikimate-binding residues
One strategy to derive a specific selective inhibitor toward a

given P-loop kinase is to target the non-ATP-binding site, because

P-loop kinases possess a relatively conserved ATP site that

catalyzes the phosphotransfer reaction [34]. To this end, we

evaluated the shikimate-binding (SB) residues of HpSK. Structural

comparison of reported SKs show that the structures are mostly

homologous and contain a binding pocket consisting of nucleotide

and shikimate sites [22–27]. The most significant structural

deviation between the different structures is found in the LID

region, where an open/closed structural change occurs upon

ligand binding (Fig. S1). Based on the HpSK?shikimate?PO4

structure (1ZUI) [33], shikimate binds to residues from three

subsites: (i) CX, where a carboxyl moiety of shikimate makes

contact with R57, R116, and R132; (ii) OCORE, where two

hydroxyl groups of shikimate make contact with M10, D33, G79–

G81, and E114; and (iii) OLID, where a trans hydroxyl group of

shikimate interacts with V44, F48, E114, and R116. Of these

residues, D33, R57, G79–G81, R116, and R132 are strictly

conserved among all SKs, whereas the others (M10, V44, F48 and

E114) are relatively conserved (Fig. S2). Superposition analysis

showed that these residues essentially overlap, except for M10 and

E114. We therefore chose the following residues for site-directed

mutagenesis studies: strictly conserved residues (D33, R57, R116,

and R132) and moderately conserved residues (M10, F48, and

E114). Each of these sites was replaced with Ala or a more

conservative amino acid, as indicated in Table 1, and the resulting

mutant proteins were expressed in E. coli. After purification by

affinity chromatography, all mutants were analyzed by SDS-

PAGE; each migrated as a major band of apparent molecular

mass of approximately18 kDa, as expected. Each of the purified

proteins was subjected to size-exclusion chromatography. This

gave a single and sharp peak, suggesting each mutant existed in a

compact globular form.

We also performed differential scanning calorimetry (DSC)

experiments to evaluate the stability and unfolding of each of the

generated HpSK mutants. All HpSKs revealed a single transition

and fit well (Fig. S3). Wild-type HpSK showed a single transition

peak upon thermal unfolding, revealing a Tm value of 47uC
(Table S1). The other HpSK mutants also demonstrated a single

peak and had comparable Tm values (between 44uC and 50uC),

except for M10A (Tm = 55uC) and D33A (Tm = 41uC). It is noted

that purified D33A formed some precipitate after 1–2 weeks, in

line with a reduced thermal stability observed in the DSC results.

Enzymatic analysis of R57A, R116A and R132A revealed that

these mutants completely lost enzyme activity (Table 1), suggesting

that R57 and R132, from the CX site, are important in catalysis.

R116 is also noted to contribute to both the CX-site and OLID-site

interactions. Importantly, it has been suggested that R117 of

MtSK (corresponding to R116 of HpSK) may be the primary

residue involved in stabilizing the pentavalent phosphorus

transition-state intermediate [31]. Replacing Arg with Lys at

these sites (R57K, R116K, and R132K) did not restore any

detectable activity (Table 1). These results together suggest the

importance of three Arg residues in catalysis. F48 is located in the

OLID subsite and the mutant F48A exhibited no detectable

activity, although F48Y restored activity to 40%, indicating that

the aromatic ring of F48 contributes to catalytic activity. In

support of this view, we note that the aromatic ring of F48 makes

contact with R57 and other nearby residues (V44, E53, F56, and

P117) and forms stable interactions, thus ensuring R57 is in an

appropriate position to interact with shikimate. The side chain of

the other OLID residue, E114, faces the solvent, and E114A

retained 82% relative activity. For OCORE residues, D33A and

D33E showed loss of enzymatic activity, whereas M10A retained

38% relative activity.

We also investigated the kinetics of three mutants (M10A, F48Y

and E114A) that retained enzymatic activity. The apparent values

for Michaelis-Menten parameters were determined as follows:

M10A, Km (MgATP) = 293642 mM, Km (shikimate) = 135626 mM,

Vmax(MgATP) = 2661 mmol/min/mg, Vmax(shikimate) = 1661 mmol/

min/mg; F48Y, Km(MgATP) = 231635 mM, Km(shikimate) = 2916

99 mM, Vmax(MgATP) = 1761 mmol/min/mg, Vmax(shikimate) = 136

2 mmol/min/mg; E114A, Km(MgATP) = 143618 mM, Km(shikimate) =

3967 mM, Vmax(MgATP) = 2662 mmol/min/mg, Vmax(shikimate) =

2361 mmol/min/mg. As compared with the wild-type enzyme

(Km(MgATP) = 101617 mM, Km(shikimate) = 6068 mM, Vmax(MgATP) =

2661 mmol/min/mg, Vmax(shikimate) = 2261 mmol/min/mg) [33],

M10A and F48Y exhibited lower affinity toward MgATP and

shikimate, respectively, in line with their lower relative activities

(Table 1). For the LID mutant E114A, it displayed very similar

kinetics as that of wildtype enzyme; there was only a slightly lower

affinity toward MgATP.

The crystal structure shows that D33 forms a hydrogen bond

with the 3-OH group of shikimate, which may increase the

Table 1. Comparison of the relative activities and Kd values of
wild-type and mutant HpSK.

Mutants
Relative
activity (%)

Km (mM) [ATP/
SKM] Kd (mM)

shikimate NSC162535

WT 100 101/60 0.3260.07 8.760.9

M10A 38 293/135 3467 2.860.8

D33A ND ND 962

D33E ND ND 1463

F48A ND ND ND

F48Y 40 231/291 5.260.4 1262

R57A 2 ND ND

R57K 2 ND 48631

E114A 82 143/39 0.3360.03 1164

R116A ND ND 962

R116K ND ND 4.860.6

R132A 5 ND ND

R132K ND ND ND

WT, wild type; ND, not detectable.
doi:10.1371/journal.pone.0033481.t001

Shikimate Kinase-Inhibitor Complex Structure
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nucleophilicity of the O atom or accept the proton from the 3-OH

group of shikimate. M10, on the other hand, shows limited

contacts with shikimate; thus, replacement with Ala at this site did

not completely eliminate the enzymatic activity. Together, our

results suggest that D33, F48, R57, R116, and R132 are critical for

enzymatic catalysis.

Comparison by ITC of the association between wild-type
or mutant HpSKs with shikimate or the inhibitor,
NSC162535

Using GEMDOCK docking algorithms, we modeled a pocket

that consists of the crucial SB residues (D33, F48, R57, R116,

R132) involved in catalysis, based on the HpSK?shikimate?PO4

structure (1ZUI) [33] to search for putative inhibitors [37,38] in

the Maybridge and NCI databases. We were thus able to identify a

potent competitive inhibitor, NSC162535 (IC50 = 4.9 mM; Ki

(shikimate) = 1.8 mM; Ki (ATP) = 1.9 mM; Fig. S5). We next

characterized the properties of those crucial residues for binding

to shikimate, using the ITC experiments. For the wild-type HpSK

(15 mM HpSK, 0.1 mM ADP, 0.5 mM Mg2+), a clear shikimate

ITC pattern was observed, showing a high binding affinity to

shikimate (Kd = 0.32 mM; Fig. 1 and Table 1). By contrast, D33A,

D33E, R57A, R57K, R116A, R116K, R132A and R132K

displayed no heat release. For F48, F48A lost binding activity,

whereas F48Y partially restored the shikimate binding activity

relative to F48A (Kd = 5.2 mM), revealing that the aromatic ring

contributes towards binding to shikimate. Thus, the side chains of

D33 and three Arg residues (R57, R116, R132) as well as the

aromatic ring of F48 in HpSK are critically involved in shikimate

binding (Fig. 1A). We also evaluated the binding properties of the

two mutants, M10A and E114A, which exhibited a good portion

of enzymatic activity. M10A had a relatively low affinity for

shikimate (Kd = 34 mM; Fig. S4A), whereas E114A had a shikimate

binding affinity comparable to that of wild-type (Kd = 0.33 mM;

Fig. 1A).

Figure 1. Binding properties of HpSK mutants. Isothermal titration calorimetry data showing, (A) the titration of shikimate into wild-type, F48Y,
and E114A, and (B) the titration of NSC162535 into wild-type, F48Y, and R116K. In each panel, the upper portion shows raw data for the titration, and
the lower portion shows the normalized, integrated binding isotherm together with the fitted binding curve.
doi:10.1371/journal.pone.0033481.g001

Shikimate Kinase-Inhibitor Complex Structure
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We further utilized ITC to measure the binding of NSC162535

to each of the HpSK mutants (Fig. 1B, Fig. S4B, and Table 1). The

wild-type enzyme had detectable binding affinity for NSC162535

(Kd = 5.2 mM). With respect to the critical residues (D33, F48, R57,

R116, R132), the mutants F48A, R57A, R132A, and R132K lacked

affinity for NSC162535. F48Y, however, retained binding affinity

(Kd = 12 mM; Fig. 1B), whereas R57K had reduced affinity

(Kd = 48 mM), indicating that replacement with a more conservative

side chain at F48 and R57 partially rescued the binding affinity. In

contrast, the mutants D33A and D33E, and R116A and R116K

had measurable ITC binding profiles with comparable Kd values

(Table 1 and Fig. S4B), suggesting that the D33 carboxyl moiety and

the R116 guanidino group make a lesser contribution to binding of

NSC162535. M10A and E114A also had measurable affinity

(Table 1 and Fig. S4B). These results together suggest that side

chains from R57 and R132, as well as the aromatic ring from F48,

are most crucial in interacting with NSC162535, and that D33 and

R116, which are important for binding to shikimate, contribute less

to the interactions with NSC162535.

Crystal structures of HpSK?SO4, HpSKN S3PNADP and R57A
Crystal structures of HpSK and MtSK have been reported, alone

and in complex with either one or two substrates/products [28–33].

Based on several MtSK crystal structures, Hartmann et al. proposed

a model for the random sequential binding of substrates (ATP and

shikimate) associated with domain movements [32]. Here, we

additionally determined structures of a dimeric HpSK?SO4

(R = 22.7%, Rfree = 26.0%), HpSKN S3PNADP (R = 23.1%,

Rfree = 27.7%), and R57A (R = 24.6%, Rfree = 27.3%) (Fig. 2, 3,

Fig. S6, and Table 2). Overall, these structures have a characteristic

a-b-a fold that consists of the CORE domain (residues 1–31, 61–

108, and 124–162), the SB domain (residues 32–60), and the LID

region (residues 109–123) in the monomer [33] (Fig. 2). The LID

region is most flexible and flips over the binding pocket, in an open

or closed state [33]. For the dimeric HpSK?SO4 structure, the LID

region points upward, and a number of residues cannot be built into

this region (residues 108–118 in subunit A, and 111–117 in subunit

B), implying a disordered region.

The HpSKNS3PNADP structure shows clear electron density for

all residues. Within the binding pocket, there is a large piece of

non-peptide density that can easily be modeled as the product

S3P, and nearby density can be built as ADP (Fig. 2). The final

structure includes an ordered and complete LID segment that

closes over the binding pocket, in accordance with the closed-form

MtSKNS3PNADP structure (2IYZ; root mean square deviation of

Ca atoms = 1.26 Å) [32]. The LID region covers the binding

pocket in which the guanidino group of R116 has direct contacts

with S3P and the b-phosphate of ADP, forming strong hydrogen

bonds. In the HpSKNshikimateNPO4 structure, R116 also makes a

hydrogen bond with the carboxyl moiety of shikimate. Based on

these structures, it is likely that S3P is chelated by R57 and R132

via a hydrogen-bonding network in HpSKNshikimateNPO4 and

HpSKNS3PNADP. This would lead to a small movement in the

peptide backbone, propagated through the a6 helix into the

adjacent LID loop. A subsequent large conformational rearrange-

ment of this loop would allow the side chain of R116 to bind to the

phosphate group of S3P, as seen in HpSKNS3PNADP, or possibly

the c-phosphate moiety of ATP [32].

We also determined the structure of mutant R57A (Fig. S6 and

Table 2) that lacked enzyme activity. In the wild-type HpSK, the

guanidino group of R57 forms hydrogen bonds with the two

carboxyl groups from E53 and E60. Replacement of the guanidino

side chain with a methyl group at this pocket eliminates these

interactions in R57A. Instead, E53 from the SB domain forms

hydrogen bonds to the guanidino group from R132 (E53 [Oe1]-

R132 [Ng1]: 2.21 Å; E53 [Oe2]-R132 [Ng2]: 3.58 Å) located at

a6 (CORE). The E53–R132 proximity in R57A appears to induce

a conformational move for the SB domain (residues 43–63; a3, the

a3–a4 loop, and a4) and slightly influences the CORE domain.

Crystal structure of E114A complexed to NSC162535
reveals an inactivation mechanism

In an effort to understand the detailed structure-activity

relationship of this inhibitor at atomic resolution, we attempted

crystallization trials using either wild-type HpSK or a mutant

prepared in this investigation. After extensive trials, only the map of

the E114A?162535 crystal showed a large piece of residual density

in the binding pocket, which could be modeled as NSC162535

(Fig. 3 and Fig. S5). The final E114A?162535 crystal structure shows

a trimeric assembly (R = 21.8%, Rfree = 26.2%; Table 2).

NSC162535, which is clearly observed in two of the three

subunits, exhibits an extended conformation between LID and SB.

Interestingly, it extends out to the entrance of the binding pocket

(Fig. 2). The LID loop of HpSK accommodates the inhibitor by

undergoing a large conformational switch, distinct from that of

HpSK?SO4 and HpSKN S3PNADP. Notably, the side chain of

R116 at LID forms hydrogen bonds with an SO4 group and packs

against one of the naphthalene moieties with an electron-rich p
system (Table 3). This naphthalene group also packs against the

aromatic ring of F48 from the SB domain on the other side,

establishing strong cation-p and p-p interactions. The other

naphthalene group interacts with the side chain of R132, yielding

a cation-p interaction. Additionally, the guanidino groups of R116

and R57 are located near the diazo moiety of NSC162535,

making cation-p interaction and a kind of polar interaction,

respectively (Fig. 4B). This inhibitor also makes contact with

residues from, or near, the Walker A (F9 and M10) and Walker B

(G80, G81, V83, and M84) motifs, as well as with L135 and Y136

(Fig. 4B). Such strong cation-p, p-p, hydrogen-bonding interac-

tions, and van der Waal contacts between NSC162535 and the

Figure 2. Superposition of four HpSK structures. The following
structures are shown: HpSK?dimer?SO4 (blue), HpSK?shikimate?PO4

(1ZUI) (yellow), HpSK?S3P?ADP (cyan), and E114A?162535 (pink). These
structures show homologous folds but a flexible LID segment.
doi:10.1371/journal.pone.0033481.g002

Shikimate Kinase-Inhibitor Complex Structure
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surrounding residues induces a distinctive induced-fit conforma-

tion, as opposed to that seen in the binding pocket of HpSKN
S3PNADP (Fig. 4A). Superposition of HpSKN S3PNADP and

E114N162535 shows that only R57 and R132 stay at approxi-

mately the same position; M10 and R116 are situated at rather

distinct positions to interact with S3P and NSC162535, respec-

tively (Fig. 4 and Table 3). Additionally, HpSKNS3PNADP and

E114N162535 have different contacting residues, (D33, V44, G79,

P117, L118, and F9, R45, F48, V83, M84, L135, Y136,

respectively). Taken together, these data suggest a unique

environment at this position, which explains its inhibitor selectivity

(Fig. 4 and Table 3).

A distinctive induced-fit conformational change of the
inhibitor complex

Superposition of various structures (HpSKNSO4 open form;

HpSKNshikimateNPO4, PDB code 1ZUI [33]; HpSKNS3PNADP

and E114AN162535) reveals a significant conformational change in

the LID-containing segment after the b4 region of the CORE

domain (residues 101–138; a5, LID and a6 regions; Fig. 2).

Furthermore, the SB region (residues 32–60) shows a small

rotation in the different liganded/non-liganded states, in agree-

ment with the MtSK structure [32].

Of the three conserved Arg residues (R57, R116, R132), the Ca
atom of R57 superimposes relatively well, whereas that of R132

has a small shift in the various structures (Fig. 5A–5D). Notably,

there is a significant shift for R116 owing to the distinct

conformations of the LID loop (Fig. 5A–5D). Our results suggest

that these Arg residues contribute to the movement of the LID

region and the SB domain upon binding to shikimate. R116, when

visible, makes a significant shift to contact various ligands in the

binding pocket: (i) shikimate in HpSKNshikimateNPO4; (ii) b-

phosphate of ADP in HpSKNS3PNADP; and (iii) NSC162535 in

E114AN162535. In the MtSKNshikimateNAMPPCP structure (PDB

code: 1ZYU [31]), R117 (corresponding to R116 in HpSK)

directly contacts the c-phosphate group of AMPPCP, an ATP

analog, which supports its catalytic role in the c-phosphoryl

transfer [31].

To evaluate whether NSC162535 would come in contact with

R116 in various conformations, we docked NSC162535 into each

of the HpSK binding pockets (Fig. 5E–5I). In the open form,

HpSK (flexible LID) presents a wide-opening pocket, allowing

entry of promising substrates (Fig. 5A, 5E, and 5J). No close

contacts were found between R116 and the docked NSC162535 in

the binding pockets of the open and HpSKNshikimateNPO4 forms

(Fig. 5E and 5F). In the HpSKNS3PNADP state, NSC162535

docked into a site where there were no direct contacts with the

Ng1 and Ng2 atoms of R116. NSC162535, on the other hand,

docked into a comparable site in the E114AN162535 form; it

directly contacts the Ng1 and Ng2 atoms of R116, demonstrating

a distinctive induced-fit conformation.

Discussion

In this investigation, we compared the shikimate binding

properties of wild-type and mutant HpSKs using ITC. We

Figure 3. Stereoview of the electron density map of NSC162535. (B) is 90 degree rotation clockwise of (A). F48, R57, R116, and R132 are
shown onto superimposed structures [E114A?162535 (pink), HpSK?dimer?SO4 (blue), and HpSK?S3P?ADP (cyan)]. The 2Fo2Fc electron density map
shows the bound NSC162535, contoured at the 1.0-s level.
doi:10.1371/journal.pone.0033481.g003

Shikimate Kinase-Inhibitor Complex Structure
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identified three conserved Arg residues (R57, R116, R132) critical

to interactions with shikimate, and therefore catalytic activity.

Additionally, side chains from D33 and F48 were found to play

important roles in binding to shikimate. Based on virtual docking

analysis, we were able to design a potent inhibitor, NSC162535,

for this SB pocket, which included these residues. Furthermore, we

solved four HpSK structures: HpSKNSO4, HpSKNS3PNADP,

R57A, and E114AN162535.

Analysis of these structures reveals that R57 is critical for

stabilizing and maintaining the optimal environment, whereas

R132 plays a critical role in chelating the ligand. The R57A

mutant structure shows a notable shift of the SB domain owing to

the interactions between E53 and R132, rather than those

between E53 and R57 in the wild-type structure, revealing a

crucial role for R57 and R132 in defining the best active-site

geometry to accommodate promising substrates (Fig. 3). In support

of this view, R57 stays at a relatively identical site, whereas R132

shifts slightly among superimposed structures (Fig. 3, 5I and 5J).

R116, on the other hand, is located in the flexible LID segment

and shows a significant move among various forms. It is visible in

Table 2. X-ray data collection and refinement statistics.

HpSK?dimer?SO4 HpSK?S3P?ADP HpSK?R57A E114A?162535

PDB code 3HR7 3MUF 3MRS 3N2E

Data collection

Source NSRRC BL-13B1a NSRRC BL-13C1a SPring-8 BL-12B2a SPring-8 BL-12B2

Wavelength (Å) 1.000 0.9762 1.000 1.000

Temperature 2165uC 2165uC 2165uC 2165uC

Space group C2 P61 P43212 C2

Cell dimensions

a, b, c (Å) 122.48, 59.61, 80.76 98.82, 98.82, 42.13 88.90, 88.90, 39.87 193.91, 71.79, 47.63

a, b, c (u) 90, 113.08, 90 90, 90, 120 90, 90, 90 90, 91.96, 90

Resolution range (Å) 30-1.80 (1.86-1.80)b 30-2.30 (2.38-2.30) 30-2.40 (2.49-2.40) 30-2.53 (2.62-2.53)

Rmerge (%)c 6.8 (41.8) 6.8 (48.8) 3.8 (13.1) 5.3 (30.5)

I/sI 18.0 (2.6) 29.3 (2.5) 56.0 (19.0) 26.8 (4.3)

Completeness (%) 98.2 (94.1) 99.9 (99.5) 99.8 (100.0) 99.7 (98.3)

Redundancy 3.8 (3.5) 11.7 (10.7) 10.4 (10.6) 5.1 (4.7)

Refinement

Resolution (Å) 30.0–1.80 30.0–2.30 30.0–2.40 30.0–2.53

No. reflections 46,105 10,003 6,287 20,807

Rwork
d/Rfree

e 0.227/0.260 0.231/0.277 0.246/0.273 0.218/0.262

No. atoms

Protein 2422 1279 1172 3661

Ligand/ion 10 43 0 116

Water 316 75 25 83

r.m.s. deviationf

Bond length (Å) 0.017 0.018 0.016 0.022

Bond angle (u) 1.546 1.780 1.617 2.018

Overall B factor (Å2)

from Wilson plot 27.50 36.00 44.20 40.00

from protein model 29.45 56.19 28.24 44.30

Ramachandran analysis (%)

Favored 99.7 96.8 96.6 97.6

Allowed 0.3 3.2 3.4 2.4

Generous 0.0 0.0 0.0 0.0

Disallowed 0.0 0.0 0.0 0.0

Estimated coordinate error (Å) 0.117 0.242 0.537 0.292

All data sets were collected from a single crystal.
aBL-13B1/13C1 National Synchrotron Radiation Research Center (NSRRC), HsinChu, Taiwan; Taiwan BL-12B2 beamline at SPring-8, Hyogo, Japan.
bValues in parentheses refer to statistics in the highest-resolution shell.
cRmerge =g|Iobs2,I.|gIobs.
dR =g|Fobs2Fcalc|/gFobs, where Fobs and Fcalc are the observed and calculated structure factor amplitudes, respectively.
eRfree was computed using 5% of the data assigned randomly.
fr.m.s., root mean square.
doi:10.1371/journal.pone.0033481.t002
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the complex structures with a closed LID loop (HpSK?shikima-

te?PO4, HpSK?S3P?ADP, and E114A?162535), where R116

directly contacts shikimate/S3P/NSC162535. Interestingly, ITC

measurements revealed that this catalytic residue contributes

substantially to shikimate binding but not to that of NSC162535.

The insignificant contribution of R116 to NSC162535 binding

(Table 1) implicates the likelihood that the R116-NSC162535

contacts, seen in the E114?162535 structure, result from induced

conformational positioning.

Based on these results, we hypothesize that R57, in conjunction

with R132, form an environment, along with F48, to interact with

shikimate, triggering a cycle of conformational change. R116 sits

at the LID segment and then contacts shikimate during the course

of a conformational swap cycle to initiate catalysis of the specific

phosphorylation of the 3-hydroxyl group (Fig. 5). Such positioning

is crucial to yield an optimal conformation for R116 to stabilize

the pentavalent transition-state intermediate [31], which allows

catalysis to take place.

In regards to NSC162535 binding, it is likely that when

NSC162535 interacts with R57 and R132, it also prompts a cycle

of conformational change. The stable R57–R132 framework

thereby provides an interacting anchor for not only shikimate/S3P

but also NSC162535, triggering a conformational swap cycle to

initiate a potential enzymatic reaction. Notably, the positioning

optimization to trap NSC162535 yields a remarkably distinctive

conformation, as seen in E114AN162535. Because there were

nearly identical ITC binding data (either shikimate or

NSC162535) between the wild-type and E114A, it is conceivable

that the wild-type enzyme has an analogous binding configuration

Table 3. Binding of shikimate-3-phosphate and NSC162535
to HpSK?S3P?ADP and E114A?162535.

Atom S3P
Distance
(Å) Atom NSC162535 Distance (Å)

HpSK?S3P?ADP E114A?162535*

CX

Glu53 Oe1 CAP 3.52

Arg57 Ng1 O4 3.29

Arg57 Ng2 O4 3.37 Arg57 Ng2 OAL 3.16

NAM 3.58

NAN 3.28

Arg132 Cb NAG 3.48

Arg132 Cc CAE 3.3

CAF 3.2

NAG 3.33

Arg132 Cd CAD 3.27

CAE 3.15

CAF 3.52

Arg132 Ne CAB 3.54

CAC 3.4

CAD 3.49

Arg132 Cf O4 3.55 Arg132 Cf CAC 3.47

O5 3.36 CAK 3.53

Arg132 Ng1 C7 3.47 Arg132 Ng1 CAI 3.51

O4 3.6 CAJ 3.5

O5 2.61

Arg132 Ng2 C7 3.4

O4 2.71

O5 3.36

Leu135 Cc NAG 3.46

Leu135 Cd2 NAG 2.9

Tyr136 Og CAE 3.58

CAH 3.54

OLID

Arg45 Cc OBA 3.17

OBC 3.13

Phe48 Ce1 CAQ 3.56

Arg116 Cc O7 3.48

Arg116 Cd O7 3.53

Arg116 Ne O7 2.53

Arg116 Cf O7 3.13 Arg116 Cf CAT 3.58

Arg116 Ng1 OBG 3.26

Arg116 Ng2 O7 3.02 Arg116 Ng2 OBG 3.15

Pro117 Cd O3 3.54

Leu118 Cd1 O4 3.31

OCORE

Phe9 Cd1 OBE 3.55

Met10 N OBE 3.46

Met10 Cc O7 3.4

Lys14 Nf O8 2.74

Asp33 Cc O2 3.59

Asp33 Od1 O2 3.04

Table 3. Cont.

Atom S3P
Distance
(Å) Atom NSC162535 Distance (Å)

Asp33 Od2 C4 3.36

O1 3.17

O2 3.35

O6 3.45

Gly79 Ca O1 3.47

O2 3.5

Gly80 N C2 3.17

O1 3.09

O8 2.99

Gly80 Ca C2 3.45 Gly80 Ca OBE 3.32

O5 3.1 OBF 3.46

O8 3.52

Gly80 C O5 3.13 Gly80 C CAH 3.46

Gly80 O CAH 3.48

Gly81 N C7 3.35

O5 3.19

Gly81 Ca O4 3.56 Gly81 Ca CAC 3.59

O5 3.59

Val83 Cc1 NAG 3.42

Met84 Ce CAA 3.53

CAB 2.93

OAL 3.54

*Atom notation is given in Figure S5.
doi:10.1371/journal.pone.0033481.t003
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with NSC162535. As a result, the unusually elastic LID segment

fits this inhibitor; R116 subsequently comes into contact with the

SO4 group, locking into a distinctive induced form as seen in the

complex structure.

Materials and Methods

Preparation of mutant HpSKs
Site-directed mutagenesis was performed using the overlap

extension PCR method [39] with the plasmid pQE30-HpSK as

the template. All mutations were confirmed by sequencing of the

whole ligated PCR fragment. Mutant proteins were expressed and

purified by the same procedures as based on published methods

for HpSK [33].

Enzymatic activity of wild-type and mutant HpSKs
SK activity was determined by coupling the release of ADP

from the SK-catalyzed reaction to the oxidation of NADH using

pyruvate kinase (EC 2.7.1.40) and lactate dehydrogenase (EC

1.1.1.27) as coupling enzymes. Shikimate-dependent oxidation of

NADH was monitored by a decrease in A340

(e= 6,200 M21 cm21). The assay was carried out at 25uC in a

mixture containing 100 mM Tris-HCl, pH 7.5, 50 mM KCl,

5 mM MgCl2, 1.6 mM shikimic acid, 2.5 mM ATP, 1 mM

phosphoenolpyruvate, 0.1 mM NADH, 2.5 U ml21 pyruvate

kinase, and 2.7 U ml21 lactate dehydrogenase. All assays were

conducted in a 96-well microplate and analyzed with a

spectrophotometer (FLUOstar OPTIMA, BMG LABTECH).

The relative activity of wild-type HpSK was set to 100%.

Differential scanning calorimetry (DSC)
DSC measurements were carried out using a VP-DSC

Microcalorimeter (Microcal, Northampton, MA). The HpSK

proteins were in 40 mM Tris-HCl (pH 7.0) containing 100 mM

NaCl. The DSC experiments were performed at a concentration

of 0.1 mM HpSK protein. Prior to making measurements, a

baseline was established by repeated scans of the sample cell

containing only buffer solution. Scans were performed from low to

high temperatures, at a rate of change of temperature of 1.0uC
min21. A buffer-buffer scan was subtracted from the buffer-sample

scans, and linear-polynomial baselines were drawn for each scan.

Baseline-corrected thermograms were then normalized to obtain

the corresponding molar heat capacity curves. Midpoint temper-

ature (Tm) values were estimated as the temperatures correspond-

ing to the maximum of each thermogram peak. Analysis of DSC

thermograms was implemented using OriginTM Software.

Isothermal titration calorimetry (ITC)
Titration experiments were performed by ITC using an iTC200

or VP-ITC instrument (MicroCal, Piscataway, NJ, USA), and a

0.2-ml (iTC200) or 1.4-ml (VP-ITC) sample cell containing the

macromolecule solution. All proteins were prepared in a buffer

containing 20 mM potassium phosphate, pH 7.3. Prior to the

experiment, samples were filtered and degassed under vacuum for

10 min in a Thermo Vac system (Microcal). The sample cell was

filled with sample protein solution (15 mM) or the working buffer.

Procedures of iTC200 titrations with a ligand (450 mM) were as

follows: an initial 1-ml injection (not included in data analysis)

followed by 19 injections of 2 ml each, with 2-min intervals

between injections. Similar procedures for VP-ITC titrations were

also performed: an initial 2-ml injection followed by 24 injections of

10 ml each, with 3-min intervals between injections. The

experiments were performed with a constant stirrer speed of

1000 rpm (iTC200) or 290 rpm (VP-ITC) at 25uC. The binding

isotherms were fitted to a one-site binding model to obtain the

thermodynamic parameters with the initial point discarded. Data

analysis was conducted using Origin 7 software.

Crystallization and data collection
Crystallization was performed in 96-well microplates at 20uC

using an Oryx8 robotic system (Douglas Instruments Ltd). The

volume of HpSK protein solution (50 mg ml21) in 40 mM Tris-

Figure 4. Schematic illustration of HpSK?S3P?ADP and E114A?162535 binding pockets. (A) Residues that contact S3P and ADP in
HpSK?S3P?ADP. Red dashed lines denote hydrogen-bonding interactions. (B) Residues that contact NSC162535 in E114A?162535. Dotted green lines
and blue curves are cation-p and p-p interactions, respectively. Residues from three HpSK?shikimate?PO4 subsites, CX, OCORE, and OLID [33], are colored
by cyan, yellow, and pink, respectively. Residues from the nucleotide site are colored by grey.
doi:10.1371/journal.pone.0033481.g004
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HCl (pH 7.0) containing 100 mM NaCl was equal to the reservoir

solution and equilibrated against 60 ml of reservoir solution. Initial

crystallization conditions were screened using 672 different kit

solutions (Hampton Research, Molecular Dimension and Jena

Bioscience). We observed many different crystal forms in the

drops.

The condition of HpSK?SO4 crystals was similar to that of apo

HpSK crystals [33], which were obtained in buffer containing 0.2

M Li2SO4, 30% (w/v) polyethylene glycol (PEG) 8000, and 0.1 M

sodium acetate buffer (pH 6.5). Crystals of HpSK?S3P?ADP,

added to 5 mM shikimate and 5 mM MgATP, were obtained

from 0.1 M HEPES sodium salt (pH 7.5), 0.1 M sodium acetate,

18% (w/v) PEG 8000 and 2% (w/v) 2-propanol. HpSK?R57A

crystals were grown in a hanging-drop containing 0.1 M HEPES

sodium salt (pH 8.0), 8% (w/v) 2-propanol and 18% (w/v)

PEG4000. The best crystals of the E114A?162535 structure were

obtained in a modified condition, containing 0.1 M HEPES

sodium salt (pH 6.7) and 1.2 M potassium sodium tartrate

tetrahydrate. Prior to data collection, crystals were dipped into

Fomblin cryoprotectant oil for several seconds and then flash-

frozen in a liquid nitrogen stream. The X-ray diffraction data were

collected on NSRRC BL-13B1, BL-13C1, and SPring-8 BL-12B2

Figure 5. Probing the binding pockets in HpSK. (A–D) The binding pockets of HpSK: (A) open HpSK (3HR7), (B) HpSK?shikimate?PO4 (1ZUI), (C)
HpSK?S3P?ADP (3MUF), and (D) E114A?162535 (3N2E). The bound ligands, D33, F48, R57, R116, and R132 are drawn as sticks. The LID segments
(residues 109–123) are drawn as ribbon structures. (E–H) The docked NSC162535 models in the binding pockets of HpSK: (E) open HpSK, (F)
HpSK?shikimate?PO4, (G) HpSK?S3P?ADP, and (H) E114A?162535. Superposition of the three residues R57, R116, and R132, docked and bound to
NSC162535 with open HpSK (blue), HpSK?shikimate?PO4 (yellow), HpSK?S3P?ADP (cyan), and E114A?162535 (pink). (I) Superimposed docked
structures (E–H). The conformation of the LID segment (residues 113–119, shown as ribbon) and R116 (thick stick) demonstrates the greatest
conformational changes induced by bound ligands. (J) Schematic diagram of induced-fit conformational changes upon ligand binding. The view of
LID regions corresponding to open HpSK (e), HpSK?S3P?ADP (g), and E114A?162535 (h) are colored as blue, cyan, and pink, respectively.
doi:10.1371/journal.pone.0033481.g005
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using an ADSC Quantum 4R CCD detector. All datasets were

collected at 2150uC and processed with the HKL/HKL2000

software suite [40]. Data collection statistics are shown in Table 2.

Structure determination and refinement
The four structures were solved by molecular replacement with

the program MOLREP [41] using the structure of the apo form of

HpSK (PDB code, 1ZUH) as the search model. Further

refinement was carried out using the maximum-likelihood target

function embedded in the program REFMAC5 [42] and coupled

to ARP/wARP [43]. Five percent of the reflections were randomly

selected and used to compute a free R value (Rfree) for cross-

validation of the model. 2Fo2Fc and Fo2Fc maps were produced

and inspected after each cycle of refinement to revise the model

manually on an interactive graphics computer with the program

Coot [44]. The overall stereochemical quality of the final model

was assessed with the program PROCHECK [45]. The atomic

coordinates and structure factors were deposited in the RCSB

Protein Data Bank with accession code 3HR7 (HpSK?SO4),

3MUF (HpSK?S3P?ADP), 3MRS (HpSK?R57A) and 3N2E

(E114A?162535) (Table 2).

Structural comparisons
Comparison with the six HpSK structures (PDB codes, 1ZUH

[33], 1ZUI [33], 3HR7, 3MUF, 3MRS, 3N2E) and other SKs

were carried out using the program LSQMAN in O [46] to

superimpose Ca atoms, based on the optimized alignment.

Structural figures were prepared with the program PyMOL.

Molecular docking
The binding site for virtual docking screening of putative

inhibitors was determined by considering the protein atoms

located #10 Å from the SB site of MtSK (open-form structure;

PDB code: 2IYT) and HpSK (open-form structure; PDB code:

1ZUH), respectively. We programmed GEMDOCK [38,47–49]

to screen Maybridge (65,947 compounds) and NCI (236,962

compounds) databases for both HpSK and MtSK. Top ranked

compounds (n = 20) with the lowest energies were selected for

testing in the enzyme inhibitory assay.

GEMDOCK was also used to dock NSC162535 to each of the

four HpSK structures (HpSK?SO4, HpSK?shikimate?PO4,

HpSK?S3P?ADP, and E114A?162535).

Supporting Information

Figure S1 Superposition of nine shikimate kinases. The

apo- and closed-HpSK (PDB codes: 1ZUH and 3MUF) are shown

in blue and cyan, respectively. Apo form of MtSK (PDB code:

2IYT) is shown in orange, and closed-form (PDB code: 2IYQ) in

yellow. The EcSK (PDB code: 1SHK) is red, and the EcSK

complexed with ADP (PDB code: 2SHK) is pink. Green, brown

and gray are indicated in CjSK (PDB code: 1VIA), EcoSK (PDB

code: 1KAG) and AaSK (PDB code: 2PT5), respectively. (Hp:

Helicobacter pylori; Mt: Mycobacterium tuberculosis; Ec: Erwinia

chrysanthemi; Cj: Campylobacter jejuni; Eco: Escherichia coli; Aa: Aquifex

aeolicus).

(TIF)

Figure S2 Conserved residues of SKs and structure-
based alignment of HpSK and MtSK. Six shikimate kinases

(E. coli, E. chrysanthemi, C. jejuni, A. aeolicus, M. tuberculosis and H.

pylori) are aligned and shown with WebLogo program (http://

weblogo.berkeley.edu/). HpSK and MtSK alignment are shown

with ESPript program (http://espript.ibcp.fr/ESPript/ESPript/).

The secondary structural elements are shown above the sequence.

Mutants generated for the structure-activity analyses are indicated

below the aligned sequence. Three arginines (R57, R116, and

R132) belong to CX shikimate-binding subsite. OCORE consists of

M10 and D33; and OLID consists of F48, E114, and R116.

(TIF)

Figure S3 DSC heat capacity curve of HpSK proteins.

(TIF)

Figure S4 Binding properties of HpSK mutants. Isother-

mal titration calorimetry data showing (A) the titration of

shikimate into M10A mutant; (B) the titration of NSC162535

into M10A, D33A, D33E, R57K, E114A and R116A.

(TIF)

Figure S5 Chemical structure of NSC162535.

(TIF)

Figure S6 Conformational movement in the SB domain
of HpSK?R57A structure. A stereo view of the superimposed

binding pocket between open HpSK (blue) and R57A (magenta)

structures is shown. The oxygen, nitrogen and phosphorus atoms

are colored red, blue and orange, respectively. The dashed line

indicates hydrogen bonds.

(TIF)

Table S1 DSC thermodynamic parameters for the melting of

HpSK wild-type and its mutants.

(DOC)
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