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Noise-Enhanced Blind Multiple Error Rate
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Abstract—Data detection or fusion based on output from multi-
ple wireless links often requires channel state information (CSI)
about the links’ error rate (ER) performance. We consider the
scenario that these links include direct source–destination (SD)
links and two-hop links that require an intermediate decode-and-
forward (DF) node to relay the source signal. Conventional
destination-based estimators suffer from slow convergence and are
incapable of simultaneously blind estimating all ERs, including,
in particular, those of the source–relay (SR) links. They may also
require various degrees of CSI about the ERs of the SD and
relay–destination (RD) links to remove the ambiguity arising from
the insufficient number of links in the network and from that due
to the symmetric nature of a cascaded source–relay–destination
link’s ER as a function of its component SR and RD links’ ERs.
We propose novel Monte-Carlo-based estimators that overcome
all these shortcomings. The estimation process involves injecting
noise into the samples received by the destination node to create
virtual links and alter link output statistics. We show that the latter
scheme exhibits a stochastic resonance effect, i.e., its mean squared
estimation error (MSEE) performance is enhanced by injecting
proper noise, and there exists an optimal injected noise power
level that achieves the maximum improvement. The stochastic res-
onance effects are analyzed, and numerical examples are provided
to display our estimators’ MSEE behaviors, as well as to show that
the ER performance of the optimal detector using the proposed
estimators is almost as good as that with perfect ER information.

Index Terms—Nonlinear detection, nonlinear estimation, relays,
stochastic resonance.

I. INTRODUCTION

W E CONSIDER the basic scenario illustrated in Fig. 1,
where the destination node (DN) d receives sequences

originating from the same source node (SN) s via multiple (L)
flat-fading links. These links may include a direct single-hop
(SH) source–destination (SD) link and indirect two-hop links,
each connecting SN and DN with the help of an intermediate
relay node (RN), say, rk. Such a scenario occurs, for example,
in a cooperative communication network (CCN), in which the
SD communication is aided by single or multiple relays that
act as virtual antennas to allow resource sharing and provide
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Fig. 1. Wireless multiple-relay network.

spatial diversity gains [1]. Another popular example is the
so-called central estimating officer (CEO) problem associated
with a wireless sensor network, where each sensor sends its
measurement to the CEO that often does not have direct access
to the SN [2]. It is the CEO’s responsibility to reliably recover
the source information based on the data it has received from
various sensors [3].

For convenience of subsequent discourse, we define a single-
relay CCN as one that consists of a source, a relay (or sensor),
and a DN only. We refer to the associated SD, source–relay
(SR), and relay–destination (RD) links as component links and
the indirect source–relay–destination (SRD) link as cascaded
link. Although many sensing relay schemes have been pro-
posed, we only consider the decode-and-forward (DF) scheme
[1]–[8] for which an RN (sensor) demodulates/decodes the
received signal from the SN and remodulates/reencodes the
decoded bit stream before retransmitting.

Since a sensor or cooperative RN may erroneously detect or
sense its received signal, conventional maximal ratio combining
(MRC) or a similar fusion rule is no longer optimal for the
DN. In fact, data fusion of various kinds in the presence of
imperfect DF relays [6]–[8] and relay selection in a DF-based
CCN [9] require some forms of channel state information
(CSI). Depending on the modulation used, the required CSI
includes short-term CSI (ST-CSI), like instantaneous link gains
and signal-to-noise ratios (SNRs), and long-term CSI (LT-CSI),
such as average link gains and error rates (ERs) of the com-
ponent links. The former has intensively been studied in terms
of channel estimation, gain control, and carrier recovery loops,
whereas the LT-CSI receives much less attention.

Pilot-aided ER estimators are obtainable at the cost of in-
creasing the RNs’ computing load and result in bandwidth and
power efficiency reductions. The overhead and delay become
significant if the true ER is small, the packet size is small,
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or if the number of RNs is large. It is therefore desired that
a DN performs all ER estimation tasks blindly. Moreover,
blind estimation is mandatory in a sensor network where there
is no direct link and the source usually does not or cannot
transmit pilot symbols; the fact that it requires less transmission
overhead also suits a sensor network’s critical need as sensor
nodes usually are battery-limited devices.

For multiple-relay networks, the ER estimation problem can
be transformed into one of solving a system of nonlinear
equations. Each equation describes a relation among the ERs of
a pair of links, and the probability that the same bit transmitted
through these two independent links is decoded with identical
decision. Using all available link pairs and assuming no hidden
SR links, Dixit et al. [10] converted the problem into a struc-
tured eigenvalue task and proposed a modified power method
to find the solution. Delmas and Meurisse [11] suggested an
expectation-maximization (EM)-based blind ER estimator that
outperforms Dixit’s estimator by using the method of moments
based solution of the nonlinear system as the initial estimate.
These novel approaches, however, suffer from some drawbacks.
First, the nonlinear system is underdetermined unless we have
sufficient relays so that the number of distinct link pair com-
binations is no smaller than the unknown ERs. Second, even
if there are enough RNs, it is not possible to simultaneously
estimate all (SR, SD, and RD links) ERs, and LT-CSI is needed
to resolve the ambiguity resulting from the fact that the ER of a
cascaded SRD link is a symmetric function of the correspond-
ing component links’ ERs. Finally, the convergence rate is slow,
whence it often takes a long period to obtain a reliable estimate.

It is the purpose of this paper to present novel blind ER
estimation schemes that overcome all the foregoing shortcom-
ings. To simply our presentation, we mostly focus on the CCN
scenario with the understanding that the proposed schemes can
readily be applied in other similar scenarios. As a prelude, we
briefly review a unified system model for a multiple-relay wire-
less network and describe the corresponding maximum likeli-
hood (ML) detector and ER estimator structures in Section II.
We begin our discussion with the simplest case of a binary
phase-shift keying (BPSK)-based single-relay CCN, assuming
the required ST- and LT-CSI’s of RD and SD links are all
available to the DN, i.e., the only unknown CSI that needs to
be estimated is the average ER of the SR link. Even for this
case, we show that blind ML ER estimation based on the DN’s
matched filter outputs requires high computational complexity
and storage cost. A simple CSI-aided average-count-based es-
timator is thus given. We then extend the approach to multiple-
relay CCNs with less LT-CSI and obtain the basic nonlinear
system (set of equations) for a three-link (two relays plus a
direct SD link) CCN and its solution. Some properties of the
proposed estimator are given in the same section as well.

The main results are presented in Sections III–VI. In
Section III, we discuss the ER ambiguity in a cascaded link
and propose a novel approach that creates virtual SD/RD links
by either rotating or injecting noise into link output samples
to resolve the ambiguity and estimate all ERs without the
help of multiple RNs. We show in the same section that the
same concept can be applied to binary frequency-shift key-
ing (BFSK)- and differential phase-shift keying (DPSK)-based

systems. In Section IV, we first address the convergence rate
issue and suggest a simple scheme to improve the virtual-link-
aided (VLA) approach using a multitude of virtual links (VLs)
to obtain what we call the enhanced VLA (EVLA) estimator.
We proceed to propose a more subtle approach that is conceptu-
ally similar to importance sampling (IS)-based simulations and
is therefore referred to as the IS-inspired (ISI) estimator. The
ISI estimator also needs to inject noise into link outputs, but
the purpose of noise injecting is not for building VLs but for
modifying the output statistic and producing more importance
events. Important properties of the proposed estimators and the
associated mean squared estimation error (MSEE) performance
analysis are given in Section V.

Section VI presents the simulated performance of the pro-
posed schemes and shows that the ML detector using the ERs
estimated by our schemes yields performance almost as good
as that with perfectly known ERs. Furthermore, a hybrid of the
EVLA and ISI (or ISI-VLA) methods is capable of offering
significant variance reduction. Both analysis and simulations
prove that the ISI estimator exhibits a stochastic resonance
effect, i.e., its MSEE performance is improved by injecting
noise into the received samples, and there exits an optimal
injected noise power that achieves the maximum improvement.
Finally, concluding remarks are provided in Section VII.

II. PRELIMINARY

This section begins with descriptions of a generic system
model, assumptions, and related parameter definitions. The
expressions of the ML data detector and blind ER estimator
are then given. The second and third sections review some side-
information-aided blind ER estimators for single- and multiple-
relay networks. We will frequently refer to these materials in
subsequent discussions.

A. System Model, ML Detection, and Blind ER Estimator

We follow the conventional assumption of using a two-phase
time division duplex cooperative communication scheme in
which the SN in Fig. 1 transmits a sequence of independent
identically distributed (i.i.d.) ±1-valued data {x[n]}, and all L
RNs listen, decode, and re-encode the received message in the
first phase. The synchronous samples received by the DN and
the kth RN in this phase are

ysd[n] = hsd[n]
√

Psx[n] + wsd[n] (1.a)

ysrk
[n] = hsrk

[n]
√

Psx[n] + wsrk
[n] (1.b)

where Ps is the signal power and the additive noise com-
ponents, and wsd[n] and wsrk

[n] are independent zero-mean
complex white Gaussian random variables with variances σ2

d

and σ2
r , respectively. We assume that the complex link gains

hij [n] for the link from node i to node j, where (i, j) ∈
{(s, rk), (s, d), (rk, d); k = 1, . . . , L}, and the corresponding
noise terms wij [n] are mutually independent. The RNs send
the re-encoded message to the DN in the second phase. Since
RNs may detect erroneously, the retransmitted signals are not
necessarily equal to x[n]. If we denote x̂rk

[n] as the signal
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sent by the kth relay and yrkd[n] as the corresponding received
sample at the DN in this phase, then

yrkd[n] = hrkd[n]
√

Prk
x̂rk

[n] + wrkd (2)

where Prk
is the transmitted signal power of the kth RN, and

wrkd[n] has the same distribution as wsd[n]. For frequency-flat
fast Rayleigh fading links, |hij |2 are independent exponentially
distributed random variables with variance σ2

ij .
Define the memoryless nonlinearity as

fT (z; ε) = ln
[
ε + (1 − ε)ez

(1 − ε) + εez

]
, 0 < ε < 1/2 (3)

and for k = 1, . . . , L, the weighting functions

q0 (y[n]) =�
{

4h∗
sd[n]

√
Psy[n]/σ2

d

}
(4.a)

qk (y[n]) =�
{

4h∗
rkd[n]

√
Prk

y[n]/σ2
d

}
(4.b)

where �{z} denotes the real part of z. Then, the ML detector
for BPSK signals is given by [6]

x̂[n] = sgn

[
q0 (ysd[n]) +

L∑
i=1

fT (qk (yrd[n]) ; esrk
)

]
(5)

where sgn[z] denotes the sign of the real number z, and esrk

is the ER of the link between the source and the kth RN.
Equations (3) and (4a)–(4.b) indicate that besides the instan-
taneous received complex amplitude-to-noise-power ratio, i.e.,
(
√

Prk
hrkd[n]/σ2

d) and (
√

Pshsd[n]/σ2
d), the hidden SR link’s

ER esrk
should also be known by the DN for ML detection.

As the instantaneous complex link gains hrkd[n] and hsd[n] are
difficult to estimate in a high dynamic wireless environment,
noncoherent signals are sometimes preferred for they require
no such estimations. Nevertheless, [7] and [8] show that ML
noncoherent detections of BFSK and DPSK signals by a DN
still need LT-CSI such as ERs for both far-end (SR) and near-
end (SD and RD) links or σ2

d.
For notational brevity, we henceforth omit the subscript k

associated with the kth relay rk unless there is danger of
ambiguity. The DN of a single-relay BPSK-based CCN has
the samples {ysd[n], yrd[n]} of (1.a) and (2) as the sufficient
statistics for estimating the BERs of its component links. As an
i.i.d. source is assumed, we can easily verify that the probability
density function (pdf) of ysd[n] is independent of esr and so
is that of yrd[n]. With N coherently received sample pairs

{(q0(ysd[i]), q1(yrd[i]))}N
i=1

def
= {(q(i)

0 , q
(i)
1 )}, the joint condi-

tional pdf f(ysd, yrd|Icsi) of the matched filter outputs ysd

and yrd given CSI {hsd, hrd, σ
2
d, esr} = Icsi and unit transmit

powers Ps = Pr = 1 is a mixture density, and the ML blind esr

estimator is given by

êsr = arg max
0≤esr<0.5

log f
(
{ysd[i]}N

i=1 , {yrd[i]}N
i=1 |Icsi

)
= arg max

0≤esr<0.5

N∑
i=1

log

[
cosh

(
q
(i)
0 +q

(i)
1

2

)

−2sinh

(
q
(i)
0

2

)
sinh

(
q
(i)
1

2

)
esr

]
.

(6)

The reliability of the ML estimator depends on the sample size
N , the true esr, and two other component links’ statistics that,
in turn, determine those of q

(i)
0 and q

(i)
1 . For practical ERs, we

usually need large N for the ML estimator to converge. The dif-
ficulty in implementing this estimator comes from at least three
other concerns: 1) the computing complexity of solving the
associated nonconvex optimization problem; 2) no existence of
recursive formula for updating the objective function whenever
a new received signal pair becomes available; and 3) the large
required storage space. These implementation considerations
convince us to turn to estimators based on the binary sample
sequence {ŷrd[n], ŷsd[n]} produced by

ŷrd[n] = sgn [q1 (yrd[n])] , ŷsd[n] = sgn [q0(ysd[n])] . (7)

In addition to their simplicity, an important advantage of such
estimators is that they can easily be extended to noncoherent
binary modulations, whereas the form of the ML estimator is
highly modulation dependent.

As a prelude to the study of simultaneous blind estimation
of all component links’ ERs, we start with the simpler case of
SR link ER estimation, assuming the ST-CSI needed the ERs
of either all or some of the remaining component links are
available.

B. Side-Information-Aided Blind Single-ER Estimation

Since a cascaded link is composed of two (i.e., SR and
RD) binary symmetric links (BSLs) with ERs esr and erd,
the end-to-end ER esrd is given by esrd = esr(1 − erd) + (1 −
esr)erd = esr + erd − 2esrerd. A single-relay CCN can thus
be regarded as the composition of two BSLs connecting the
source and the destination. We assume stationary component
links with time-invariant ERs and refer to the probability p =
Pr(ŷsd = ŷrd) as the success matching probability (SMP).
Using the identity p = esdesrd + (1 − esd)(1 − esrd) and the
i.i.d. source assumption, we immediately have the following
identity that relates various ERs to the SMP between a direct
SD link and a cascaded SRD link:

esr =
1 − esd − erd + 2esderd − p

1 − 2esd − 2erd + 4esderd

def
= esr(p). (8)

Since the links are assumed to be stationary, W [i]
def
=

I(ŷsd[i] = ŷrd[i]), where I(E) = 1 if the statement E is true,
otherwise it is zero, is Bernoulli distributed with success prob-
ability p. Furthermore, the SMP can be estimated by

p̂(N) =
N∑

i=1

I (ŷsd[i] = ŷrd[i])
N

(9)

where the superscript (N) indicates that N sample pairs are
used to obtain the estimator. This average-count-based estima-
tor is the sample mean of the Bernoulli process {W [i]} and is a
uniform minimum variance unbiased estimator if i.i.d. samples
are received [12].

Using the sample mean estimator (9) as p̂, the method of
moments and (8) suggest the estimator

êsr =
1 − esd − erd + 2esderd − p̂

1 − 2esd − 2erd + 4esderd
= esr(p̂) (10)



1148 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 3, MARCH 2012

if both erd and esd are known.
As 0 ≤ esr ≤ 0.5, our estimator êsr may have to be modified

by the soft limiter

J (êsr) = min [max(êsr, 0), 0.5] . (11)

In addition, we can easily derive a recursive relation for p̂(i) to
sequentially estimate p and therefore esr.

The ER estimator (10) has many desired properties that we
summarize in the following two lemmas.

Lemma 1: The estimator êsr defined by (10) is 1) unbiased
and attains the Cramer–Rao lower bound and 2) a uniformly
minimum variance unbiased and ML estimator with variance

Var(êsr) =
p(1 − p)

N(1 − 2esd − 2erd + 4esderd)2
(12)

where N is the sample size.
Lemma 2: For any ε > 0, we have

Pr (|êsr − esr| ≥ ε) ≤ 2 exp
[
−min

(
N2ε2C2

1

4p
,
NεC1

2

)]
(13)

where C1 = 1 − 2esd − 2erd + 4esderd, N is the sample size,
and the soft limiting effect (11) is neglected.

The properties given in Lemma 1 resulted from the fact
that êsr is a linear function of p̂ and the invariance property
of an ML estimator. Lemma 2, which is derived from using
Chernoff’s inequality, implies that the estimator êsr converges
to esr in probability.

C. Multiple-Relay-Aided Blind Multiple ER Estimation

When there are L RNs, we have
(
L+1

2

)
combinatorial di-

versities from pairwise hard-decision matchings. For any (k, l)
RN pair k �= l, the random variable Wkl = I(ŷrkd = ŷrld) is
Bernoulli distributed with success (matching) probability pkl =
Pr[ŷrkd = ŷrld], which satisfies the identity

pkl = QkQl + (1 − Qk)(1 − Ql) (14)

with Qk being the cascaded link ER given by

Qk = esrk
+ erkd − 2esrk

erkd
def
= esrkd. (15)

The preceding equations and (8) imply that psrk
and

pkl are related to the parameter sets {esd, esrk
, erkd} and

{esrk
, erkd, esrl

, erld}, respectively. Following the approach
used for the case L = 1, we replace psrk

and pkl in (8) and
(14) by the average sample count (sample mean) estimators

p̂srk
=

N∑
j=1

I (ŷsd[j] = ŷrkd[j])
N

, k=1, . . . , L (16.a)

p̂kl =
N∑

i=1

I (ŷrkd[i] = ŷrld[i])
N

, 1≤k<l≤L (16.b)

to obtain
(
L+1

2

)
equations, where all are of the form similar to

(14), involving the unknown ERs {Qi} and esd.

When the RNs are dedicated stationary nodes and {erkd} can
be reliably estimated, there are only L + 1 unknown parameters
{esd, esrk

, k = 1, . . . , L}, which can be solved if there are
at least L + 1 independent equations. Since

(
L+1

2

)
≥ L + 1

whenever L ≥ 2, the unknown link parameters can be esti-
mated, as long as more than two RNs are available.

For general multiple ER estimation in an L-relay CCN,
L > 2, we can therefore divide the problem into a sequence of
subproblems, each dealing with a smallest two-relay problem.
The three-link (two relays plus a direct SD link) CCN is referred
to as a basic network in which the link ER is governed by a set
of nonlinear equations called a basic (nonlinear) system⎡⎣ 1 − Q1 − esd + 2esdQ1

1 − Q1 − Q2 + 2Q1Q2

1 − esd − Q2 + 2esdQ2

⎤⎦ =

⎡⎣ psr1

p12

psr2

⎤⎦ ≈

⎡⎣ p̂sr1

p̂12

p̂sr2

⎤⎦ (17)

where p̂srl
, l = 1, 2, and p̂12 are obtained via (16.a) and (16.b).

A similar nonlinear system arose in [10], where the estimations
of the ERs esd and Ql’s were attempted. Unlike our case, there
is no cascaded links and hence no need to estimate the ERs of
the SR and RD links. It can be shown that the solution to the
foregoing basic system gives the basic estimators [13]

Q̂i =
1
2
− 1

2

√
(2p̂ij − 1)(2p̂ik − 1)

2p̂jk − 1
, i, j, k ∈ {0, 1, 2}

(18)
where Q̂0 = êsd, p̂01 = p̂sr1 , and p̂02 = p̂sr2 .

The foregoing equation indicates that the presence of multi-
ple RD links enables us to estimate esd and removes the need
for esd side information, i.e., the relay diversity can be traded
for the degree of LT-CSI. To estimate the ERs of the multiple
hidden (far-end) SR links, we invoke the relation (15), assuming
the ERs of all the RD links are known, to obtain

êsrk
=

Q̂k − erkd

1 − 2erkd
, k = 1, 2. (19)

Note that an L relay CCN induces
(
L+1

2

)
basic systems

(diversities), where each relay is involved in more than one
system so that multiple estimates for a given Qi may be
obtained. Dixit [10] had proposed a complex method to
take advantage of this fact and obtained improved ER es-
timates. On the other hand, [11] shows that the basic es-
timators given by (18) asymptotically achieve the accuracy
achieved by the ML pilot-aided estimator based on the
two sequences of hard decision pairs {ŷsd[i], ŷrld[i]}N

i=1, l =
1, 2; for finite N , a better estimate is obtained by max-

imizing the log-likelihood functions Γ({ŷsd[i], ŷrld[i]})
def
=

log f({ŷsd[i], ŷrld[i]}N
i=1), l = 1, 2, which are defined as

Γ ({ŷsd[i], ŷrld[i]})

=
N∏

i=1

(
e
1−I(ŷsd[i]=x[i])
sd (1 − esd)I(ŷsd[i]=x[i])

×
2∏

l=1

Q
1−I(ŷrld[i]=x[i])
l (1 − Ql)I(ŷrld[i]=x[i])

)
.
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The derivation of the preceding function is similar to that given
in [11, Sec. III] with additional consideration of cascaded link
ER Ql. In [11], an EM-based approach was proposed to obtain
blind (unknown x[i]) estimates of Qi, which outperform Dixit’s
method. However, our numerical experiments conclude that, for
both approaches, the performance improvement over the basic
estimators is rather limited and do not worth the additional high
complexity (see Section VI and Fig. 4).

Before presenting our main results in the following sections,
we would like to emphasize that most estimators to be devel-
oped are based on some variation or extension of the basic sys-
tem (17), and their expressions, e.g., (24.a)–(25), (28.a)–(28.d),
and (30.a)–(31.b), are derivable from variations or extensions
of the basic estimators (18) and (19).

III. BLIND MULTIPLE-ERROR RATE ESTIMATION

USING VIRTUAL LINKS

We first examine the ER ambiguity issue associated with the
estimation of a far-end component link’s ER and then present a
novel solution to resolve this ambiguity. The extension to other
binary modulations, i.e., BFSK and DPSK, is discussed at the
end of this section.

A. ER Ambiguity in a Cascaded Link

As can be seen from (17), when there are sufficient relays,
the resulting equation set leads to formulas for the estimates
of esd and Qk but not those for esrk

and erkd. This is
due to the fact that the ER of an SRD link, as (15) has
shown, is a symmetric function of the ERs of the associated
component SR and RD links, i.e., there are infinite many
(esrk

, erkd) pairs that result in the same Qk. In fact, the
legitimate candidates for the latter two ERs consist of the lower
left part of the hyperbola defined by (15), i.e., (1 − 2Qk)/4 =

(esrk
− (1/2))(erkd − (1/2)), that lies within the square S def

=
{(esrk

, erkd)|0 < esrk
< (1/2), 0 < erkd < (1/2)}. The ambi-

guity in (15) is resolved in the scenario discussed in the last
section by specifying erkd so that êsrk

is obtained via (19).
Geometrically, this is equivalent to finding the intersection of
the hyperbola and the line erkd = e within the square S, where
e is the true ER of the RD link.

When the LT-CSI erkd is not available, we need to find a
curve that represents another set of legitimate ER pairs and
that has only one intersection point with (15) in S. Since the
hyperbola is symmetric with respect to the line erkd = esrk

and we have access to the outputs of the RD and SD links
only, finding a curve that has a unique intersection with (15) is
possible if an alternate RD link is provided. This can be seen by
noting that an RD link with a different average bit SNR γ yields
a different equivalent cascaded link with ER Q′

k and, therefore,
a curve of the form (1 − 2Q′

k)/4 = (esrk
− (1/2))(αerkd −

(1/2)), where α is such that 0 < αerkd
def
= er′

k
d < (1/2).

B. VL Methods

To have an alternate physical link (PL), one can purposely
vary the power of the bit stream so that the transmitted sequence

is equivalent to one formed by multiplexing two data sources
with different powers. If the locations of these two parts in
the multiplexed data stream are known, the DN then performs
separate comparison and counting based on (16.a) and (16.b).
Although such a two-level amplitude modulation makes it pos-
sible to solve the esrk

and erkd ambiguity, allocating unequal
powers to different parts of the transmitted data stream is often
undesirable. This dilemma can be avoided by creating a VL
without modifying the existing link.

A VL can be created by rotating the received I–Q vector
counterclockwise by an angle θ between 0◦ and 90◦. This
is equivalent to introducing an artificial phase offset to the
received samples, which are then used as outputs from another
link. Since the noise is circular symmetric, the rotation results in
an equivalent signal power degradation cos2 θ without altering
the noise statistic. Such a virtual SNR loss cannot be accom-
plished by simply multiplying the BPSK matched filter output
by a positive constant less than 1.

An alternate method is to add an extra zero-mean white
Gaussian noise component to the received in-phase samples.
Both schemes give a VL with a smaller γ. The second scheme,
i.e., the addition of a perturbation term, incurs no hardware
increase but requires the estimation of noise power σ2

d, which is
needed in the subsequent ML detection anyway. As the phase
rotation scheme leads to an SNR degradation of magnitude
cos2 θ, the second scheme has to generate i.i.d. zero-mean
Gaussian random samples with variance σ2

v = σ2
d(1/ cos2 θ −

1) to achieve the same SNR loss. Although both approaches
achieve the same effect for BPSK signals, the phase-rotating
approach cannot produce a VL for noncoherent systems while
the method of inserting extra noise suits both coherent and
noncoherent applications. Hence, except for the coherent sys-
tem discussed in this section, we will adopt the noise injection
approach in the following sections.

We use the superscript (v) to indicate that a parameter is
associated with a VL, i.e., the kth RD link’s synchronous output
samples and their rotated (VL) versions are denoted by yrkd[n]
and y

(v)
rkd[n] and the corresponding ERs by erkd and e

(v)
rkd. For a

BPSK system operating in a flat Rayleigh fading environment,
we have [14]

P psk
b (γ) =

1
2

(
1 −

√
γ

1 + γ

)
(20)

which is equivalent to

γ =
(1 − 2P psk

b )2

1 − (1 − 2P psk
b )2

. (21)

The two ERs are then related by

(1 − 2erkd)2

1 − (1 − 2erkd)2
=

1
cos2 θ

(
1 − 2e

(v)
rkd

)2

1 −
(

1 − 2e
(v)
rkd

)2 . (22)

Following a procedure similar to that for solving (17), we can
easily show that the nonlinear system, which consists of (15),
(22), and the new cascaded link’s ER equation

Q
(v)
k = esrk

+ e
(v)
rkd − 2esrk

e
(v)
rkd (23)
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has the closed-form solution

esrk
=

1 −
√

1 − 4t

2
, erkd =

Qk − esrk

1 − 2esrk

(24.a)

e
(v)
rkd =

Q
(v)
k − esrk

1 − 2esrk

(24b)

where

t =

(
1 − 2Q

(v)
k

)2

Qk(1 − Qk)(
1 − 2Q

(v)
k

)2

− cos2 θ(1 − 2Qk)2

−
cos2 θ(1 − 2Qk)2Q(v)

k

(
1 − Q

(v)
k

)
(

1 − 2Q
(v)
k

)2

− cos2 θ(1 − 2Qk)2
. (25)

Based on this solution, we can obtain a complete blind al-
gorithm to estimate the ERs of all component links by using
the estimates for Qk and Q

(v)
k , which are computed via (18)

using another, say, lth (l �= k) relay link; the ER side infor-
mation is no longer needed. In short, to estimate the triplet
(esd, esrk

, erkd) associated with an SD and an SRD linking
without the help of CSI, one needs another independent relay.
The auxiliary relay requirement can be waived if one creates a
virtual SD link to obtain additional combinational diversities. In
general, the rotation angle for producing a virtual SD link can
be different from that for a virtual RD link. However, we lose
no generality by assuming both rotation angles are the same, for
example, θ. Denote by p̂(vs)r, p̂s(vr), and p̂(vs)(vr) the estimates

for the SMPs Pr(ŷ
(v)
sd = ŷrd), Pr(ŷsd = ŷ

(v)
rd ), and Pr(ŷ

(v)
sd =

ŷ
(v)
rd ), respectively, and by Q = esrd and Q(v) = es(vr)d the

ERs for the SRD and SR-plus-virtual relay links. We obtain
four nonlinear relations for a single-relay CCN, i.e.,

p̂sr = esdQ + (1 − esd)(1 − Q) (26.a)

p̂(vs)r = e
(v)
sd Q +

(
1 − e

(v)
sd

)
(1 − Q) (26.b)

p̂s(vr) = esdQ
(v) + (1 − esd) (1 − Q(v)) (26.c)

p̂(vs)(vr) = e
(v)
sd Q(v) +

(
1 − e

(v)
sd

)
(1 − Q(v)). (26.d)

With the additional PL-VL relation

(1 − 2esd)2

1 − (1 − 2esd)2
=

1
cos2 θ

(
1 − 2e

(v)
sd

)2

1 −
(

1 − 2e
(v)
sd

)2 (27)

the nonlinear system (26.a)–(27) yields the closed-form
estimators

êsd =
1
2

[
1 − p̂sr − Q̂

1 − 2Q̂
+

1 − p̂s(rv) − Q̂(v)

1 − 2Q̂(v)

]
(28.a)

Q̂ =
1 −

√
1 − 4t1
2

, Q̂(v) =
1 −

√
1 − 4t2
2

(28.b)

TABLE I
UNIFIED BLIND NOISE-ENHANCED ER ESTIMATION ALGORITHM

t1 =
cos2 θ(2p̂sr − 1)2

(
p̂(vs)r − 1

)
p̂(vs)r(

2p̂(vs)r − 1
)2 − cos2 θ(2p̂sr − 1)2

−
(
2p̂(vs)r − 1

)2 (p̂sr − 1)p̂sr(
2p̂(vs)r − 1

)2 − cos2 θ(2p̂sr − 1)2
(28.c)

t2 =
cos2 θ

(
2p̂s(vr) − 1

)2 (
p̂(vs)(vr) − 1

)
p̂(vs)(vr)(

2p̂(vs)(vr) − 1
)2 − cos2 θ

(
2p̂s(vr) − 1

)2

−
(
2p̂(vs)(vr) − 1

)2 (
p̂s(vr) − 1

)
p̂s(vr)(

2p̂(vs)(vr) − 1
)2 − cos2 θ

(
2p̂s(vr) − 1

)2 .

(28.d)

Estimators êsr and êrd can be derived from solving the
nonlinear system, which includes (15), (22), and an equation
similar to (23). An analytic solution of this nonlinear system is
obtained by substituting (28.b) into (25) and then (24.a). As
has been mentioned in Section I, we refer to ER estimation
algorithms using the approach described in this section as VLA
estimators. The corresponding estimation procedure is included
in Table I.

Note that the SMP formulas (14) and (26.a)–(26.d) are not
valid for the SMP between a PL and its virtual version since
their outputs are correlated. Actually, this SMP is the sum of
two conditional SMPs defined by (40) and (41), which are
derived in Appendix D. Obviously, a system involving these
two nonlinear expressions does not easily render a closed-form
solution. On the other hand, a VL can provide a new SMP
relation similar to (14) with each different PL or its virtual
version, and a single-relay CCN can offer two uncorrelated
VLs to render a basic system that consists of three independent
SMP equations; we thus conclude that by using both virtual RD



LIU AND SU: NOISE-ENHANCED BLIND MULTIPLE ERROR RATE ESTIMATORS IN WIRELESS RELAY NETWORKS 1151

and SD links, one can estimate all ERs of a single-relay CCN
without side information.

C. Blind ER Estimation for BFSK and DPSK Signals

Although we have limited our discussion to BPSK signals
so far, such a restriction does not lose any generality as far as
the VL concept is concerned. The proposed blind estimation
method of the last section can easily be extended to noncoherent
binary modulations. Besides using (noncooperative) noncoher-
ent detectors, the DN adds a complex Gaussian perturbation
term to each of the received noncoherent sample to gener-
ate the corresponding VL with the desired equivalent aver-
age SNR.

Since, for the noncoherent case, the definition and estimation
of SMPs are the same as those of the BPSK-based system,
we have four nonlinear equations similar to (26.a)–(26.d) that
relate the SMPs to the corresponding ERs of the connecting
SD and cascaded SRD links. The relation between the ER of
a cascaded link and its two component links remains the same;
we thus obtain two equations similar to (15) and (23). However,
as a different modulation type is involved, the equation govern-
ing the relation between esd’s for the physical and the VLs is
different from (22), so is that between the two erd’s. The new
relation can be expressed in the generic form

Fe(z) = a(v)Fe

(
z(v)

)
(29)

where z = esd or erd, and as before, the superscript (v) on the
right-hand side denotes the corresponding set of parameters for
VL. Equation (29) is similar to (22), but the actual expression
for Fe(z) depends on the modulation used, and a(v) is a
scaling parameter related to the variance of the injected noise
(normalized with respect to σ2

d).
Solving the nonlinear system consisting of SMP equations

and Fe(esd) = a(v)Fe(e
(v)
sd ), we obtain

Q̂=
(1−2p̂sr)

[
1v −p̂(vs)r

]
−a(v)

[
1−2p̂(vs)r

]
(1−2p̂sr)

(1−2p̂sr)−a(v)
[
1−2p̂(vs)r

]
(30.a)

Q̂(v) =

[
1−2p̂s(vr)

] [
1−p̂(vs)(vr)

][
1−2p̂s(vr)

]
−a(v)

[
1−2p̂(vs)(vr)

]
−

a(v)
[
1−2p̂(vs)(vr)

] [
1−2p̂s(vr)

][
1−2p̂s(vr)

]
−a(v)

[
1−2p̂(vs)(vr)

] (30.b)

êsd =
1
2

[
1−p̂sr−Q̂

1−2Q̂
+

1−p̂s(vr)−Q̂(v)

1−2Q̂(v)

]
. (30.c)

Similarly, we have

êsr =
Q̂(v) − 2Q̂Q̂(v) − a(v)Q̂ + 2a(v)Q̂Q̂(v)

1 − 2Q̂ − a(v) + 2a(v)Q̂(v)
(31.a)

êrd =
Q̂ − êsr

1 − 2êsr
. (31.b)

TABLE II
REQUIRED CSI AND SOLUTIONS OF NONLINEAR SYSTEMS UNDER

VARIOUS MODULATIONS

The explicit forms of Fe(z) for different modulations and the
corresponding relations used for computing the ER estimators
are listed in Table II.

IV. NOISE-ENHANCED ERROR RATE ESTIMATIONS

A. Convergence Consideration and a Simple Variance
Reduction Method

It is easy to see that, like the estimator for the SMP p
defined in Section II, p̂sr, p̂(vs)r, p̂s(vr), and p̂(vs)(vr) con-
verge in probability. As the proposed estimators are continuous
functions of these estimates, the continuous mapping theorem
[15] implies that the estimators {êsr, êrd, êsd} converge in
probability as well, and their variances depend on those of
the SMP estimators. The latter are all derived from the same
compare-and-count process, which is similar to that used in
simulation-based ER estimations [16]. The main difference
is that, for the latter, the desired detector output is known
perfectly, and one has complete information and control of the
operating average SNR and the link output statistic. In contrast,
our scheme can only rely on blind counting without a pilot
sequence, and the link statistic is either unavailable or only
partially known. Both estimation methods, however, have the
same order of convergence rate and require a large number of
samples to obtain a reliable estimate if the true ER is small (see
Lemma 1 and [16]).

A straightforward approach to improve the convergence per-
formance is to use multiple VLs, i.e., we add nvl − 1 virtual RD
and/or SD links with the same noise power. Each VL renders a
set of new estimates, and the final estimates are obtained by
taking average of the nvl estimates. This method is called the
EVLA estimator, which yields a reduced variance for a given
sample size or equivalently achieves the same variance as that
of the original (nvl = 1) estimator with a smaller sample size.

B. ISI Noise-Enhanced Estimator

To further improve the convergence/variance performance,
the aforementioned analogy between our method and the
simulation-based estimator suggests that we apply a variance
reduction method used in the latter approach called IS. The
IS method for estimating ER modifies the demodulator output
statistic so that it follows a desired probability distribution that
makes the important (error) event occur much more often than
the original unmodified case does.

The difficulty in applying the IS theory to our scenario, be-
sides the fundamental differences just mentioned, is due to the
fact that the estimators, as was shown in (30.a)–(31.b) and other
similar equations presented before, are derived from SMPs
and, perhaps, other ERs. Complete control of their statistics



1152 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 3, MARCH 2012

through dependent variables whose probability distributions
are unknown is impossible. For instance, in the case of a
BPSK-based CCN, an SMP depends on the inner product of
the SD and RD link outputs whose probability distributions
depend on, among other parameters, the true ER of the SR link,
which needs to be estimated in the first place. In other words,
the optimal (variance-minimizing) importance distribution is a
function of the parameters whose values we either do not know
or want to estimate.

The following observations, however, indicate that a subop-
timal importance distribution is obtainable. First, the ultimate
parameters of interest are the link ERs, not the pairwise SMPs,
and the IS theory says that convergence is faster if the ER to
be estimated by simulation is properly increased, which may
be realized by simply adjusting the corresponding link output’s
variance. Second, some ER estimator formulas are functions of
other ERs and SMPs; hence, if the estimates of the other ERs
can be improved while those for SMPs remain unchanged, e.g.,
the ER estimator of esr through (8), we can obtain an improved
estimator. Finally, it is reasonable to assume that the link out-
puts’ statistics are partially known, e.g., their noise variances.
But even if we are able to partially control the distributions of
related parameters, there still exist the problem of weighting
the resulting counts, which is needed in a conventional IS-
based procedure and can only be done if both the original and
modified link output distributions are known.

Our solution that overcomes all these difficulties proceeds
as follows. We first add zero-mean complex Gaussian samples
with variances Nsd and Nrd to the received SD and RD link
output samples ysd and yrd, respectively. This results in link
outputs with larger variances. By solving the nonlinear sys-
tem associated with the estimated SMPs of the noise-injected
links, we obtain the estimates {ẽ(w)

sd , ẽ
(w)
sr , ẽ

(w)
rd }, where the

superscript (w) is used to signify the fact that the estimates
are computed by inserting artificial noises. As the noise injec-
tion effectively reduces the average SNR, the scaling relation
(29) with a(v) = a(w) = 1 + Nsd/σ2

d or 1 + Nrd/σ2
d enables

us to weight and convert the estimates {ẽ(w)
sd , ẽ

(w)
rd } back to

the estimates {ê(w)
sd , ê

(w)
rd } of the true ERs {esd, erd}. For

instance, in a noncoherent BFSK or DPSK-based CCN, the re-
lation (1 − 2e/e) = a(w)(1 − 2e(w)/e(w)) for max{e, e(w)} <
1/2 suggests that DN uses the conversion rule

ê(w) = ẽ(w)/
(
a(w) + 2ẽ(w) − 2a(w)ẽ(w)

)
(32)

where the subscripts “sd” and “rd” associated with the esti-
mators ẽ(w) and ẽ(w) are omitted to simplify the expression.
Similarly, the conversion rule for a BPSK-based network is

ê(w) =
1
2

⎡⎣1 −

√√√√ a(w)
(
1 − 2ẽ(w)

)2

1 −
(
1 − 2ẽ(w)

)2 + a(w)
(
1 − 2ẽ(w)

)2

⎤⎦ .

(33)

The foregoing two conversion rules bypass the need for com-
plete statistics by directly using the ER conversion based only
on a(w), i.e., the ratio between the noise-injected and origi-
nal SNRs (instead of individual SNRs). They also imply that

ê(w) < ẽ(w), which has been expected as we have purposely
made e(w) larger by injecting noise. If VLs are needed, we have
to inject an additional noise term into the noise-injected PLs to
create VLs. Hence, the scaling factor is a(v), a(w), or a(v)a(w),
depending on whether the link is a VL, a noise-injected PL,
or a noise-injected VL. We call the class of estimators based
on the preceding concept as ISI-VLA estimator. In the fol-
lowing sections, we show, via both analysis and simulations,
that the ISI-VLA estimator does offer significant performance
enhancement.

V. PROPERTIES AND PERFORMANCE ANALYSIS OF THE

NOISE-ENHANCED ESTIMATOR

For the preceding approach, noise injection is performed to
improve the ER estimators and not the SMP p observed at the
DN. In fact, it results in a smaller SMP p(w), and if we want to
estimate the original p through p(w), we obtain a worse SMP
estimate.

Lemma 3: Let p and p(w) be the true SMPs of the original
and noise-injected links, and let p̂(w) and p̂ be the estimates of
p with and without the aid of the noise-injected link. Then

Var[p̂] ≤ Var
[
p̂(w)

]
. (34)

Proof: See Appendix A. �
As we can only inject noise into samples received by the DN,

e.g., ysd and (or) yrd, esr remains intact and ê
(w)
sr = ẽ

(w)
sr if

this estimator is obtained by substituting ê
(w)
rd , ê

(w)
sd and p̂(w)

into (8). The preceding lemma suggests that we should replace
p̂(w) by p̂ in the substitution procedure for estimating esr. As
mentioned in the last section, a better estimate for esr can thus
be obtained by using the noise-enhanced estimates ê

(w)
rd , ê

(w)
sd

and the original p̂ [see (8)].
The range of appropriate values for the scaling factor a(w)

is certainly dependent on the true ERs e and the noise injected
ERs e(w). As will be show in Theorem 1 and numerically in the
next section, the MSEE performance is improved by injecting
proper noise power into the received samples, and there is
an optimal injected noise power that achieves the maximum
MSEE improvement. This phenomenon is called the stochastic
resonance effect, which has been observed in some nonlinear
signal processing systems (see [17] and reference therein).

In a BPSK-based single-relay CCN with perfect SD link
(esd = 0), when both the average transmitted relay power Pr

and the magnitude of the slow-faded RD link gain |hrd| are
known, we show in Appendix B that the optimal scaling factor
is approximately equal to the RD link output SNR, i.e.,

a
(w)
opt ≈ Pr|hrd|2

σ2
d

. (35)

We need the following lemma to derive a closed-form expres-
sion of the optimal scaling factor for the more practical case
addressed in Theorem 1.

Lemma 4: For a network that consists of three independent
(SD or cascaded) flat Rayleigh fading links with ERs ei, if the
ISI-VLA scheme is applied with a common noise-injected ER
e
(w)
i = ε using the scaling factors a

(w)
i , i = 1, 2, 3, the variance
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of the noise enhanced estimator êi using the conversion rule
(32) is given by

Var[êi] ≈

(
a
(w)
i

)2

(
a
(w)
i + 2ε − 2a

(w)
i ε

)4

ε − 2ε2 + 2ε3 − ε4

(2ε − 1)2N
. (36)

Proof: See Appendix C. �
In the subsequent discourse, we denote by ŷi, ei, and SNRi

the hard decision output, ER, and average SNR of the ith link
(direct or cascaded) and by a

(v)
i and a

(w)
i the associated scaling

factor used. To characterize the stochastic resonance effect
and the noise enhanced performance, we define the MSEE

reduction ratio γ
def
= MSEEISI/MSEEo, where MSEEISI and

MSEEo are the MSEEs of the ISI-VLA and VLA estimators
with the same sample size. Using the preceding lemma, we
obtain the following theorem.

Theorem 1: For a network with three independent flat
Rayleigh fading links, the optimal scaling factor under the
common noise-injected ER constraint e

(w)
i = ε, i = 1, 2, 3 is

approximately equal to

a
(w)
i,opt ≈ t1SNRi (37)

where t1 = 0.3085 (DPSK) or 0.15428 (BFSK). The mini-
mum achievable MSEE reduction ratio γmin for SNRi � 1 is
given by

γmin ≈

⎧⎨⎩ 9.8277 SNR2
i

(1+SNRi)3
, DPSK

19.655 SNR2
i

(2+SNRi)3
, BFSK.

(38)

Moreover, noise injection using the optimal scaling factor
is beneficial if SNRi is larger than 3.241 (DPSK) or 6.483
(BFSK).

Proof: See Appendix D. �
Following a procedure similar to that used in proving

Lemma 4 and Theorem 1 and using the relation governing the
ER ε of a noise-injected BPSK link and the associated scaling

factor ε = (1/2)(1 −
√

(SNRi/a
(w)
i + SNRi)), we can prove

the following theorem.
Theorem 2: For a three-link BPSK-based network in a flat

Rayleigh fading environment, the optimal scaling factors that
ensure a common noise-injected ER is ai = tiSNRi, and the
MSEE reduction ratio γ for link i is

γ|ai=t1SNRi
=

24.68SNR2
i

3 + 10SNRi + 11SNR2
i + 4SNR3

i

(39)

where t1 = (−1 +
√

7/3). Noise injection using the optimal
scaling factor is beneficial if SNRi > 1.823.

To evaluate the MSEE performance of VLA and ISI-VLA
estimators in a CCN, as shown in Appendix C, we need to
compute the covariance and matrix C of the pairwise matching
indicators I(ŷk[t] = ŷj [t]) and the associated Jacobian matrix
J. The entries of these two matrices are functions of the

(not necessarily pairwise) SMPs, whose expressions are given
below.1

Lemma 5: For a two-link BPSK-based network, the SMPs
p12(v1) that direct PLs 1 and 2 and a

(v)
1 -scaled VL 1 (denoted

by v1) yield the same hard decision given by

p12(v1) = e2pem

(
e1, a

(v)
1

)
+ (1 − e2)pcm

(
e1, a

(v)
1

)
(40)

where the conditional erroneous matching probability

pem(e1, a
(v)
1 )

def
= Pr(ŷ1 = ŷ

(v)
1 =−s|s) and the conditional cor-

rect matching probability pcm(e1, a
(v)
1 )

def
= Pr(ŷ1 = ŷ

(v)
1 =s|s),

with s=±1 being the normalized transmitted BPSK signal, are

pem

(
e1, a

(v)
1

)
=

e1

2
+

1
2π

⎡⎢⎢⎢⎢⎣ tan−1

⎛⎝ 1√
a
(v)
1 − 1

⎞⎠

−
tan−1

((
1−2e

(v)
1

)−1√
a
(v)
1 −1

)
(

1 − 2e
(v)
1

)−1

⎤⎥⎥⎥⎥⎦(41)

pcm

(
e1, a

(v)
1

)
= 1 − e1 − e

(v)
1 + pem

(
e1, a

(v)
1

)
. (42)

If PL 1 is a cascaded link, the SMP becomes

p12(v1) = e2

[
pem

(
e1, a

(v)
1

)
(1 − esr) + pcm

(
e1, a

(v)
1

)
esr

]
+(1−e2)

[
pem

(
e1, a

(v)
1

)
esr+pcm

(
e1, a

(v)
1

)
(1−esr)

]
(43)

where esr is the ER of the hidden component link of PL 1. The
SMPs that direct PL 1, cascaded PL 2, and a

(v)
i -scaled VLs 1

and 2 all yield the same hard decision given by

p12(v1)(v2) =pem

(
e1, a

(v)
1

)
×
[
pem

(
e2, a

(v)
2

)
(1−esr)+pcm

(
e2, a

(v)
2

)
esr

]
+pcm

(
e1, a

(v)
1

)
×
[
pem

(
e2, a

(v)
2

)
esr+pcm

(
e2, a

(v)
2

)
(1−esr)

]
.

(44)

Finally, we have the two joint pairwise SMPs

Pr
(
ŷ1 = ŷ2, ŷ

(v)
1 = ŷ

(v)
2

)
= p12(v1)(v2) +

[
e1 − pem

(
e1, a

(v)
1

)]
×

{
(1 − esr)

[
e2 − pem

(
e2, a

(v)
2

)]
+ esr

[
e
(v)
2 − pem

(
e2, a

(v)
2

)]}
+

[
e
(v)
1 − pem

(
e1, a

(v)
1

)]
×

{
(1 − esr)

[
e
(v)
2 − pem

(
e2, a

(v)
2

)]
+ esr

[
e2 − pem

(
e2, a

(v)
2

)]}
(45)

1Matching probabilities and variance analysis for noise-enhanced estimators
are similar. Depending on where the noise-injected links are located, the

resulting expressions are obtained by replacing ei and (or) e
(v)
i by e

(w)
i and

(or) its VL version; the scaling factors are also modified when necessary. This
apply to Lemmas 5 and 6 as well as Theorems 3 and 4.
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Pr
(
ŷ1 = ŷ2, ŷ

(v)
1 = ŷ

(v)
2

)
= p12(v1)(v2)

+
[
e1 − pem

(
e1, a

(v)
1

)]
×

{
(1 − esr)

[
e2 − pem

(
e2, a

(v)
2

)]
+ esr

[
e2 − pem

(
e2, a

(v)
2

)]}
+

[
e
(v)
1 − pem

(
e1, a

(v)
1

)]
×

{
(1 − esr)

[
e
(v)
2 − pem

(
e2, a

(v)
2

)]
+ esr

[
e
(v)
2 − pem

(
e2, a

(v)
2

)]}
. (46)

Proof: See Appendix E. �
With the foregoing formulas and the pairwise SMP given by

(B.2), we use a procedure similar to that presented in Appen-
dix C to evaluate the covariance matrix of the ER estimators
and obtain the following theorem.

Theorem 3: For a two-link BPSK-based network using a
virtual R1D link, the variances of the VLA estimators ê1 and
ê2 are given by

Var
[
ê1|e1, e2, a

(v)
1

]
=

b2
2p12(1 − p12) − 2b2b3 + p(v1)2

(
1 − p(v1)2

)
(1 − 2e2)2(b2 − b1)2N

(47)

Var
[
ê2|e1, e2, a

(v)
1

]
=

b2
1p12(1 − p12) − 2b1b3 + p(v1)2(1 − p(v1)2)

(1 − 2e1)2(b2 − b1)2N
(48)

where p12 and p(v1)2 are the SMPs for the link pairs (1, 2),

and (v1, 2), b1 = (a(v)
1 /[a(v)

1 − (a(v)
1 − 1)(1 − 2e1)2]3/2),

b2 = (1/[a(v)
1 − (a(v)

1 − 1)(1 − 2e1)2]1/2), and b3 =
p12(v1) − p12p2(v1). Moreover, if noise of power (a(w)

i − 1)σ2
d

is injected, then the variance of the noise enhanced ISI-VLA
(EISI-VLA) estimator ê

(w)
i is given by

a
(w)
i[

1 + (a(w)
i − 1)(1 − 2e

(w)
i )2

]3 Var
[
ê
(w)
i

∣∣∣e(w)
1 , e

(w)
2 , a

(v)
1

]
.

(49)

If a virtual R2D link is used instead, then (47)–(49) should be
modified by replacing a

(v)
1 , e1, p(v1)2, and p12(v1) with a

(v)
2 , e2,

p1(v2), and p12(v2), respectively.
Note that the notations used in (47) and (48) imply that the

variance of êi is a function of e1, e2, and a
(v)
1 only. All the

other parameters, e.g., bi’s, depend on these three parameters.
For the case addressed in Theorem 3, the optimal scaling factors
can be obtained by finding the extreme points of (49), a highly
nonlinear function of a

(w)
1 and a

(w)
2 .

The performance analysis of an ISI-VLA estimator for the
hidden SR link is more involved. We need the following pre-
liminary result.

Lemma 6: For a single-relay CCN with single virtual SD and
RD link, the (i, j)th entry of the covariance matrix C of the
indicator vector [I(ŷ1 = ŷ2)I(ŷ(v)

1 = ŷ2)I(ŷ1 = ŷ
(v)
2 )I(ŷ(v)

1 =
ŷ
(v)
2 )]T is given by

Cij =
{

pkl(1 − pkl), if k = l, k′ = l′

Pr(ŷk = ŷl, ŷk′ = ŷl′) − pklpk′l′ , otherwise
(50)

for i, j = 1, . . . , 4, with the mapping i → (k, l) defined by

k =
{

1, if i is odd
(v1), otherwise,

l =
{

2, i ≤ 2
(v2), i ≥ 3

(51)

and a similar mapping from j to (k′, l′). The corresponding
inverse Jacobian J−1 is given in (52), shown at the bottom
of the page, where h′(x, a) = (a(v)/[a(v) + (1 − a(v))(1 −
2x)2]3/2).

We immediately have the following theorem.
Theorem 4: For a single-relay BPSK-based CCN with a

(v)
sd -

scaled virtual SD link and a
(v)
rd -scaled virtual RD link, as

described by (26.a)–(27), the variances for the VLA estimators
êsr, êrd, and êsd are given by

Var[êsr] =
C̃22

N
, Var[êrd] =

C̃33

N
(53)

Var[êsd] =
C̃11 + C̃14 + C̃41 + C̃44

4N
(54)

where C̃ = JCJT , and C̃ij denotes the element in the ith row
and jth column of C.

Furthermore, the variance of the ISI-VLA estimators ê
(w)
sr ,

ê
(w)
rd , and ê

(w)
sd are

Var
[
ê(w)
sr

]
=

C̃(w)
22

N
(55)

Var
[
ê
(w)
rd

]
=

a
(w)
rd[

1 +
(
a
(w)
rd − 1

) (
1 − 2e

(w)
rd

)2
]3

C̃33

N

(56)

⎛⎜⎜⎜⎜⎜⎝
2e2 − 1 (2e1 − 1)(1 − 2e2) (2e1 − 1)(1 − 2esr) 0

(2e2 − 1)h′
(
e1, a

(v)
1

) (
2e

(v)
1 − 1

)
(1 − 2e2)

(
2e

(v)
1 − 1

)
(1 − 2esr) 0

0 (2e3 − 1)
(

1 − 2e
(v)
2

)
(2e3 − 1)(1 − 2esr)h′

(
e2, a

(v)
2

)
2e

(v)
2 − 1

0
(

2e
(v)
3 − 1

)(
1 − 2e

(v)
2

) (
2e

(v)
3 − 1

)
(1 − 2esr)h′

(
e2, a

(v)
2

) (
2e

(v)
2 − 1

)
h′

(
e1, a

(v)
1

)

⎞⎟⎟⎟⎟⎟⎠
(52)
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Var
[
ê
(w)
sd

]
=

a
(w)
sd[

1 +
(
a
(w)
sd − 1

)(
1 − 2e

(w)
sd

)2
]3

× C̃(w)
11 + C̃(w)

14 + C̃(w)
41 + C̃(w)

44

4N
(57)

where C̃(w) = [C̃(w)
ij ] = J(w)C(w)(J(w))T , and J(w) and C(w)

are computed after noise injection into all but the SR link.
We summarize a few remarks regarding the preceding prop-

erties, their extensions, and the proposed noise-enhanced esti-
mator in general in the following.

R1: The noise samples play the dual role of a) generating VLs to
eliminate the needs for CSI and extra RNs and resolve the
symmetric ambiguity and b) altering the statistical property
of the received samples.

R2: As the identity, (14), which relates an SMP to the asso-
ciated ERs, involves two independent links; the three-link
network has the special property of offering

(
3
2

)
= 3 link

pairs such that each link participates in two link-pairs.
Such a “uniform participation” is important to guarantee
uniform performance, i.e., the MSEE performance for each
link is the same if the true ERs are identical. In general,
for a network with four or more links, the number of link
pairs is larger than the number of independent links, and
the performance of an ER estimator for a particular link
depends on the number of link pairs it has participated.

R3: Although Theorems 1 and 2 consider a three-link net-
work only, extensions to networks with more independent
component links are straightforward, but closed-form ex-
pressions for the corresponding optimal scaling factor and
noise benefit interval (NBI) can only be determined nu-
merically. Nevertheless, for the special cases considered by
both theorems, the minimum achievable MSEE reduction
ratio tends to O(1/SNRi) at high SNRs.

R4: Theorems 3 and 4 give the MSEE expressions for BPSK-
based VLA and ISI-VLA estimators, but we are not able
to derive closed-form expressions for the noncoherent
modulation-based networks. The optimal injected noise
power levels for noncoherent networks with correlated
links seem to be mathematically intractable. However, our
analysis indicates that a key factor in the MSEE expres-
sion is the square of the first derivative of the conversion
function (rule) with respect to the scaling factor, which is
in the order of (a(w)

i )−2 for small ERs [see, e.g., (36)].

The increase of a
(w)
i reduces this factor’s value, but it

also impacts the other parameters that might increase the
MSEE. For examples, in (36), a

(w)
i is fixed by the identical

e
(w)
i = ε constraint and is not a independent parameter,

whereas in (49), a(w)
i affects every parameter on the second

rational term. The optimal a
(w)
i strikes the best balance

between these conflicting effects. Numerical experiments
reported in the next section show that, similar to the special
cases addressed in Theorems 1 and 2, there is a proper
range of injected noise power levels for enhancing the

performance with added noise, and an optimal scaling
factor (added noise power level) does exist.

R5: Similar to the EVLA scheme, we can add nvl − 1 virtual
RD and/or SD links to obtain the same number of estimates
for {êsd} and/or {êrd}, each with the same reduced vari-
ance, and then take the average on the resulting nvl esti-
mators. This sample mean approach guarantees improved
performance, but the improvement ratio is bounded by
1/nvl due to the correlations among VLs. The resulting
multiple-VL algorithm is called the EISI-VLA estimator.

VI. NUMERICAL RESULTS

For convenience of reference, we refer to the ML detector
using the ER estimators presented in Section II as the physical-
link-only (PLO) detector and that using a VLA estimator as
the VLA detector. The ML detector with perfect CSI is called
the ideal detector. Let dsrk

, drkd, and dsd be the distances of the
kth SR, RD, and SD link, and let θsrk

be the angle between the
SD and kth RD links (see Fig. 1). Without loss of generality,
we use the normalization dsd = 10 so that

d2
srk

= d2
rkd + d2

sd − 2drkddsd cos θsrk

= 100 + d2
rkd − 20drkd cos θsrk

. (58)

We assume the path loss model σ2
ij ∝ d−α

ij with normalization
σ2

sd = 1 and α > 0. Denote by σ2
ij the variance of the Rayleigh

faded link gain and dij the distance between nodes i and j,
i.e., (i, j) ∈ {(s, rk), (rk, d), k = 1, . . . , L}. All the simulated
performance curves are obtained by sequentially applying the
proposed methods, i.e., the estimated ERs are updated sequen-
tially as each new sample becomes available, and the updated
estimates are then used for detecting each received bit. As in
[7], we define the SH average SNR as the average received
SNR for the direct SD link without relaying γ̄sd. Simulation
for a given γ̄sd terminates whenever the number of error events
in the detector output exceeds 500. We assume that the noise
powers at DN and RN are the same, i.e., σ2

d = σ2
r , and use the

normalization P = Ps +
∑L

i=1 Pri
= 1 such that γ̄sd = 1/σ2

d.
To reduce the complexity of the ML detector, [6] suggested a
piecewise linear function to approximate the nonlinearity (3).
As it causes negligible performance degradation with respect
to that of the ML detector so long as esrk

< (1/2), we use the
same approximation in our simulation efforts.

The performance of the PLO and VLA detectors for the
simplest case, L = 1 with BPSK modulation, is illustrated in
Fig. 2. For the PLO detector, only esr is unknown, whereas
the VLA detector assumes that the ERs of the other component
links are also unavailable and uses a rotation angle θ = 45◦,
which is equivalent to injecting noise with a

(v)
sd = a

(v)
rd = 2.

The performances of both detectors are found to approach
that of the ideal ML detector. We also investigate the effect
of correlated fading on the performance of the VLA detector
for DPSK signals, and the result is shown in the same figure.
Modified Jake’s model [18] with normalized Doppler frequency
J = fdTs = 0.001, with fd and Ts being the Doppler frequency
and the sampling period, respectively, is used to generate
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Fig. 2. BER performance of the ML (solid curves), MRC (◦), PLO (�),
and VLA (∇) detectors. The following system parameter values are used.
(i) single-relay system: Ps = Pr = 0.5P , dsr/dsd = 0.8, θsr = 0◦, and
av

sd = av
rd = 2 (single-relay); (ii) two-relay system: dr1d = dsr2 = 7/10,

θsr1 = θsr2 = 0◦, Ps = 0.5P , Pr1 = Pr2 = 0.25P , and θ = 45◦; and
(iii) four-relay system: dsd = 10, dsr1 = 5, θsr1 = 45◦, dsr2 = 6, θsr2 =
30◦, dsr3 = 4, θsr3 = 60◦, dsr4 = 5, θsr1 = 0◦, Pp = 0.5P , Pri =
0.125P , for i = 1, 2, 3, 4, and θ = 30◦.

the component link gains {hsd[n]}, {hsr[n]}, and {hrd[n]}
as a function of sampling epochs. For the DPSK system,
we use the noise-injected VLA detector with scaling factors
a
(v)
sd = a

(v)
rd = 2 [see (29)]. Obviously, the performance of the

VLA detector is almost the same as that of the ML detector
within the range of interest, indicating that the i.i.d. assumption
gives accurate ER estimates for moderately correlated fading
environments.

Fig. 2 also shows the performance for the cases of two and
four RNs. In the two-relay case, we assume that the PLO
detector knows erkd perfectly. Again, both PLO and VLA
detectors yield performance almost identical to that of the ML
detector. For the four-relay case, we decompose the problem
into four single-relay CCN subproblems, each involving only
one SRD and the SD links. It can be seen that at the low SH-
SNR region (0–2 dB), the performance of the VLA detector
is slightly worse than that of the optimal detector. This is due
to fact that the sample size used is not large enough to offer
a very reliable BER estimate. Nevertheless, its performance is
still superior to that of the MRC detector.

To verify our MSEE analysis, we consider a three-link wire-
less sensor network in Fig. 3, which shows that, for all three bi-
nary modulations considered, the analytic predictions are very
close to those obtained by simulations even when the sample
size is small, and both give identical results if the sample size
is large. A similar performance trend for the ISI-VLA scheme
in a BPSK-based single-relay CCN is found in the same figure.
The normalized MSEE performance E[(ê − e)2]/e2, where e is
the true ER, of the VLA, VLA-EM, and EISI-VLA estimation
schemes for a BFSK-based single-relay CCN network is shown
in Fig. 4. The VLA-EM scheme refers to a modified version of
the EM-based estimator of [11] that did not consider the hidden
SR link. The modifications are needed to apply a VL to resolve
the ambiguity and replace the normalization factor such that

Fig. 3. Normalized MSEE performance of the ISI-VLA scheme for
(a) various binary modulated 3-link networks (e1 = 0.003, e2 = 0.002, e3 =
0.001; the injected noise power is such that SH SNR = 2 for link 1 and

e
(w)
1 = e

(w)
2 = e

(w)
3 ) and (2) BPSK-based single-relay CCN (esr = 0.02922,

erd = 0.001988, esd = 0.04356, a
(v)
sd

= a
(v)
rd

= 2, a
(w)
sd

= 1 and a
(w)
rd

=

30). For 3-link networks, only the performance of ê1 is shown. The analytic
predictions (solid curves) for these two scenarios are based on (36) and
(55)–(57), respectively.

Fig. 4. Normalized MSEE performance of VLA, VLA-EM, and EISI-VLA
schemes in a BFSK-based single-relay CCN with esr = 0.0127, erd =
5.0711 × 10−5, and esd = 0.0298. The other parameter values used are

a
(v)
sd

= a
(v)
rd

= 2, e
(w)
sd

= e
(w)
rd

= 0.05, and nvl = 30.

the equation for updating the ER estimate for the cascaded link
becomes

Q
(i+1)
k =

1
N

N∑
i=1

⎛⎜⎜⎜⎝
L∏

j=0

(
Q

(i)
j

)I(ŷj=ŷk) (
1 − Q

(i)
j

)1−I(ŷj=ŷk)

L∏
j=0

(
Q

(i)
j

)I(ŷj=ŷk) (
1 − Q

(i)
j

)1−I(ŷj=ŷk)

+

L∏
j=0

(
Q

(i)
j

)1−I(ŷj=ŷk) (
1 − Q

(i)
j

)I(ŷj=ŷk)

L∏
j=0

(
Q

(i)
j

)I(ŷj=ŷk) (
1 − Q

(i)
j

)1−I(ŷj=ŷk)

⎞⎟⎟⎟⎠
−1

(59)
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Fig. 5. MSEE reduction ratio (γ) performance of the ISI-VLA estimator

with BFSK modulation and a
(v)
sd

= a
(v)
rd

= 2. (a) Obtained by assuming
dsr = 5, SH-SNR = 25 dB with the path loss exponent = 2 (which leads
to esr = 0.0016, erd = 0.0016, esd = 0.0062). (b) Assumes that dsr = 8,
SH-SNR = 18 dB with path loss exponent = 4 so that esr = 0.0127, erd =
5.0711 × 10−5, and esd = 0.0298. The MSEE reduction ratio of the RD link
is not shown in part (b) as it is relatively small (∼ O(10−3)).

where Qi’s are defined in Section II-C with the superscripts
denoting the associated iteration number. The ISI method in-
jects additional noise to estimate the ERs of the resulting links
and then converting them back to êsr and êrd via the analytic
formulas given in Table II. The performance curves clearly
demonstrate that the advantage of the VLA-EM scheme against
the VLA estimator is negligible, whereas the EISI-VLA scheme
far outperforms the other two schemes.

Fig. 5 plots the MSEE reduction ratio as a function of the
scaling factor a

(w)
sd , whereas the other scaling factor a

(w)
rd is cho-

sen such that e
(w)
rd = e

(w)
sd . These curves reveal that the MSEE

performance is improved by injecting proper noise power into
the received samples, and there is an optimal injected noise
power that achieves the maximum MSEE improvement. This
phenomenon is called the stochastic resonance effect, which
has been observed in some nonlinear systems (see [17] and
references therein). We also notice that the improvement is
more impressive when the true ER becomes smaller, which
is consistent with what the IS theory has predicted. The NBI,
defined as the range of scaling factor values within which the
MSEE reduction ratio is less than 1, is a function of the true
esd and erd. As mentioned before, we are not able to derive
closed-form expressions for the optimal scaling factors used
in a noncoherent network. Nevertheless, extensive simulations
suggest that it is a good strategy to make e

(w)
sd = e

(w)
rd ≈ 0.05 if

both esd and erd are much smaller than 0.05. As was explained
in Sections V and VI, because of the availability of improved
estimates for esd and erd, the performance of êsr is also
improved, although we do not and could not inject noise into
samples received at RNs.

Although proper noise injection does improve the conver-
gence rate performance, in some cases such as those shown in
Fig. 5, the improvement is not quite as significant as one wishes.
The MSEE reduction ratio can be further improved by the
EISI-VLA estimator, as shown in Fig. 6, where the simulation

Fig. 6. MSEE reduction ratio behavior of the EISI-VLA estimator for BFSK-
based CCN with different nvl. Other system parameter values are the same as
those of Fig. 5(b).

conditions are identical to those assumed in Fig. 5(b). As
expected, the performance is improved with the increase of nvl,
and the improvement is much more impressive when the true
ER is small: the required sample size reduction is more than ten
times for the SD link and is greater than 8000 times for the RD
link when nvl = 30. Another benefit of using multiple VLs is
that the NBI becomes larger as nvl increases.

VII. CONCLUSION

In this paper, we have proposed noise-enhanced blind ER es-
timators for binary modulation-based wireless relay networks.
Noise enhancement manifests itself in three aspects. First, noise
is added to the received samples to create VLs to remove the
CSI requirement and to resolve the ambiguity associated with
an underdetermined system and that due to the symmetric na-
ture of a cascaded link. Second, multiple noise-injected VLs are
used to reduce the estimation variance and the number of relays
needed for estimating ERs. Third, inspired by the IS theory
used in computer-simulation-based ER estimation, noise with
proper power is inserted to improve the ER estimator’s conver-
gence performance. The MSEE performance of some special
networks is analyzed, and both analysis and simulations show
that the ISI estimator exhibits the so-called stochastic resonance
phenomenon that amounts to the effect that injecting noise with
a proper power helps improve an estimator’s performance, and
there exists an optimal injected noise power that offers the best
MSEE improvement. Numerical results indicate that the per-
formance of the ML detector using our estimators is very close
to that of the ideal ML detector, which knows the SR link’s
ER perfectly. Moreover, the Monte-Carlo-based ISI approach
is capable of bringing about several orders of MSEE reduction.

APPENDIX A
PROOF OF LEMMA 3

Letting p̃(w) be the average count-based estimate of p(w), i.e.,
the SMP of the noise-injected SD and RD link outputs, we have,
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from (8), the conversion rule

p̂(w) = Do +
1 − 2esd − 2erd + 4esderd

1 − 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

p̃(w) (A.1)

where

Do =
(1−esd−erd+2esderd)

(
1−2e

(w)
sd −2e

(w)
rd +4e

(w)
sd e

(w)
rd

)
1−2e

(w)
sd −2e

(w)
rd +4e

(w)
sd e

(w)
rd

−
(1−2esd−2erd+4esderd)

(
1−e

(w)
sd −e

(w)
rd +2e

(w)
sd e

(w)
rd

)
1−2e

(w)
sd −2e

(w)
rd +4e

(w)
sd e

(w)
rd

.

(A.2)

As p̂(w) is a linear function of p̃(w), the ML estimate of p(w),
it is an ML estimator of p. Furthermore, p̃(w) is a sample
mean estimator; its variance is equal to var[p̃(w)] = (p(w)(1 −
p(w))/N). Similarly, the variances of p̂(w) and p̂ are, respec-
tively, given by

Var
[
p̂(w)

]
=

p(w)
(
1−p(w)

)
N

(
1−2esd−2erd+4esderd

1−2e
(w)
sd −2e

(w)
rd +4e

(w)
sd e

(w)
rd

)2

Var[p̂]=
p(1−p)

N
.

Invoking the inequalities 0 ≤ p < p(w) ≤ 0.5 or 1 ≥ p >

p(w) ≥ 0.5, esd ≤ e
(w)
sd , and erd ≤ e

(w)
rd , we have p(1 − p) ≤

p(w)(1 − p(w)) and ((1 − 2esd − 2erd + 4esderd/1 − 2e
(w)
sd −

2e
(w)
rd + 4e

(w)
sd e

(w)
rd ))2 ≥ 1. Hence

Var[p̂]=
p(1 − p)

N

≤
(

1 − 2esd − 2erd + 4esderd

1 − 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

)2
p(w)(1 − p(w)

N

=Var
[
p̂(w)

]
.

In other words, as far as estimating p is concerned, the noise
injection method does not help.

APPENDIX B
PROOF OF (35)

Following [20], we have the approximation for MSEE reduc-
tion ratio

γ ≈
∫∞
0 f(yrd)dyrd∫∞

0 W (yrd)f(yrd)dyrd

, W (yrd)
def
=

f(yrd)
f ∗(yrd)

(B.1)

where f ∗(yrd) and f(yrd) are Gaussian pdfs with the same
mean

√
Pr|hrd|2 but distinct variances a

(w)
rd σ2

d and σ2
d,

respectively.
After some calculations, we have

∞∫
0

W (yrd)f(yrd)dyrd

=
a
(w)
rd√

2a
(w)
rd − 1

Q

⎛⎜⎝
√√√√(

2a
(w)
rd − 1

)
Pr|hrd|2

aσ2
d

⎞⎟⎠ . (B.2)

Since Q(y) ≈ (exp(−y2/2)/y
√

2π), for large y, we obtain

γ ≈ 2a
(w)
rd − 1(√
a
(w)
rd

)3 exp

⎡⎣−
(

1 − a
(w)
rd

)
Pr|hrd|2

2a
(w)
rd σ2

d

⎤⎦ . (B.3)

The approximation 2a
(w)
rd − 1 ≈ 2a

(w)
rd yields

γ ≈ 2√
a
(w)
rd

exp

⎡⎣−
(
1 − a

(w)
rd

)
Pr|hrd|2

2a
(w)
rd σ2

d

⎤⎦ (B.4)

which is maximized when a
(w)
rd = Pr|hrd|2/σ2

d.

APPENDIX C
PROOF OF LEMMA 4

The analysis presented here follows that of [11] with three
major distinctions: 1) We do not use the small ER assumption
e
(w)
i � 1; 2) we have equal ER constraint; and 3) we need to

consider the ER conversion (32).
Assuming independent links, we can show that the covari-

ance matrix of the pairwise matching indicators I(ŷk[t] =
ŷj [t]) for the noise injected network is

C =

⎛⎝ p12(1 − p12) p123 − p12p13 p123 − p12p23

p123 − p12p13 p13(1 − p13) p123 − p13p23

p123 − p12p23 p123 − p13p23 p23(1p23)

⎞⎠
(C.1)

where

pkl =
(

1 − e
(w)
k

)(
1 − e

(w)
l

)
+ e

(w)
k e

(w)
l

pklm =
(

1 − e
(w)
k

)(
1 − e

(w)
l

)(
1 − e(w)

m

)
+ e

(w)
k e

(w)
l e(w)

m .

The three-link network induces the nonlinear system (17)
whose solution is given by (18). It is easier to compute the
associated inverse Jacobian matrix for such a nonlinear map-
ping, i.e.,

J−1 =

⎛⎜⎜⎜⎝
(

2e
(w)
2 − 1

) (
2e

(w)
1 − 1

)
0(

2e
(w)
3 − 1

)
0

(
2e

(w)
1 − 1

)
0

(
2e

(w)
3 − 1

) (
2e

(w)
2 − 1

)
⎞⎟⎟⎟⎠ .

Using the constraint e
(w)
1 = e

(w)
2 = e

(w)
3 = ε, we obtain the

Jacobian and covariance matrices as

J =
1

2(2ε − 1)

⎛⎝−1 −1 1
−1 1 −1
1 −1 −1

⎞⎠ , C =

⎛⎝ z1 z2 z2

z2 z1 z2

z2 z2 z1

⎞⎠
where z1 =2ε−6ε2+8ε3 − 4ε4, and z2 =ε − 5ε2+8ε3−4ε4.
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The covariance matrix for the estimation error is thus
given by

JCJT=
1

4(2ε − 1)2

⎛⎝ 3z1 − 2z2 2z2 − z1 2z2 − z1

2z2 − z1 3z1 − 2z2 2z2 − z1

2z2 − z1 2z2 − z1 3z1 − 2z2

⎞⎠ .

The variance of the estimator ε̂ can be approximated by

Var[ε̂] ≈ 3z1 − 2z2

4(2ε − 1)2N
=

4ε − 8ε2 + 8ε3 − 4ε4

4(2ε − 1)2N
(C.2)

and the variance of êi can be approximated by (see [19])

Var[êi] ≈
(

dgi(ε)
dε

)2

(C.3)

Var[ε̂] =

(
a
(w)
i

)2

(
a
(w)
i + 2ε − 2a

(w)
i ε

)4

ε − 2ε2 + 2ε3 − ε4

(2ε − 1)2N

(C.4)

where gi(x) = x/(a(w)
i + 2x − 2a

(w)
i x) is the noncoherent

conversion rule.

APPENDIX D
PROOF OF THEOREM 1

Taking into account the constant noise-injected link ER
constraint, we express the average bit ERs for BFSK and
DPSK as

P bfsk
b = a

(w)
i

(
2a

(w)
i + SNRi

)−1

= ε (D.1)

P dpsk
b = a

(w)
i

[
2
(
a
(w)
i + SNRi

)]−1

= ε. (D.2)

Using (D.2) and omitting the superscript (w) for simplicity, we
obtain

ai + 2ε − 2aiε =
ai(SNRi + 1)
ai + SNRi

(D.3)

which, along with Lemma 4, gives

V ar(êi)≈
a2

i (ai+SNRi)4

(aiSNRi+ai)4

×
[

3a4
i +12a3

i SNRi+16a2
i SNR2

i +8aiSNR3
i

16(ai+SNRi)4N
(ai+SNRi)2

SNR2
i

]
.

The MSEE reduction ratio γ is thus given by (D.4), shown
at the bottom of the page. Using the change of variable

qi = ai/SNRi, we find that the condition (∂γ/∂ai) = 0 is
equivalent to

6q5
i + 27q4

i + 43q3
i + 26q2

i − 4 = 0. (D.5)

Since the only positive rational root is qi ≈ 0.30855316 ≡ t1,
(D.2) suggests that we inject noise such that

ε =
t1SNRi

2(t1 + 1)SNRi
= 0.1179. (D.6)

Furthermore, the minimum achievable MMSE reduction ratio
is given by

γmin =γ|ai=t1SNRi

=
78.622SNR4

8SNR5
i +32SNR4

i +52SNR3
i +43SNR2

i +18SNRi+3

≈9.8277
SNR2

i

(1+SNRi)3
.

Solving the equation γ|ai=t1SNRi
= 1 for SNRi gives one

positive repeated root 3.24092. Since ai > 1, SNRi must be
greater than 1/t1 = 3.24093 in order for noise injection to
become beneficial.

Employing a similar approach for a BFSK-based network,
we conclude that

γmin =γ|ai=t′1SNRi

=
19.655SNR4

i

SNR5
i +8SNR4

i +26SNR3
i +43SNR2

i +36SNRi+12

≈19.655
SNR2

i

(2+SNRi)3
(D.7)

where t′1 = 0.15427658, and noise injection is beneficial only
if SNRi ≥ 6.4828.

APPENDIX E
PROOF OF LEMMA 5

We begin with the simpler case where the network only
consists of PLs 1 and 2 and VL 1, whose outputs are y1, y2, and
y
(v)
1 . The probability that two PLs and the VL all give identical

decisions can be decomposed as

Pr
(
ŷ2 = ŷ1 = ŷ

(v)
1

)
=

1
2

[
Pr

(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = 1

)
+ Pr

(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = −1

)]
def
= p12(v1). (E.1)

γ =
1
a2

i

[
3a6

i + 18a5
i SNRi + 43a4

i SNR2
i + 52a3

i SNR3
i + 32a2

i SNR4
i + 8aiSNR5

i

(1 + SNRi)2
(
3 + 12SNRi + 16SNR2

i + 8SNR3
i

) ]
(D.4)
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The binary symmetric nature of both PLs gives

Pr
(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = −1

)
= Pr

(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = 1

)
= Pr(ŷ2 = 1|x = 1) Pr

(
ŷ1 = ŷ

(v)
1 = 1|x = 1

)
+ Pr(ŷ2 = −1|x = 1) Pr

(
ŷ1 = ŷ

(v)
1 = −1|x = 1

)
def= (1 − Q2)psm + Q2pem. (E.2)

Based on the normalized model for link 1, i.e., y1 = hx + w,
where x ∈ {±1}, h is Raleigh distributed, and w is a zero-mean
Gaussian random variable with variance var(w) = N0/2 =
1/2SNR1, we obtain

pem = Pr
(
ŷ1 = ŷ

(v)
1 = −1|x = 1

)
= Pr

(
ŷ1 = ŷ

(v)
1 = 1|x = −1

)
=

∫
h

Pr (−h + w > 0,−h + w + wv > 0|x = −1, h)

× f(h)dh

=
∫
h

Pr

(
n > h

√
2

N0
,m > h

√
2

a
(v)
1 N0

∣∣∣∣∣x = −1, h

)
× f(h)dh (E.3)

where m = (w + wv)/
√

(a(v)
1 N0)/2, n = w/

√
N0/2, wv is a

zero-mean real Gaussian random variable with variance (a(v)
1 −

1)N0/2, and E[nm] = 1/

√
a
(v)
1 .

The first integrand of (E.3) can be expressed as a standard
bivariate Gaussian distribution function Q(x, y; ρ), which, in
turn, yields the Craig form as [14, eq. (4.17)]

Pr

[
n > h

√
2

N0
,m > h

√
2

a
(v)
1 N0

∣∣∣∣∣x = −1, h

]

= Q

(
h

√
2

N0
, h

√
2

a
(v)
1 N0

; ρ

)

=
1

2π

tan−1

( √
a
(v)
1

−1

1−ρ

√
a
(v)
1

)
∫
0

exp
(
− 2h2

2N0 sin2 Φ

)
dΦ

+
1

2π

tan−1

(
1√

a
(v)
1

−1

)
∫
0

exp
(
− 2ρ2h2

2N0 sin2 Φ

)
dΦ

(E.4)

where ρ = (1/

√
a
(v)
1 ) is the correlation coefficient.

Using the method described in [14, ch. 5] and the identity
[14, eq. (5.A.11)]∫ (

1 +
c

sin2 Φ

)−1

dΦ = Φ −
√

c

c + 1
tan−1

⎡⎣ tan Φ√
c

c+1

⎤⎦
we obtain∫
h

Q

(
h

√
2

N0
, h

√
2

a
(v)
1 N0

, ρ

)
f(h)dh

=
1

2π

π/2∫
0

(
1 +

1

N0 sin2 Φ

)−1

dΦ

+
1

2π

tan−1

(
ρ√

1−ρ2

)
∫
0

(
1 +

ρ2

N0 sin2 Φ

)−1

dΦ

=
1
4

(
1 −

√
SNR1

1 + SNR1

)

+
1

2π

[
tan−1

(
ρ√

1 − ρ2

)

−
√

ρ2SNR1

1 + ρ2SNR1
tan−1

(
ρ
√

1 + ρ2SNR1√
(1 − ρ2)ρ2SNR1

)]

=
e1

2
+

1
2π

×

⎡⎣tan−1

⎛⎝ 1√
a
(v)
1 − 1

⎞⎠−
(

1 − 2e
(v)
1

)

× tan−1

⎡⎢⎣
(

1 − 2e
(v)
1

)−1

√
(a(v)

1 − 1)

⎤⎥⎦
⎤⎥⎦ def

= pem

(
e1, a

(v)
1

)
. (E.5)

Invoking the relation [14, eq. (6.42)]

Q(−x,−y; ρ) = 1 − Q(x) − Q(y) + Q(x, y; ρ) x, y ≥ 0

and (E.5), we express the conditional correct (pairwise) SMP as

Pr
(
ŷ1 = ŷ

(v)
1 = 1|x = 1

)
= Pr

(
ŷ1 = ŷ

(v)
1 = −1|x = −1

)
=

∫
h

Pr(w > −h,m > −h|x = −1, h)f(h)dh

= 1−e1 − e
(v)
1 +pem

(
e1, a

(v)
1

)
def
= pcm

(
e1, a

(v)
1

)
. (E.6)

Summarizing (E.1)–(E.6), we then obtain

p12(v1) = e2pem

(
e1, a

(v)
1

)
+ (1 − e2)pcm

(
e1, a

(v)
1

)
(E.7)

which is (40) in the main text. The other probabilities (43)–(46)
can similarly be derived with the aid of the following two
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identities [14, eq. (6.42)]:

Q(x, y, ρ) = Q(x)−Q(x,−y,−ρ), x≥0, y<0 (E.8)

Q(x, y, ρ) = Q(y)−Q(−x, y,−ρ), x<0, y≥0. (E.9)
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