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Optimal Resource Allocation for Increasing Strictly
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Abstract—Utility functions are widely used to model user-
perceived service quality. For elastic traffic, the utility function is
often concave. An elastic allocation (EA) algorithm has recently
been proposed to maximize the total utility obtained by users,
assuming resource is infinitesimally divisible and queues are con-
stantly backlogged. We found that the EA algorithm is not always
optimal. In fact, the solution it obtains can be infeasible. In this
paper, we present a modified EA algorithm that is guaranteed to
find the optimal solution under the same assumptions. The result
is generalized for a system where queues are generally backlogged.
In a real system, there is normally a basic unit for resources.
Therefore, we further extend the designs to such a system for
both constantly backlogged and generally backlogged queues. To
reduce computational complexity, we also propose suboptimal
resource allocation algorithms. Simulations are conducted to eval-
uate the proposed algorithms in terms of utility sum and execution
time. Results show that our proposed algorithms perform better
than previous works. Moreover, the performances of the proposed
suboptimal algorithms are close to those of the optimal algorithms.

Index Terms—Elastic traffic, resource allocation, utility, wire-
less network.

I. INTRODUCTION

MAXIMIZING system throughput and achieving fairness
among users in a wireless network are, in general,

conflicting goals [1]. As a compromise, utility functions are
widely used to model user satisfaction, and the goal becomes
to maximize the total utility obtained by users.

It is reasonable to assume that utility function is increasing
in the amount of allocated resources. In this paper, a function
f(x) is said to be increasing (or decreasing) if b > a implies
f(b) > f(a) (respectively, f(b) < f(a)). In general, utility
functions adopted for different types of applications are likely
to be different. For example, in [2] and [3], the sigmoid and
step functions are used, respectively, as the utility functions of
soft and hard quality-of-service (QoS) traffic flows. For elastic
traffic, the utility function is often an increasing strictly concave
function [3]–[6].

In [4], a necessary and sufficient condition to maximize the
utility function was derived to achieve cross-layer optimization
for orthogonal frequency-division-multiplexing-based wireless
networks. The same authors presented efficient dynamic sub-
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carrier and adaptive power allocation algorithms in [5]. In [3],
a similar necessary and sufficient condition was stated for a
simpler system. Two types of traffic, namely, hard QoS and
elastic traffic, were studied. Efficient algorithms were provided
to find the near-optimal solution for hard QoS traffic and the
optimal solution for elastic traffic. The elastic allocation (EA)
algorithm presented in [3], which was designed to find the
optimal solution for elastic traffic, is related to our work and
will be reviewed in Section III. All the works presented in
[3]–[5] assumed that queues are constantly backlogged and that
resources are infinitesimally divisible.

In [6], the assumption of constantly backlogged queues is
relaxed. In other words, queues are assumed to be generally
backlogged such that the data buffered in a queue can be
completely served if sufficient resource is allocated. The as-
sumption of infinitesimally divisible resource remains intact.
The resource allocation problem was formulated to maximize
the total utility obtained by users subject to the constraints
provided by Kleinrock’s conservation law [7], which fully
captures the behavior of a general queueing system. Since
one crucial parameter of Kleinrock’s conservation law is not
easy to compute, the authors suggested to manage the resource
by the famous packetized general processor sharing [8] or
weighted fair queueing [9], with the weights determined by the
Lagrangian multiplier method. In addition to the assumption
of infinitesimally divisible resource, average data arrival rate
and packet size of each user are required, which further limits
the applicability of the work presented in [6]. For convenience,
we call a resource allocation algorithm fluid flow based if it
assumes that the resource is infinitesimally divisible.

In a real system, there is a basic unit for resource. Such a unit
will be referred to as resource block in this paper. For example,
in IEEE 802.16 WiMAX [10] and long-term evolution (LTE)
[11], a resource block is normally constituted by several trans-
mission symbols on one subchannel. The granularity can be
selected to trade performance with complexity. To distinguish
from fluid-flow-based schemes, an algorithm that allocates
resource blocks is called a resource-block-based algorithm.

In [12], a resource-block-based algorithm called PF-MUX
was proposed to achieve proportional fairness for orthogonal
frequency-division multiple-access (OFDMA) systems. The
concept of proportional fairness was introduced in [13], and
according to [14], the utility function corresponding to pro-
portional fairness is log(x), where x represents the average
rate obtained by a user. It is not hard to see that log(x) is an
increasing strictly concave function of x for all x > 0. The PF-
MUX algorithm assumes queues are constantly backlogged and
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performs resource allocation based on some heuristic. It will
be briefly reviewed in Section III because we will compare its
performance with those of our proposed resource-block-based
algorithms.

The purpose of this paper is to present optimal fluid-flow-
based and resource-block-based resource allocation algorithms
for increasing strictly concave utility functions. The queues can
be constantly backlogged or generally backlogged. For a fluid-
flow-based system where queues are constantly backlogged, we
found that the EA algorithm presented in [3] does not obtain the
optimal solution for some cases. In fact, the solution it obtains
can be infeasible. A modified EA (MEA) algorithm is proposed.
We show that the MEA algorithm guarantees to find an op-
timal solution. We then generalize the results to a generally
backlogged system. Given queue statuses, a necessary and suf-
ficient condition for optimal resource allocation is developed.
Moreover, an optimal resource allocation algorithm, called
generalized EA (GEA), is designed based on the necessary
and sufficient condition. Finally, we turn to consider resource-
block-based systems, where queues are either constantly or
generally backlogged. A necessary and sufficient condition
for optimal resource allocation is stated for both constantly
backlogged and generally backlogged systems. A straightfor-
ward resource allocation algorithm, called sequential allocation
(SA), which generates optimal solutions for both constantly
backlogged and generally backlogged systems, is presented.
To speed up resource allocation, a resource-block-based EA
(RBEA) and a generalized RBEA (GRBEA) are proposed, re-
spectively, for constantly backlogged and generally backlogged
systems. To further reduce the computational complexities
of RBEA and GRBEA, we propose suboptimal algorithms
called MEA+SA and GEA+SA for constantly backlogged and
generally backlogged systems, respectively. The basic idea of
MEA+SA (or GEA+SA) is to perform MEA (respectively,
GEA) to get a preliminary solution and then execute SA for the
rest of resource blocks. Simulations are conducted to evaluate
the performances of the proposed resource allocation algo-
rithms for various sizes of resource block and user numbers.
Results show that the performances of the proposed suboptimal
algorithms are close to those of the optimal algorithms. More-
over, our proposed algorithms perform better than previous
works.

The rest of this paper is organized as follows. Problem
formulation is described in Section II. In Section III, we review
related works. Optimal fluid-flow- and resource-block-based
resource allocation algorithms are presented in Sections IV and
V, respectively. Simulation results are provided and discussed
in Section VI. Finally, we draw our conclusion in Section VII.

II. PROBLEM FORMULATION

Consider the downlink transmission of a wireless network
that consists of a base station (BS) and a group of users. Let
Ω represent the set of users. When the BS needs to perform
resource allocation, it is assumed that both queue and channel
statuses of users are known. This is an acceptable assumption
because the BS maintains the queues and channel statuses can
be obtained through status report or estimation. For each user,

Fig. 1. Example of U(r) and Ui(r), where U(r) = 1 − e(−r/1000),
(c1, c2, c3) = (0.8, 0.4, 0.2), and (Q1, Q2, Q3) = (3200, 2000, 1200).

an adaptive modulation and coding (AMC) scheme is adopted
according to its channel status to maximize transmission rate
while keeping the probability of transmission error under an
acceptable threshold. For user i, let Qi and ci denote, respec-
tively, the amount of data buffered in its queue (called queue i)
and the channel quality parameter. In this paper, Qi is expressed
in terms of required resource assuming that data are transmitted
by the maximum achievable rate among the available AMC
schemes, and ci is defined as the ratio of the adopted AMC
scheme to the maximum achievable rate and, therefore, is in the
range [0, 1]. Note that we have Qi = ∞ if queue i is assumed
to be constantly backlogged and 0 ≤ Qi ≤ ∞ if it is assumed
to be generally backlogged. The utility function is denoted
by U(r), where r is the allocated resource, assuming that the
adopted AMC scheme yields the maximum achievable rate. We
assume that the utility function U(r) is an increasingly strictly
concave function so that the marginal utility function, which
is defined by u(r) = (U(r)/dr), exists for all r and satisfies
u(r) > 0 and u′(r) = (du(r)/dr) < 0. Let Ui(r) and ui(r)
represent, respectively, the utility and marginal utility functions
for user i. We have

ui(r) =
{

ci · ui(r), if r ≤ Qi

ci

0, otherwise

Ui(r) =

r∫
0

ui(s)ds. (2)

It is obvious that Ui(r) is a concave utility function and strictly
concave in the range [0, (Qi/ci)]. Examples of U(r) and Ui(r)
are depicted in Fig. 1.

Given Qi and ci for all i ∈ Ω, our objective is to maximize∑
i∈Ω Ui(ri) subject to

∑
i∈Ω ri ≤ rtotal and ri ≥ 0 for all

i ∈ Ω, where ri and rtotal represent, respectively, the amount of
resource allocated to user i and the total resource. A resource
allocation π(Ω) = {ri|i ∈ Ω} is said to be feasible if it satis-
fies

∑
i∈Ω ri ≤ rtotal and ri ≥ 0 for all i ∈ Ω. Furthermore,

π(Ω) = {ri|i ∈ Ω} is said to be an optimal resource alloca-
tion if and only if (iff) 1) it is feasible, and 2) it holds that∑

i∈Ω Ui(ri) ≥
∑

i∈Ω Ui(r′i) for any feasible resource alloca-
tion π′(Ω) = {r′i|i ∈ Ω}. We assume that time is divided into
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TABLE I
LIST OF MAJOR NOTATIONS

frames, and resource allocation is performed at the beginning
of each frame.

The above formulation is applicable to resource allocation
in OFDMA-based systems such as WiMAX and LTE. For
better comprehensibility, major notations used in this paper are
summarized in Table I.

III. RELATED WORKS

In this section, we review the EA [3] and the PF-MUX
algorithms [12].

A. EA Algorithm

The EA algorithm was designed for fluid-flow-based sys-
tems, where queues are constantly backlogged. As stated in
[3], a resource allocation π(Ω) = {ri|i ∈ Ω} is optimal if it is
marginally fair and satisfies

∑
i∈Ω ri = rtotal. Here, marginal

fairness means ui(ri) = uj(rj) ≥ uk(rk) for all users i, j, and
k belonging to Ω with ri > 0, rj > 0, and rk = 0. Based on this
necessary and sufficient condition, the following EA algorithm
was proposed in [3].

Algorithm 1: EA [3]

begin
1) Derive the inverse marginal utility function of each user

(i.e., u−1
i (x), i ∈ Ω).

2) Compute the aggregate inverse marginal utility function
u−1∑(x; Ω) =

∑
i∈Ω u−1

i (x).

3) Find the aggregate marginal utility function u∑(r; Ω) by

taking the inverse of u−1∑(x; Ω).

4) Determine the aggregate marginal utility with respect to
rtotal (i.e., u∑(rtotal; Ω)).

5) The EA πEA(Ω) = {r∗i |i ∈ Ω} is given by

r∗i =

{
u−1

i

(
u∑(rtotal; Ω)

)
, if ui(0) ≥ u∑(rtotal; Ω)

0, otherwise

end

The basic idea of the EA algorithm is to first determine
the aggregate marginal utility, i.e., the value x that satisfies∑

i∈Ω u−1
i (x) = rtotal or u∑(rtotal; Ω), and then compute the

share of resource for each user based on u∑(rtotal; Ω). Unfor-

tunately, its solution is infeasible if there exists user i such
that ui(0) < u∑(rtotal; Ω). The reason is as follows. The

assumption that the utility function is increasing strictly
concave implies both ui(r) and u−1

i (x) are decreasing for all
i ∈ Ω. Consequently, it is true that u−1

k (u∑(rtotal; Ω)) < 0

if uk(0)<u∑(rtotal; Ω). According to the operation of the EA

algorithm, we have ui(u−1∑(rtotal; Ω)) = uj(u−1∑(rtotal; Ω))

(in particular, ui(u−1∑(rtotal; Ω)) = uj(u−1∑(rtotal; Ω)) for all i,

j∈Ω, and
∑

i∈Ω u−1
i (u∑(rtotal; Ω))=rtotal). Assume that user

k is the only one that satisfies uk(0)<u∑(rtotal; Ω). By sim-

ply setting r∗k =0 makes
∑

i∈Ω r∗i =
∑

i∈Ω u−1
i (u∑(rtotal;

Ω))− u−1
k (u∑(rtotal; Ω)) = rtotal − u−1

k (u∑(rtotal; Ω)) >

rtotal, which is a contradiction to the constraint
∑

i∈Ω r∗i ≤
rtotal. The following Lemma 1 states a more general case.
Proofs of all lemmas and theorems are provided in Appendix A.

Lemma 1: Assume that rtotal > 0 and Qi = ∞ for all i ∈
Ω. Given the EA πEA(Ω)={r∗i |i∈Ω}, it holds that

∑
i∈Ω r∗i >

rtotal if Λ �= ∅, where Λ = {i|i ∈ Ω, ui(0) < u∑(rtotal; Ω)}.

B. PF-MUX Algorithm

In [12], an OFDMA system consisting of M subchannels is
considered. Each subchannel comprises S subcarriers and is
divided into T slots. The basic resource unit is equal to one
slot on a subchannel. Queues are assumed to be constantly
backlogged. The resource allocation problem was formulated in
[12] as an optimization problem that maximizes

∑
i∈Ω log Ri,

where Ri is the average rate of user i. A heuristic algo-
rithm called PF-MUX was proposed to allocate subchannels to
users.

Assume that the PF-MUX algorithm is to allocate the T slots
of subchannel m to users. All users are sorted according to
ρi,m = (ci,m/R′

i), where ci,m denotes the channel quality pa-
rameter for user i on subchannel m, and R′

i represents the past
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average rate of user i. Let Ωa, a = 0, 1, 2, . . . , log2 T contain
the top 2a users in ρi,m. The PF-MUX algorithm allocates to
every user in Ωa(T/2a) slots for the maximum a that satisfies
the following: 1) The average transmission rate of the users in
Ωa is greater than or equal to that of users in Ωa−1, and 2) the
increment of utility sum if subchannel m is allocated to users
in Ωa is greater than or equal to that if it is allocated to users
in Ωa−1. The process of subchannel allocation is performed for
m = 1 to M .

IV. RESOURCE ALLOCATION FOR

FLUID-FLOW-BASED SYSTEMS

In this section, we present optimal resource allocation algo-
rithms for fluid-flow-based systems. The cases of constantly
backlogged queues and generally backlogged queues are stud-
ied in sections A and B, respectively.

A. Constantly Backlogged Queues

As discussed in Section III, if Λ = {i|i ∈ Ω, ui(0) <
u∑(rtotal; Ω)} �= ∅, then πEA(Ω) = {r∗i |i ∈ Ω} is not a fea-

sible allocation because the constraint
∑

i∈Ω r∗i ≤ rtotal is vi-
olated. The remedy is to remove every user k ∈ Λ out of Ω
and repeatedly execute the EA algorithm until a feasible solu-
tion is obtained. This algorithm, called MEA, is subsequently
described.

Algorithm 2: MEA

Data: Λ = Γ = Ω
Result: ri for all i ∈ Ω
begin

while Λ �= ∅ do
Perform Steps 1)-4) of the EA algorithm for user set
Γ.
Let Λ = {i|i ∈ Γ, ui(0) < u∑(rtotal; Γ)}
Γ = Γ − Λ

end
ri = u−1

i (u∑(rtotal; Γ)) for all i ∈ Γ.

ri = 0 for all i ∈ Ω − Γ
end

A property regarding πEA(Ω) = {r∗i |i ∈ Ω} and πEA(Ω −
Λ) = {si|i ∈ Ω − Λ} is stated in Lemma 2. Note that r∗i and si

represent the amount of resource allocated to user i if the EA
algorithm is performed for users in Ω and Ω − Λ, respectively.
This property is useful in proving the optimality of the proposed
MEA algorithm stated in Theorem 3.

Lemma 2: Assume that rtotal > 0 and Qi = ∞ for all
i ∈ Ω. Given πEA(Ω) = {r∗i |i ∈ Ω}, Λ = {i|i ∈ Ω, ui(0) <
u∑(rtotal; Ω)} �= ∅, and πEA(Ω − Λ) = {si|i ∈ Ω − Λ}, it

holds that ui(si) > ui(r∗i ) > uk(0) for any i ∈ Ω − Λ and
k ∈ Λ.

Theorem 3: Assume that rtotal > 0 and Qi = ∞ for all
i ∈ Ω. The allocation πMEA(Ω) = {ri|i ∈ Ω} determined by

the MEA algorithm is marginally fair and satisfies
∑

i∈Ω ri =
rtotal and, thus, is optimal.

Note that Lemma 2 implies si < r∗i for all i ∈ Ω − Λ. As a
result, it is possible that {i|i ∈ Ω − Λ, ui(0) < u∑(rtotal; Ω −
Λ)} �= ∅. Moreover, the resource allocated to the same user
decreases iteration by iteration. Let Γ be the user set of a
particular iteration and i ∈ Γ, k ∈ Ω − Γ. Lemma 2 implies
that ui(si) > uk(0) if user i is allocated resource si ≥ 0 in the
considered iteration.

It is interesting to analyze the time complexity of the MEA
algorithm. In Appendix B, we provide the analysis of time
complexities of all the algorithms proposed in this paper.

B. Generally Backlogged Queues

In this section, we consider a system where queues are
generally backlogged. It is clear that if

∑
i∈Ω(Qi/ci) ≤ rtotal,

then π(Ω) = {ri|ri = (Qi/ci), i ∈ Ω} is an optimal alloca-
tion. In fact, any feasible resource allocation π′(Ω) = {r′i|r′i ≥
(Qi/ci), i ∈ Ω} is optimal. Assume that

∑
i∈Ω(Qi/ci) >

rtotal. Let Γ be a subset of Ω such that i ∈ Γ iff Qi > 0. The
set Γ can be partitioned into three disjoint subsets, namely, ΓZ ,
ΓP , and ΓA, such that user i is contained in ΓZ , ΓP , or ΓA

iff ri = 0, 0 < ri < (Qi/ci), or ri = (Qi/ci), respectively. The
definition of marginal fairness is generalized as follows.

Definition: A resource allocation π(Ω) = {ri|i ∈ Ω} is said
to be generalized marginally fair if 1) ri = 0 if Qi = 0
and 2) for any user z ∈ ΓZ , p, p′ ∈ ΓP , and a ∈ ΓA, it is
true that

uz(rz) ≤ up(rp) = up′(rp′) ≤ ua(ra). (3)

Theorem 4 states a necessary and sufficient condition for an
optimal allocation.

Theorem 4: Assume that rtotal > 0, 0 ≤ Qi ≤ ∞ for all i ∈
Ω and

∑
i∈Ω(Qi/ci) > rtotal. A feasible resource allocation

π(Ω) = {ri|i ∈ Ω} is optimal iff it is generalized marginally
fair and satisfies

∑
i∈Ω ri = rtotal. Moreover, there is exactly

one optimal resource allocation.
In the rest of this section, we present an optimal resource

allocation algorithm, called GEA, which meets the necessary
and sufficient condition stated in Theorem 4. The basic idea of
GEA is to first place users to their appropriate subsets (ΓZ , ΓP ,
or ΓA) and then calculate their resource shares. To accomplish
this, we set ri = 0 for all i ∈ Γ, ΓZ = Γ, and ΓP = ΓA = ∅
initially. There are three possibilities in each iteration: 1) A user
is moved from ΓZ to ΓP ; 2) a user is moved from ΓP to ΓA; and
3) all users are in their appropriate subsets and the optimal so-
lution is obtained. As an example, assume that in some iteration
user j is moved from ΓZ to ΓP . For this event to happen, the
conditions to be met are the following: 1)

∑
i∈ΓP

u−1
i (uj(0)) +∑

i∈ΓA
(Qi/ci) < rtotal (not all users are in their appropriate

subsets); 2) uj(0) = maxi∈ΓZ
ui(0) (no user other than user j

is moved from ΓZ to ΓP ); and 3) uj(0) ≥ maxi∈ΓP
ui(Qi/ci)

(no user is moved from ΓP to ΓA). The conditions for other
events to happen can be determined similarly. After all users
are placed in the correct subsets, the solution can be obtained by
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solving (3) and
∑

i∈Ω ri = rtotal. To summarize, we repeatedly
check if it holds that∑

i∈ΓP

u−1
i (u) +

∑
i∈ΓA

Qi

ci
≥ rtotal (4)

where

u = max(max
i∈ΓZ

ui(0),max
i∈ΓP

ui

(
Qi

ci

)
. (5)

If not, user i∗, chosen according to the following equation, is
moved from one set to another:

i∗ = arg max
i∈ΓZ∪ΓP

(
max
i∈ΓZ

ui(0),max
i∈ΓP

ui

(
Qi

ci

))
. (6)

All users are placed in their appropriate subsets if inequality
(4) holds. Once inequality (4) holds, the solution can be ob-
tained as follows. Set ri = 0 for all user i ∈ ΓZ ∪ (Ω − Γ),
ri = u−1

i (u∑(rtotal −
∑

i∈ΓA
(Qi/ci); ΓP )) for all user i ∈

ΓP , and ri = (Qi/ci) for all user i ∈ ΓA. The pseudocode of
GEA is provided in the following.

Algorithm 3: GEA

Data:
1) Γ = {i|Qi > 0, i ∈ Ω}
2) ΓZ = Γ
3) ΓP = ΓA = ∅

Result: ri for all i ∈ Ω
begin

if
∑

i∈Ω(Qi/ci) ≤ rtotal then
ri = (Qi/ci) for all i ∈ Γ
ΓA = Γ

else
while (1) do

u = max(maxi∈ΓZ
ui(0),maxi∈ΓP

ui(Qi/ci))
if

∑
i∈ΓP

u−1
i (u)+

∑
i∈ΓA

(Qi/ci)≥rtotal then
ri = 0 for all user i ∈ ΓZ ∪ (Ω − Γ)
ri = u−1

i (u∑(rtotal −
∑

i∈ΓA
(Qi/ci); ΓP ))

for all user i ∈ ΓP

(User i is moved from ΓP to ΓA if ri =
(Qi/ci).)
ri = (Qi/ci) for all user i ∈ ΓA

exit
else

i∗ = arg maxi∈ΓZ∪ΓP

(maxi∈ΓZ
ui(0),maxi∈ΓP

ui(Qi/ci))
if i∗ ∈ ΓZ then

ΓZ = ΓZ − {i∗}
ΓP = ΓP ∪ {i∗}

else
ΓP = ΓP − {i∗}
ΓA = ΓA ∪ {i∗}

end
end

end
end

end

V. RESOURCE ALLOCATION FOR

RESOURCE-BLOCK-BASED SYSTEMS

In this section, we consider resource allocation for resource-
block-based systems. Let B denote the size of a resource
block. We assume that rtotal is divisible by B, and let xtotal =
(rtotal/B) denote the total number of resource blocks. An addi-
tional constraint, i.e., ri = xi · B for all i ∈ Ω, is added to the
problem formulation. Here, xi and ri represent, respectively,
the number of resource blocks and the amount of resource
allocated to user i. Again, the cases of constantly backlogged
queues and generally backlogged queues are considered sepa-
rately in two different sections.

A. Constantly Backlogged Queues

Let

∆Ui[j] = Ui(j · B) − Ui ((j − 1) · B) (7)

be the utility increment of user i after receiving its jth resource
block. Since the utility function is strictly concave, we have
Ui[j] > Ui[j + 1], 1 ≤ j ≤ xtotal − 1. The definition of mar-
ginal fairness for resource-block-based systems is described as
follows.

Definition: A resource allocation π(Ω) = {xi|i ∈ Ω} is said
to be resource-block-based generalized marginally fair if, for
any users i, m ∈ Ω and xi > 0, it holds that ∆Ui[xi] ≥
∆Um[xm + 1].

Theorem 5 states a necessary and sufficient condition for
a resource-block-based allocation to be optimal for constantly
backlogged queues.

Theorem 5: Assume that xtotal > 0 and Qi = ∞ for all i ∈
Ω. A feasible resource-block-based allocation π(Ω) = {xi|i ∈
Ω} is optimal iff it is resource-block-based marginally fair and
satisfies

∑
i∈Ω xi = xtotal.

An optimal allocation algorithm called SA finds i∗ =
arg maxi∈Ω ∆Ui[xi + 1], allocates one resource block to user
i∗, and updates xi∗ = xi∗ + 1. The process repeats until no
more resource block is available. Of course, the initial value
of xi is set to zero for all i ∈ Ω. It is clear that the SA algorithm
obtains an optimal solution because the resource-block-based
marginal fairness is maintained after each resource block is
allocated.

It is possible to allocate more than one resource block in each
iteration. The allocation algorithm works as follows. Again, the
initial value is set to zero for all xi. If Ω = {i}, we simply set
xi = xi + xtotal. Assume that |Ω| > 1. A user is removed from
Ω if it will not receive any more resource block. Let

j∗ = arg min
j∈Ω

∆Uj [xj + 1] (8)

and define

µi[xi] = max {m ≥ 0|∆Ui[xi + m] ≥ ∆Uj∗ [xj∗ + 1]} (9)

for all i ∈ Ω. To maintain resource-block-based marginal fair-
ness, we allocate to user i xi + µi[xi] resource blocks and to
user j∗ xj∗+1 resource blocks. To calculate µi[xi], we define a
function gi(x), for all x ≥ 0, as

gi(x) = U(x · B · ci) − U ((x − 1) · B · ci) . (10)
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Fig. 2. Example of RBEA for U(r) = 1 − e(−r/1000), xtotal = 3, B = 1000, and (c1, c2) = (0.7, 0.3).

It is clear that gi(x) is a continuous and decreasing function
of x for all x ≥ 0. As a result, g−1

i (u), the inverse function of
gi(x), exists, and µi[xi] can be computed by

µi[xi] =
⌊
g−1

i (∆Uj∗ [xj∗ + 1])
⌋
− xi. (11)

Note that we need to check whether such an allocation is
feasible. If

∑
i∈Ω µi[xi] ≤ xtotal, then it is feasible, and there-

fore, we update xi = xi + µi[xi] for all i ∈ Ω and xtotal =
xtotal −

∑
i∈Ω µi[xi]. Otherwise, user j∗ will not receive any

more resource block and thus is removed from Ω. This process
repeats until xtotal = 0. We call the preceding algorithm RBEA
and subsequently summarize its procedure.

Algorithm 4: RBEA

Data:
1) Γ = Ω
2) xi = 0 for all i ∈ Γ

Result: xi for all i ∈ Γ
begin

while xtotal > 0 do
if |Γ| > 1 then

j∗ = arg minj∈Γ ∆Uj [xj + 1]
µi[xi]=
g−1

i (∆Uj∗ [xj∗ +1])�−xi for all i ∈ Γ
if

∑
i∈Γ µi[xi] ≤ xtotal then

xi = xi + µi[xi] for all i ∈ Γ
xtotal = xtotal −

∑
i∈Γ µi[xi]

else
Γ = Γ − {j∗}

end
else

xi = xi + xtotal, i ∈ Γ
xtotal = 0

end
end

end

As an example, consider a system that consists of two users
and xtotal = 3. As shown in Fig. 2, we have j∗ = 2, µ1[x1] = 1,
and µ1[x2]=1 in iteration 1. Therefore, two resource blocks
are allocated, one to each user. In iteration 2, we have j∗=2,
µ1[x1] = 1, and µ1[x2] = 1 again. However, the remaining
resource, which is only one block, is insufficient for allocation.
Consequently, user 2 is removed from the user set, and user 1
will be allocated the remaining resource block in iteration 3.

It is not hard to see that RBEA always maintains the
resource-block-based marginal fairness property and, thus, ob-
tains an optimal solution. According to the simulation results
presented in the next section, the execution time of the RBEA
algorithm is smaller than that of the SA algorithm as long as
the block size B is small, which is normally the case in a real
system.

To further speed up resource allocation, one can use the MEA
algorithm to find a preliminary solution πMEA(Ω) = {ri|i ∈
Ω}, take the floor function 
(ri/B)� for all i ∈ Ω to get an
initial feasible solution, and finally perform SA, starting from
the initial feasible solution, to obtain a suboptimal solution. We
will refer to such a solution as MEA+SA solution and compare
it with the optimal solution in the next section.

B. Generally Backlogged Queues

For the case of generally backlogged queues, the definition
of ui(r) [see equation (1)] implies ∆Ui[j] > ∆Ui[j + 1] if 1 ≤
j ≤ �(Qi/ci)
 and ∆Ui[j] = 0 if j ≥ �(Qi/ci)
 + 1. Note that
if δ = 
(Qi/B · ci)� < (Qi/B · ci), then we have ∆Ui[δ +
1] = Ui(Qi/c1) − Ui(B · δ). Obviously, xi = �(Qi/B · ci)

for all i ∈ Ω is an optimal allocation if

∑
i∈Ω�(Qi/B · ci)
 ≤

xtotal. Assume that
∑

i∈Ω�(Qi/B · ci)
 > xtotal. The condi-
tion stated in Theorem 5 for constantly backlogged queues
is also a necessary and sufficient condition for an allocation
to be optimal for generally backlogged queues. The proof is
straightforward and, thus, omitted.

It is clear that SA can directly be applied to find an
optimal allocation for generally backlogged queues because
the resource-block-based marginal fairness is maintained
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after each resource block is allocated. For the RBEA al-
gorithm, slight modification in calculating µi[xi] is needed.
Equation (11) is valid only if 
g−1

i (∆Uj∗ [xj∗ + 1])� −
xi ≤ 
(Qi/B · ci)�. In case 
g−1

i (∆Uj∗ [xj∗ + 1])� − xi >

(Qi/B · ci)�, we have µi[xi] = �(Qi/B · ci)
 if ∆Uj∗ [xj∗ +
1] ≤ ∆Ui[�(Qi/B · ci)
] or µi[xi] = 
(Qi/B · ci)� otherwise.
The modified version is named GRBEA algorithm. Note that
when performing GRBEA, we have to update the correspond-
ing queue status after allocating resource block(s) to some user.
The pseudocode for GRBEA is subsequently presented.

Algorithm 5: GRBEA

Data:
1) Γ = {i|Qi > 0, i ∈ Ω}
2) xi = 0 for all i ∈ Ω

Result: xi for all i ∈ Γ
begin

if
∑

i∈Ω�(Qi/B · ci)
 ≤ xtotal then
xi = �(Qi/B · ci)
 for all i ∈ Γ

else
while xtotal > 0 and Γ �= ∅ do

if |Γ| > 1 then
j∗ = arg minj∈Γ ∆Uj [xj + 1]
for all i ∈ Γ do

if 
g−1
i (∆Uj∗[xj∗+1])�−xi≤
(Qi/B ·ci)�

then
µi[xi] = 
g−1

i (∆Uj∗ [xj∗ + 1])� − xi

else
if ∆Uj∗ [xj∗ +1]≤∆Ui[�(Qi/B · ci)
]
then

µi[xi] = �(Qi/B · ci)

else

µi[xi] = 
(Qi/B · ci)�
end

end
end
if

∑
i∈Γ µi[xi] ≤ xtotal then

for all i ∈ Γ do
xi = xi + µi[xi]
if Qi ≤ µi[xi] · B · ci then

Qi = 0
Γ = Γ − {i}

else
Qi = Qi − µi[xi] · B · ci

end
end
xtotal = xtotal −

∑
i∈Γ µi[xi]

else
Γ = Γ − {j∗}

end
else

if Qi ≤ xtotal · B · ci then
Qi = 0
Γ = Γ − {i}
xtotal = xtotal − �(Qi/B · ci)


else
Qi = Qi − xtotal · B · ci

xtotal = 0
end

end
end

end
end

An example of GRBEA is shown in Fig. 3, where a system
that consists of two users with xtotal = 3 is considered. In
iteration 1, we have j∗ = 2, µ1[x1] = 1 and µ2[x2] = 1. There-
fore, two resource blocks are allocated: one to each user. In
iteration 2, we have j∗ = 2, µ1[x1] = 1, and µ2[x2] = 1. Note
that, in this iteration, the utility increment of user 1 is limited
by its queue occupancy. The remaining resource is not enough
to allocate one resource block to each user. Consequently,
user 1 is removed from the user set in this iteration, and user 2
will be allocated the remaining resource block in iteration 3.

It is clear that the resource-block-based marginal fairness
is kept after each iteration. Therefore, the solution obtained
by GRBEA is an optimal allocation. Again, according to the
simulation results presented in the next section, the execution
time of the GRBEA algorithm is smaller than that of SA as
long as the block size B is small.

Similar to MEA+SA design, we can also derive a pre-
liminary solution πGEA(Ω) = {ri|i ∈ Ω} based on the GEA
algorithm. An initial feasible solution can then be calculated
by taking 
(ri/B)� for all i ∈ Ω. After updating the number of
remaining resource blocks and queue statuses, one can perform
SA to obtain a suboptimal solution. Such an algorithm will be
referred to as GEA+SA.

VI. SIMULATION RESULTS

In this section, we evaluate the performances of the pro-
posed algorithms. Two types of increasing strictly concave
utility functions are considered. The investigated system is first
described, followed by two simulation scenarios. Queues are
constantly backlogged and generally backlogged in Scenarios 1
and 2, respectively.

A. Investigated System

In the investigated system, there is a cell with one BS and
several users. Users are uniformly distributed in a circular
area of radius 1 km, and the BS is located at the center.
We consider the downlink of an OFDMA-based IEEE 802.16
WiMAX wireless network that consists of M subchannels and
is operated under the partial usage subchannel mode so that
the subchannel qualities of a specific user are identical. Every
subchannel comprises S subcarriers and is divided into T slots.
As a result, we have rtotal = M · S · T . In the simulations, we
set M = 30, S = 25, and T = 10, which imply rtotal = 7500.
Signals are transmitted with power equal to 1 W, attenuated
due to path loss with exponent equal to 3, faded according to
Rayleigh fading model, and finally suffered interference and
noise with their total average power equal to −98 dBm. The
available AMC schemes, which are the same as those adopted
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Fig. 3. Example of GRBEA for U(r) = 1 − e(−r/1000), xtotal = 3, B = 1000, (c1, c2) = (0.7, 0.3), and (Q1, Q2) = (1050, 750).

TABLE II
ADOPTED MODULATION AND CODING SCHEMES [15]

in [15], are shown in Table II. Which AMC scheme is used
depends on the receiver signal-to-interference-plus-noise ratio.
Simulations are performed for 10, 20, and 30 users. For a
resource-block-based system, the size of a resource block is
25 or 250, which correspond to one slot or one subchannel
(10 slots), respectively. Simulations are performed using
Matlab for 10 000 times on a computer equipped with an Intel
Core 2 Q8200 CPU operated at 2.33 GHz with 3 GB of RAM.

B. Scenario 1

In Scenario 1, user queues are assumed to be constantly
backlogged. The utility function of user i is Ui(r) = 1 −
e(−r·ci·cmax/1000), where ci denotes the channel quality of user
i, and cmax represents the maximum achievable rate of the
adopted AMC schemes. The utility sum and average execution
time of the proposed MEA, SA, RBEA, and MEA+SA are
shown in Tables III and IV, respectively. As one can see,
for each proposed algorithm, the utility sum increases as the
number of users increases. This is because of user diversity.
However, the execution time increases as well. Both utility
sum and execution time decrease as the resource block size
increases. For B = 25, SA spends more time than RBEA to
obtain the solution. The reason is that RBEA allocates more
than one resource block in each iteration, whereas SA allocates
only one. On the contrary, SA is faster than RBEA for B = 250.
This is because RBEA is more complicated than SA and for
B = 250, the number of resource blocks is only 30, which

TABLE III
UTILITY SUM OF MEA AND RESOURCE-BLOCK-BASED

ALLOCATION ALGORITHMS

TABLE IV
EXECUTION TIME OF MEA AND RESOURCE-BLOCK-BASED

ALLOCATION ALGORITHMS

limits the advantage of allocating more than one resource block
in an iteration. An interesting observation is that if the user
number is fixed, the execution time of MEA+SA is almost in-
dependent of resource block size. The reason is that, after taking
the floor function, the number of remaining resource blocks is
a random variable whose value falls in {0, 1, 2, . . . , |Ω| − 1},
and the results were averaged over 10 000 simulations. Based
on simulation results, we conclude that, for small resource
blocks, for example, B = 25, MEA+SA should be the best
choice because it requires 83% and 61% less execution time as
compared with SA and RBEA, respectively, while sacrificing
very little utility sum (which is 1 × 10−5 or 6 × 10−4%).
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TABLE V
UTILITY SUM OF GEA AND RESOURCE-BLOCK-BASED

ALLOCATION ALGORITHMS

C. Scenario 2

In Scenario 2, user queues are assumed to be generally
backlogged. An ON–OFF model is adopted to describe the traffic
arrival process for each user. The lengths of ON and OFF periods
are governed by exponential distribution with means equal
to 0.01 and 0.03 s, respectively. During the ON period, data
arrive at a rate uniformly chosen from 1 to 5 Mb/s and are
encapsulated into packets of size equal to 1500 B. The utility
function of user i is selected as Ui(r) = log(Ri[n]), where
Ri[n] denotes the average throughput of user i up to frame n. In
other words, we study the capability of the proposed algorithms
to achieve proportional fairness. In our experiments, Ri[n] is
updated by

Ri[n] =
{ (

1 − 1
w

)
Ri[n − 1] + r·ci·cmax

w·M ·T , if Qi > 0
Ri[n − 1], otherwise

(12)

where w, which is a weighting factor, is a design parameter. We
set w = 5 in the experiments.

Simulations are performed for five resource allocation al-
gorithms, i.e., GEA, SA, GEA+SA, GRBEA, and PF-MUX.
For fair comparison, the PF-MUX algorithm is modified to
consider queue statuses. When subchannel m is to be allocated
to users in Ωa, it is only partially allocated if the total resource
requests of users in Ωa is smaller than T . The remaining part of
subchannel m can be allocated to other users.

The utility sum and average execution time are shown in
Tables V and VI, respectively. Again, the effect of user diversity
yields a larger utility sum as the number of users increases,
and there is tradeoff between resource block size and execution
time. Moreover, the execution time of GEA+SA is almost
independent of resource block size if user number is fixed.
According to simulation results, PF-MUX requires the least
execution time. However, its utility sum is the smallest, as
compared with those of GEA, GEA+SA, and GRBEA. The
difference increases as the number of users increases. For
|Ω| = 30, the difference is about 19%. The reason is that when
the number of users is small, the total resource of a frame is
usually large enough to completely serve all data buffered in the
queues. Consequently, the solutions obtained by all the studied
algorithms are identical for most of the time. On the other hand,
when the number of users becomes large, there are usually
some data left in the queues at the end of every frame. As a

TABLE VI
EXECUTION TIME OF GEA AND RESOURCE-BLOCK-BASED

ALLOCATION ALGORITHMS

result, the suboptimal solutions are different from the optimal
ones. In particular, the solution obtained by PF-MUX can be far
from being optimal. For B = 25 and |Ω| = 10, SA, GRBEA,
and GEA+SA yield about the same utility sum. However,
GEA+SA requires an execution time that is 79% and 28%
less than those of SA and GRBEA, respectively. Therefore, we
conclude that GEA+SA should be the best choice for a system
when resource block size and number of users are small. For a
system with large resource block sizes, for example, B = 250,
the execution times of SA and GRBEA can drop dramatically,
whereas that of GEA only changes slightly. Therefore, we
suggest using either SA or GRBEA as the resource allocation
algorithm for such a system. As in Scenario 1, SA is faster than
GRBEA for B = 250.

VII. CONCLUSION

In this paper, we have presented optimal resource allocation
algorithms that maximize utility sum for wireless networks.
The resource is either infinitesimally divisible or has a basic
unit and queues can be either constantly backlogged or gener-
ally backlogged. Numerical results show that one can combine
the optimal algorithm designed for fluid-flow-based systems
with SA to quickly obtain a suboptimal solution for a resource-
block-based system with small block sizes. The performance of
such a simple hybrid algorithm is close to that of the optimal
algorithm. For large block sizes, which tend to decrease the
utility sum and thus may not be a good design, one can adopt
either SA or RBEA to do resource allocation. An interesting
further research topic is to extend the results to general utility
functions.

APPENDIX A
PROOFS OF LEMMAS 1 AND 2 AND THEOREMS 3–6

Proof of Lemma 1: According to the operation of the
EA algorithm, we have rtotal =

∑
i∈Ω u−1

i (uΣ(rtotal; Ω))=∑
i∈Ω−Λ u−1

i (uΣ(rtotal; Ω))+
∑

k∈Λ u−1
k (uΣ(rtotal; Ω)). Since

u−1
k (x) is decreasing, it holds that u−1

k (uΣ(rtotal; Ω) < 0
if k ∈ Λ, which implies, when Λ �= ∅,

∑
i∈Ω r∗i =∑

i∈Ω−Λ u−1
i (uΣ(rtotal; Ω)) >

∑
i∈Ω−Λ u−1

i (uΣ(rtotal; Ω)) +∑
i∈Λ u−1

i (uΣ(rtotal; Ω))=
∑

i∈Ω u−1
i (uΣ(rtotal; Ω))= rtotal.

This completes the proof of Lemma 1. �
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Proof of Lemma 2: Assume that i ∈ Ω − Λ and k ∈ Λ.
According to the operation of the EA algorithm, we have
ui(r∗i )=uk(u−1

k (uΣ(rtotal; Ω)))=uΣ(rtotal; Ω), where u−1
k ×

(uΣ(rtotal; Ω)) < 0. Since the marginal utility function is
decreasing, it holds that uk(0) < uk(u−1

k (uΣ(rtotal; Ω))) =
ui(r∗i ). It is not hard to see that, if we reduce the user set from
Ω to Ω − Λ and perform the EA algorithm with total resource∑

i∈Ω−Λ r∗i , then the aggregate marginal utility is also equal
to uΣ(rtotal; Ω). Therefore, we have r∗i = u−1

i (uΣ(
∑

i∈Ω−Λ r∗i ;
Ω − Λ)) or ui(r∗i )=uΣ(

∑
i∈Ω−Λ r∗i ; Ω−Λ) for all i ∈ Ω−Λ.

The fact that u−1
i (x) is decreasing for all i ∈ Ω implies∑

i∈Ω−Λ u−1
i (x) is decreasing, which in turn implies uΣ(r; Ω −

Λ), the inverse of
∑

i∈Ω−Λ u−1
i (x) is decreasing. Therefore,

we have ui(si) = uΣ(rtotal; Ω − Λ) > uΣ(
∑

i∈Ω−Λ r∗i ;
Ω − Λ) = ui(r∗i ), because

∑
i∈Ω−Λ r∗i > rtotal, according to

Lemma 1. �
Proof of Theorem 3: Let πMEA = {ri|i ∈ Ω} be the al-

location determined by the MEA algorithm. We need to prove
that πMEA(Ω) is marginally fair and satisfies

∑
i∈Ω ri = rtotal.

Assume that the MEA algorithm is executed for N iterations
to obtain the solution πMEA. Let ΓN be the user set in the
N th iteration. Since the MEA algorithm ends at the N th
iteration, it holds that ri ≥ 0 for all i ∈ ΓN and

∑
i∈Ω ri =

rtotal. Moreover, it is true that ri = u−1
i (uΣ(rtotal; ΓN )) and

ui(ri) = uΣ(rtotal; ΓN ) for all i ∈ ΓN . Note that it is possible
to have ri = 0 for some i ∈ ΓN . For any k ∈ Ω − ΓN , we have
uΣ(rtotal; ΓN ) > uk(0), according to Lemma 2. Therefore,
πMEA = {ri|i ∈ Ω} is marginally fair and satisfies

∑
i∈Ω ri =

rtotal and, thus, is optimal. This completes the proof of
Theorem 3. �

Proof of Theorem 4: Let π = {ri|i ∈ Ω} be an allocation
that is generalized marginally fair and satisfies

∑
i∈Ω ri =

rtotal. We will prove π is the only optimal solution by
showing that the utility sum obtained by π is greater than
the utility sum obtained by any feasible allocation different
from π.

Let Γ={i|i∈Ω, Qi >0}, ΓZ ={i|ri =0, i∈Γ}, ΓP ={i|0<
ri <(Qi/ci), i∈Γ}, and ΓA ={i|ri =(Qi/ci), i∈Γ}. Consider
any feasible allocation π′ = {r′i|i ∈ Ω} that is different from π.
It is clear that, if r′i > 0 for user i with Qi = 0, then the utility
sum can be improved by shifting the resource allocated to user
i to user j with r′j < (Qj/cj). Similarly, if

∑
i∈Ω r′i < rtotal,

then the utility sum can be improved by allocating the
remaining resource to user k with r′k < (Qk/ck). Therefore, we
assume that r′i = 0 if Qi = 0 and

∑
i∈Ω r′i = rtotal. Let E and

F be two sets such that user i is in set E or set F iff ri >
r′i or ri < r′i, respectively. We have E ⊆ ΓP ∪ ΓA, F ⊆ ΓP ∪
ΓZ , and

∑
i∈E(ri−r′i)=

∑
i∈F (r′i−ri). According to (3), for

any user i∈E and j∈F , it holds that ui(ri)≥uj(rj).
Let uE,min = mini∈E ui(ri). We have

∑
i∈Ω Ui(ri) −∑

i∈Ω Ui(r′i)=
∑

i∈E Ui(ri)−
∑

i∈E Ui(r′i)−(
∑

j∈F Uj(r′j)−∑
j∈F Uj(rj)) =

∑
i∈E

∫ ri

r′
i

ui(r)dr −
∑

j∈F

∫ r′
j

rj
uj(r) dr >∑

i∈E ui(ri)· (ri− r′i) −
∑

j∈F uj(rj) · (r′j− rj) ≥ uE,min

(
∑

i∈E(ri−r′i)−
∑

j∈F (r′j − rj)) = 0. Note that the first
inequality in the preceding derivation is true because ui(x) is a
decreasing function of x, and both sets E and F are nonempty.
As a result, π, if it exists, is the unique optimal resource
allocation.

Conversely, let π = {ri|i ∈ Ω} be an optimal alloca-
tion. Note that optimal solution exists because there
are obviously feasible solutions. Let Γ = {i|i ∈ Ω, Qi >
0}, ΓZ = {i|ri = 0, i ∈ Γ}, ΓP = {i|0 < ri < (Qi/ci), i ∈
Γ}, and ΓA = {i|ri = (Qi/ci), i ∈ Γ}. Since

∑
i∈Ω(Qi/ci) >

rtotal, it must hold that
∑

i∈Ω ri = rtotal and ri = 0 if
Qi = 0. Assume that ΓP = ∅. In other words, there ex-
ists Ψ ⊂ Ω such that Ψ �= Ω, ri = (Qi/ci) for all i ∈ Ψ,
and

∑
i∈Ψ ri = rtotal. It is true that ui(ri) ≤ uj(rj) for

any users i ∈ Ω − Ψ and j ∈ Ψ. Otherwise, if ui(ri) >
uj(rj) for some i ∈ Ω − Ψ and j ∈ Ψ, then the utility sum
of π′ = {r′k|k ∈ Ω} with r′i = ri + δ, r′j = rj − δ, 0 < δ <

min((Qi/ci), u−1
i (uΣ(rj ; {i, j})), rj), and r′k = rk for all k ∈

Ω − {i, j}, is greater than that of π, which is a contradiction to
the assumption that π is an optimal allocation. (Note that δ =
u−1

i (uΣ(rj ; {i, j})) makes ui(r′i) = uj(r′j).) Therefore, π =
{ri|i ∈ Ω} is generalized marginally fair if ΓP = ∅.

Consider the case ΓP �= ∅. We claim that ui(ri) = uj(rj) for
all i, j ∈ ΓP . Suppose that the claim is false, i.e., there exist
i, j ∈ ΓP such that ui(ri) > uj(rj). In this case, the utility
sum of π′ = {r′k|k ∈ Ω} with r′i = ri + δ, r′j = rj − δ, 0 <

δ < min((Qi/ci) − ri, u
−1
i (uΣ(ri + rj ; {i, j})) − ri, rj), and

r′k = rk for all k ∈ Ω − {i, j} is greater than that of π,
which is a contradiction to the optimality assumption of
π. Therefore, the claim is true. Assume that k ∈ ΓZ . It
must hold that uk(0) ≤ ui(ri) for all i ∈ ΓP . Otherwise,
if uk(0) > ui(ri) for some i ∈ ΓP , then the utility sum
of π′ = {r′j |j ∈ Ω} with r′k = rk + δ, r′i = ri − δ, 0 < δ <

min((Qk/ck), u−1
k (uΣ(rk + ri; {i, k})), ri) and rj = r′j for

all j ∈ Ω − {i, k} is greater than that of π, which is a
contradiction to the optimality assumption of π again. Fi-
nally, assume that k ∈ ΓA. We have uk(rk) ≥ ui(ri) for
all i ∈ ΓP . Otherwise, if uk(rk) < ui(ri) for some i ∈
ΓP , then the utility sum of π′ = {r′j |j ∈ Ω} with r′i =
ri + δ, r′k = rk − δ, 0 < δ < min((Qi/ci) − ri, u

−1
i (uΣ(ri +

rk; {i, k})) − ri, rk), and r′j = rj for all j ∈ Ω − {i, k} is
greater than that of π, which is a contradiction once again.
Therefore, we conclude that π = {ri|i ∈ Ω} is generalized
marginally fair. This completes the proof of Theorem 4. �

Proof of Theorem 5: Let π(Ω) = {xi|i ∈ Ω} be an opti-
mal resource-block-based allocation. Since the utility function
is increasing, it must hold that

∑
i∈Ω xi = xtotal. Assume that

π(Ω) is not (resource-block-based) marginally fair, meaning
that there exists i and j such that xi > 0 and ∆Ui[xi] <
∆Ui[xj + 1]. As a result, the allocation π′(Ω) = {x′

i|i ∈
Ω}, where x′

i = xi − 1, x′
j = xj + 1, and x′

k = xk if k �= i
or j gives larger total utility than π(Ω), which is a con-
tradiction. Therefore, π(Ω) must be marginally fair. Con-
versely, assume that π(Ω) = {xi|i ∈ Ω} is marginally fair with∑

i∈Ω xi = xtotal. Let α = min{∆Ui[xi]|xi > 0, i ∈ Ω} and
β = max{∆Uj [xj + 1]|j ∈ Ω}. According to the definition of
marginal fairness, we have α ≥ β. Let π′(Ω) = {x′

i|i ∈ Ω} be
any other feasible allocation. Define two sets E and F such
that E = {i|xi > x′

i, i ∈ Ω} and F = {i|xi < x′
i, i ∈ Ω}. We

have
∑

i∈E(xi − x′
i) =

∑
i∈F (x′

i − xi). Let d =
∑

i∈E(xi −
x′

i). It is true that
∑

i∈Ω Ui(xi · B) −
∑

i∈Ω Ui(x′
i · B) =∑

i∈E ∆Ui[xi] −
∑

i∈F ∆Ui[x′
i] ≥ d(α − β) ≥ 0. Therefore,

π(Ω) is optimal. This completes the proof of Theorem 5. �
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TABLE VII
TIME COMPLEXITIES OF THE PROPOSED RESOURCE ALLOCATION ALGORITHMS

APPENDIX B
ANALYSIS OF TIME COMPLEXITIES OF THE

PROPOSED ALGORITHMS

As analyzed in [3], the time complexity of the EA algorithm
is O(|Ω|). Consequently, the time complexity of our proposed
MEA algorithm is O(|Ω|2) because, in the worst case, users are
removed one by one until one is left to be allocated with the
total resource.

For the GEA algorithm, the maximum number of iterations
needed is 2 · |Ω| − 1, which happens when all users are moved
(one by one) from ΓZ to ΓP , and |Ω| − 1 users are further
moved from ΓP to ΓA. The computational complexity to move
a user from ΓZ to ΓP is O(|Ω|), while that to move a user from
ΓP to ΓA is O(|Ω| − i) if |ΓP | = |Ω| − i. Therefore, the time
complexity of GEA is O(|Ω|2).

Consider the three algorithms designed for resource-block-
based systems with constantly backlogged queues, namely, SA,
RBEA, and MEA+SA. Recall that, in SA, one resource block
is allocated in each iteration. As a result, the time complexity
of SA is O(xtotal · |Ω|) because the time complexity of each
iteration is O(|Ω|). For the RBEA algorithm, define Si as
its state when |Γ| = i. In the worst case, we have Γ = Ω
initially, and the RBEA algorithm visits all states Si, i =
|Ω|, |Ω| − 1, . . . , 1. Moreover, when resource blocks are to be
allocated to some user, only one is allocated. In other words, if
resource blocks are allocated in state Si, then exactly i resource
blocks are allocated. The computational complexity to allocate
i resource blocks in state Si is O(i). Since there are xtotal

resource blocks, the computational complexity to allocate all
the resource blocks to users is O(xtotal). According to the
RBEA algorithm, the computational complexity to switch from
state Si to state Si−1 is O(i). Therefore, the time complexity
of RBEA is O(xtotal + |Ω|2). For the MEA+SA algorithm,
let πMEA(Ω) = {ri|i ∈ Ω} denote the solution obtained by
the MEA algorithm and {x′

i|i ∈ Ω} represent the preliminary
solution, where x′

i = 
(ri/B)� for all i ∈ Ω. Recall that the
time complexity of the MEA algorithm is O(|Ω|2). Since∑

i∈Ω ri = rtotal, we have xtotal −
∑

i∈Ω x′
i ≤ |Ω| − 1. As a

consequence, there are at most |Ω| − 1 resource blocks to be
allocated by the SA algorithm, which incurs a time complexity
of O(|Ω|2). Therefore, the time complexity of the MEA+SA
algorithm is O(|Ω|2).

Finally, consider GRBEA and MEA+SA, which are the
two algorithms designed for resource-block-based systems with
generally backlogged queues. For GRBEA, the maximum num-
ber of iterations needed is the same as that required by RBEA.
As a consequence, the time complexity of GRBEA is the same
as that of RBEA. Similarly, the time complexity of GEA+SA is
the same as that of MEA+SA. Table VII summarizes the time
complexities of the proposed algorithms.
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