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Abstract: Relays can potentially enhance the transmission performance of multi-input multi-output (MIMO) systems. A parallel
single-antenna relay network has additional advantages in flexibility, diversity and cost, but also poses significant design
problems because the absence of inter-antenna connections over different relays makes the underlying mathematical problems
much more difficult to solve. In this study, the authors consider the design of parallel amplify-and-forward relay networks.
More specifically, the authors consider the design of relay gains to maximise the system capacity. As no closed-form analytic
solution can be found, the authors first develop an iterative algorithm to find a locally optimal solution. Since algorithmic
optimisation provides little insight into the analytical properties of the solution, they also attempt analytical solutions for
several asymptotic noise conditions. It turns out that the solutions involve some methods to select the optimal subsets of
relays for signal forwarding. The authors analyse the resulting capacity outage diversity orders and confirm the analysis with
simulation results.
1 Introduction

Relays have been considered a useful means for coverage
extension and capacity enhancement of wireless systems [1].
Among all conceivable relaying strategies, two have received
the most attention: amplify-and-forward (AF) [2] and decode-
and-forward (DF) [3]. In AF systems the relays amplify or
beamform the received signals without further processing,
whereas in DF systems they decode (or demodulate if there is
no channel coding) the received signals and transmit the re-
encoded (or remodulated) signals to the destination. Besides
the forwarding strategies, an important subject in relay
system design is the overall wireless system architecture. In
this, because of the capacity advantage of multi-input multi-
output (MIMO) transmission over single-input single-output
(SISO) transmission, many have sought to incorporate some
MIMO concepts one way or another. The present work is
concerned with AF-based distributed relay networks, whose
architecture will be described further later.

The simplest relay-aided transmission system consists of
three nodes: source, relay (cooperator) and destination [4].
To facilitate MIMO transmission, an intuitive approach is to
install multiple antennas on one or more of the nodes. For
simplicity, consider the situation where the source and the
destination have an equal number of antennas. A case with
a single-antenna source (SAS) and a single relay (SR)
equipped with multiple antennas (MAR, multiple-antenna
relay) is considered in [5]. A natural extension to have a
multiple-antenna source (MAS) and an SR–MAR to enable
spatial multiplexing [6, 7]. In studies of MAS–SR–MAR
systems, the multiple antennas on each terminal are usually
assumed to be fully connected and may have arbitrary
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interconnection weights. In this case, known matrix theory
can be used to decompose an MIMO transmission channel
into parallel SISO links (via e.g. the singular value
decomposition or the QR decomposition). Each spatially
multiplexed signal stream can then be transported over one
parallel link, and the matrix decomposition can be viewed
as simultaneous beamforming for these streams. Typical
performance measures, such as the signal-to-interference-
plus-noise ratio (SINR) or the mean-square error in received
signal values, can be expressed in terms of the parameters
of the decomposed channel. System optimisation may then
become essentially a problem of power allocation among
the individual streams [6, 7].

On the other hand, use of multiple, parallel relays (PR) has
also been considered by many researchers and shown to be
potentially beneficial in various aspects [8–22]. For
example, it is found that an increased number of relays can
benefit the system capacity [8]. In fact, the PR can function
as virtual transmitter antennas and effect transmitter
diversity either in the form of distributed space–time
coding [9, 10] or in the form of distributed beamforming
[11–13]. The corresponding diversity order has been
examined in [11, 14], respectively. Moreover, parallel
relaying has also been studied in the contexts of sensor
networks [15], two-way relaying [16] and secrecy
communication [17]. However, despite the potential
benefits, the fact that the relays are not connected but stand
in parallel raises a cooperation problem which, if not dealt
with, could severely limit the realisable benefit.

To see why, let L be the number of PR and Ni (1 ≤ i ≤ L)
the number of antennas on relay i. Let M denote the number of
antennas on the source terminal as well as that on the
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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destination terminal. Consider first the simplest case where
each terminal has only one antenna, that is SAS–PR–SAR
where SAR stands for single-antenna relay, and
M ¼ Ni ¼ 1 ∀i [12, 13]. In this case, the relays effectively
constitute a distributed beamformer for the single signal
stream. Applying the same design philosophy to an MAS–
PR–MAR system with M . 1 and Ni . 1 ∀i, there can be
MS ¼ min{M, Ni ∀i} concurrent signal streams. The
beamforming techniques used in MAS–SR–MAR systems
can be extended to this scenario with a twist [18, 19]. That
is, the available antennas on the relays can be used to
provide MS parallel subchannels between the source and the
destination. Systems operating in the above ways have been
considered in some works [5–7, 12, 13, 18, 19]. In terms
of capacity, however, such systems suffer from two
consequences. First, the number of supported subchannels
(i.e. the number of concurrent spatially multiplexed streams)
does not grow with the relay number L, but is upper-
bounded by MS. Secondly, to increase the number of
streams we need to ensure that all relays are equipped with
sufficient antennas. Designs that can obviate the above
limits are of interest and importance.

In this work we consider the design of MAS–PR–SAR
systems (where Ni ¼ 1 and SNi ¼ L) to support multiple
signal streams. More specifically, we consider the design of
AF relay forwarding gains for maximisation of system
capacity. Previously, Jin et al. [20] considered the case
where the relays had equal gain and analysed the statistics of
the resulting ergodic capacity. Chen et al. [21] considered
the minimisation of transmission power subject to per-stream
SINR targets. The problem is related to system capacity, but
somewhat indirectly. Bae and Lee [22] proposed algorithms
for capacity optimisation under the condition that the product
of the source-to-relay and the relay-to-destination channel
matrices was asymptotically diagonal in the limit of a large
number of relays. However in sum, there is as yet no
extensive work on the design of distributed parallel relay
networks for capacity maximisation. Actually, the
relationship between number of relay terminals and system
capacity also needs to be further clarified. The present work
is motivated by these observations.

We consider two approaches to maximising the capacity of
a distributed relay network with presence of perfect channel
state information. The first is algorithmic, as so far no
closed-form solution to the problem exists. However,
although algorithmic optimisation can yield good results, it
provides little insight into the analytical properties of the
solutions. We thus also attempt an analytical approach. As
no closed-form solution can be obtained for the general
situation, we consider two asymptotic situations that are
more amenable to analysis. In one of them the relay noise
dominates the overall noise in the received signal at the
destination and in the other the destination terminal noise
dominates. Alternatively, these two situations can also be
viewed as providing two upper bounds to the system capacity.

The rest of this paper is organised as follows. Section 2
formulates the problem. Section 3 derives the algorithmic
solution. Section 4 derives suboptimal analytical solutions
for the two asymptotic noise conditions mentioned above.
Section 5 presents some simulation results. Finally, Section
6 gives some concluding remarks.

2 Problem formulation

We consider two-slot, two-hop transmission from a source
terminal to a destination terminal through the help of a
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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distributed relay network; there is no direct link between
the source and the destination. Both the source and the
destination terminals are equipped with M antennas. The
distributed relay network is composed of L single-antenna
relay terminals. To preserve the degree of freedom provided
by the source and the destination antennas, we assume
L ≥ M. Each relay performs AF relaying. Fig. 1 illustrates
the system model.

Let x [ C
M denote the signals transmitted from the source

and y [ C
M that received at the destination, where C

M

denotes the set of M × 1 vectors of complex numbers. Let
GH [ C

L×M be the matrix of MIMO channel coefficients
between the source terminal antennas and the relays, where
C

L×M denotes the set of L × M matrices of complex
numbers and superscript H denotes Hermitian transpose.
Similarly, let F [ C

M×L be the channel matrix between the
relays and the destination terminal antennas. The received
signals at the relays are assumed to be subject to additive
complex white Gaussian noise (AWGN) nR� CN (0, s2

RIL),
where IL denotes the L × L identity matrix. Likewise, the
received signal at the destination is subject to AWGN
nD� CN (0, s2

DIM ). Let the ith relay have the complex gain
r (i). Then the end-to-end transmission behaviour can be
written as

y = FRGHx + FRnR + nD (1)

where R is a diagonal matrix with r (i) as its ith diagonal
element.

Assume that the source transmits independent streams over
its M antennas. For all practical designs, the transmission
powers of the source and the relays are limited. Therefore
let the source antennas have equal finite transmission power
s2

x . Further assume that the relays are subject to a total
power limit PR. Hence we have

PR ≥ tr(E{(RGHx + RnR)(RGHx + RnR)H})

=
∑L

i=1

(s2
R + s2

x‖gi‖2)|r(i)|2W
∑L

i=1

p(i)|r(i)|2 (2)

where E{.} denotes expectation, ‖.‖ denotes the two-norm of
a vector, tr(.) means matrix trace, gi is the ith column of G
and p(i) denotes the sum of input signal and noise powers
at relay i.

The total noise vector FRnR + nD in (1) at the destination
is, in general, spatially correlated. To find the system capacity,

Fig. 1 MIMO system with distributed relays
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consider whitening the noise by premultiplying y with W21/2

at the destination, where W is the autocorrelation matrix of the
noise given by

W = E{(FRnR + nD)(FRnR + nD)H}

= s2
D[IM + s2(FR)(FR)H] (3)

with sWsR/sD. Let H WFRGH represent the noise-free
equivalent end-to-end channel matrix. The system capacity
is then a function of R as [23]

log2 C(R) W log2 det (IM + s2
xHHW−1H)

= log2 det (W + s2
xHHH) − log2 det (W ) (4)

where det(.) denotes matrix determinant. The optimisation
problem can be stated as

Ropt = arg max
R

C(R) (5)

subject to

∑L

i=1

p(i)|r(i)|2 =
∑L

i=1

(s2
R + s2

x‖gi‖2)|r(i)|2 ≤ PR (6)

For convenience, term C(R) as the ‘capacity measure’.
Unfortunately, the above optimisation problem is not

convex. We know of no efficient solution for the problem.
As mentioned, we will present two approaches to a
solution. Before that, we first tie up some theoretical loose
ends in the next subsection.

2.1 Capacity scaling with relay power

The inequality power constraint (6) naturally prompts one to
think: is it possible to simplify the constraint by considering
only the equality therein without impacting the optimality
of the solution? Or, alternatively, given a set of r (i),
1 ≤ i ≤ L, that satisfies (6) with inequality, will the system
capacity be improved by scaling the r (i) values to reach
equality in (6)? Intuitively, the answer may seem to be a
no-brainer, as increasing the transmission power should be
beneficial to the signal-to-noise ratio (SNR) and thus the
capacity. However mathematically, owing to the presence of
some matrices in (4) and (1), a solid proof nevertheless
requires some work. We give the proof in Appendix
1. (Some intermediate results in the proof will also be
useful later in system design.) For convenience, we state the
result as a theorem.

Theorem 1 (Capacity scaling): If the complex relay gains are
scaled by a common factor s [ C with |s| . 1, then
C(sR) . C(R).

Therefore it is confirmed that scaling up of the relay gains
can increase system capacity, and the optimisation constraint
(6) can be simplified to

∑L

i=1

p(i)|r(i)|2 =
∑L

i=1

(s2
R + s2

x‖gi‖2)|r(i)|2 = PR (7)

That is, the relay network should always transmit at the
maximum allowed total power.
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& The Institution of Engineering and Technology 2012
Next, one may wonder if the capacity could increase
without bound if the total relay transmission power tends to
infinity. Intuitively, the answer may appear to be another
no-brainer because, from (1), the quality of the source-to-
relay links should effect a cap on the attainable data rate
however high the relay power can be. However again, a
solid mathematical proof requires a few lines of reasoning.
We likewise state the result as a theorem and prove it in
Appendix 2.

Theorem 2 (Asymptotic capacity at high relay power): As
|s| � 1, C(sR) is upper-bounded by det [IM +
(s2

x/s
2
R)GGH] and it approaches the upper bound if and

only if G and FR span the same row space.
With Theorem 2, it is verified that C(R) is upper-bounded

even if the relays may transmit at infinite power.

3 System design via algorithmic
optimisation

As noted previously, no closed-form solution is known for the
capacity optimisation problem at hand. Thus we consider an
algorithmic solution in this section, wherein the relay gains
are optimised iteratively. In doing so, however, we need to
update the value of C(R) repeatedly with each change of
the relay gains. Although, in principle, this can done by
using (4), the computational load appears formidable. To
solve this problem, we limit each adjustment of the relay
gains to a form that corresponds to some low-rank updates
of the matrices entering (4). Then the associated matrix
computations can be carried out less arduously.
Specifically, in each iteration, we replace one relay gain by
some value a [ C. The other relay gains are multiplied by
a factor b [ R+ (where R+ stands for the set of positive
real numbers) such that the power constraint (7) is satisfied.
The factors a and b are chosen to maximise C(R).

In more detail, let r ¼ [r (1), . . . , r (L)]T denote the vector of
relay gains where superscript T denotes transpose. Let r0 be
the same as r except that its ith element is replaced by zero,
and let ru denote the gain vector after the above-described
update. Then

r0 = (IL − Si)r, ru = br0 + aSi1 (8)

where Si denotes the ‘selection matrix’ whose elements are all
zero except for a 1 at the ith diagonal position and 1 represents
an all-ones vector. Clearly, a is subject to the constraint

0 ≤ |a| ,
���������
PR/p(i)

√
(9)

and for given a, we have (letting r0(i) be the ith element in r0)

b =

���������������
PR − |a|2p(i)∑

i p(i)|r0(i)|2

√
(10)

Let R0 ¼ diag(r0) and Ru ¼ diag(ru), where diag(v) stands for
a diagonal matrix that has the ith element of the (column or
row) vector v as its ith diagonal element. Then the noise-
free equivalent end-to-end channel matrix after gain
updating is given by

Hu = bH0 + af ig
H
i (11)

where H0 ¼ FR0GH and Hu ¼ FRuGH. The autocorrelation
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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matrix of the received noise vector at the destination becomes

W u = s2
D[IM + (sb)2(FR0)(FR0)H] + |sRa|2f i f H

i

Ws2
DW 0 + |sRa|2f if

H
i

(12)

Note that Hu is different from bH0 by a rank-1 matrix and that
Wu is different from s2

DW 0 also by a rank-1 matrix.
To proceed, we note that the design problem can now be

decomposed into three subproblems: (i) how to express
C(Ru) in terms of a and b; (ii) how to optimise the values
of a and b; and (iii) how to iterate. We address these
subproblems in the order below.

3.1 C(Ru) as function of a and b

To start, note from (4) that we have

log2 C(Ru) = log2 det(W u + s2
xHuHH

u ) − log2 det(W u)

(13)

To express it in terms of a and b, we invoke some low-rank
updating formulas for matrix inverses and determinants as
follows.

From matrix theory [24], if B = A + u1vH
1 where A is a

full-rank square matrix and u1 and v1 are vectors, then

B−1 = A−1 − A−1u1vH
1 A−1

1 + vH
1 A−1u1

,

det(B) = det(A)(1 + vH
1 A−1u1) (14)

However, the above equations only deal with rank-1 updates.
In our work, we also need a formula for rank-2 update of the
determinant, which can be obtained using the rank-1 update
formulas: Consider C = B + u2vH

2 . Then

det(C) = det(B)(1 + vH
2 B−1u2)

= det(A)(1 + vH
1 A−1u1)

× 1 + vH
2 A−1 − A−1u1vH

1 A−1

1 + vH
1 A−1u1

( )
u2

[ ]
= det(A)[(1 + vH

1 A−1u1)(1 + vH
2 A−1u2)

− vH
2 A−1u1vH

1 A−1u2] (15)

Now we apply these update formulae to C(R)u. First, consider
the term det(Wu). From (12) it can readily be seen to be a
polynomial in |a|2 and b2. Applying the rank-1 determinant
update formula to it results in

det(W u) = s2M
D det(W 0)(1 + |sa|2f H

i W−1
0 f i) (16)

Its dependence on |a|2 and b2 can be expressed more
concretely in terms of an eigenvalue decomposition of
(FR0)(FR0)H

(FR0)(FR0)H = V 1S1V H
1 (17)

Then, letting e1(i) denote the ith eigenvalue (i.e. the ith
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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diagonal element of S1), we have

det(W u) = s2M
D

∏M
i=1

[1 + (sb)2e1(i)]

× {1 + |sa|2f H
i V 1[IM + (sb)2S1]−1V Hf i}

(18)

where the leading product also appears in the common
denominator of the braced quantity.

Next, consider the term det(W u + s2
xHuHH

u ) for which we
have

W u+s2
xHuHH

u = (s2
DW 0+b2s2

xH0HH
0 )+ (aHbs2

x)(H0gi)f
H
i

+ f i[(abs
2
x)(H0gi)

H+ (|agi|2s2
x

+|sRa|2)f H
i ] (19)

Using the rank-2 update formula (15) for matrix determinants
with the following identifications of variables

C ↔ W u + s2
xHuHH

u

A ↔ s2
D[IM + (sb)2FR0(FR0)H] + b2s2

xH0HH
0 , u1 ↔ f i

v1 ↔ (aHbs2
x)(H0gi) + (|agi|2s2

x + |sRa|2)f i

u2 ↔ H0gi and v2 ↔ (abs2
x )f i

we obtain

det(W u + s2
xHuHH

u ) = det(A)[(1 + vH
1 A−1u1)(1 + vH

2 A−1u2)

− vH
2 A−1u1vH

1 A−1u2] (20)

As in the case of det(Wu), its polynomial functional dependence
on a and b can be brought out more concretely with an
eigenvalue decomposition of a constituent factor of A

FR0(FR0)H + s−2
R s2

xH0HH
0 = V 2S2V H

2 (21)

Then, letting e2(i) denote the ith eigenvalue, we have
det(A) = s2M

D

∏M
i=1 [1 + (sb)2e2(i)] and

det(W u + s2
xHuHH

u )

= det(A)[(1 + l1pH
1 p1 + l2pH

2 p1)(1 + lH
2 pH

1 p2)

− (lH
2 pH

1 p1)(l1pH
1 p2 + l2pH

2 p2)]

= s2M
D

∏M
i=1

[1 + (sb)2e2(i)][1 + l1|p1|2 + 2<(l2pH
2 p1)

+ |l2|2(|pH
1 p2|2 − |p1|2|p2|2)] (22)

where <(.) denotes the real part of a quantity and we have made
the following definitions to simplify the notation

l1 W (|agi|2s2
x + |sRa|2)s−2

D , l2 Wabs2
xs

−2
D (23)

p1 W [IM + (sb)2S2]−(1/2)V H
2 f i,

p2 W [IM + (sb)2S2]−(1/2)V H
2 (H0gi)

(24)
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In summary, combining (13), (18) and (22), we can express
C(Ru) as a function of a and b. Thus we now turn to the
problem of finding a and b that maximise C(Ru).

3.2 Optimisation of a and b

To start, note that none of the terms constituting det(Wu) and
det(W u + s2

xHuHH
u ) depend on the phase of a except

<(l2pH
2 p1) that appears in (22). As a result, for any given

|a| and b, C(Ru) can be maximised by choosing the phase
of a such that <(l2pH

2 p1) is maximised. This can be
achieved by letting /a = /pH

1 p2, so that
<(l2pH

2 p1) = |l2pH
2 p1|. The problem thus reduces to one of

finding the best |a| and b. However since there is a one-to-
one relation between |a| and b [see (10)], we only need to
solve for b. After some straightforward algebra based on
(13), (18), (22), we can show that the optimal b is one that
maximises the following function

q(b) W
1 + l1|p1|2 + 2|l2pH

2 p1| + |l2|2(|pH
1 p2|2 − |p1|2|p2|2)

1 + |sa|2f H
i V 1[IM + (sb)2S1]−1V Hf i

×
∏M
i=1

1 + (sb)2e2(i)

1 + (sb)2e1(i)
(25)

where |a|, l1, l2, p1 and p2 are all functions of b.
Owing to the complicated nature of (25), there is, in

general, no closed-form solution for the optimal b. We
need to resort to a search technique, and such techniques
are innumerable. A simplest one is non-iterative line search,
in which one examines a sufficiently dense subset of all
admissible values of b to find the one maximising q(b).
From (9) and (10), the set of admissible values of b are
given by

0 , b ≤
����������������

PR

S
L
i=1p(i)|r0(i)|2

√
(26)

A second method is to iteratively update a trial solution to b
by solving a low-order polynomial approximation to q(b) in
each iteration. For example, one may, in each iteration, use
a quadratic approximation obtained by taking the second-
order Taylor series expansions of q(b) around some b value
and take the b value that maximises the quadratic
approximation as the updated trial solution. If this value
should fall outside the admissible range given in (26), we
may replace it by the nearest boundary value of the range.
In addition, if the resulting q(b) value should decrease in
some iteration, then we may stop the iteration and revert to
an earlier solution.

In fact, to find the optimal b one need not work with q(b)
directly. Any monotone increasing function of q(b) can be
used in its stead. For example, since, from (25), q(b) is a
product of multiple factors, it may be easier to consider
maximising a logarithm of q(b) than q(b) itself, for then
products become sums. This approach is taken in our
implementation of the quadratic approximation method.
Moreover, in implementing the quadratic approximation
method we have chosen to take the Taylor series expansion
at b ¼ 1. The reason is that, since we adjust one relay gain
at a time, the overall optimisation process belongs to the
category of alternating optimisation which is guaranteed to
converge to a local optimum [25]. Upon convergence, the
values in ru will change little from one iteration to the next.
250
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In other words, the optimal b values will approach unity
upon convergence of the overall algorithm. Hence a series
expansion around b ¼ 1 should provide a good
approximation to the performance surface in the later stages
of algorithm progression and benefit its convergence
behaviour there. In summary, in our implementation of the
quadractic approximation method we seek to maximise
ql(b)W log q(b). For it we define

qa(b)W ql(1) + q′l(1)(b− 1) + q′′l (1)

2
(b− 1)2 (27)

where q′l(1) and q′′l (1) are the first and second derivatives of
ql(b) evaluated at b ¼ 1. The solution to the equation
q′a(b) = 0 is then taken to be the current trial solution for b.

3.3 Overall algorithm

We summarise the proposed successive optimisation
algorithm as follows. It finds a locally optimal solution.

1. Select some relay i for gain adjustment, where i can be
chosen in round-robin fashion, for example.
2. Perform eigenvalue decomposition of (FR0)(FR0)H and
FR0(FR0)H + s−2

R s2
xH0HH

0 as in (17) and (21) to find Si

and Vi, i ¼ 1, 2.
3. Solve for the b that maximises q(b) as given in (25) by a
search method, such as the line search or the quadratic
approximation method described in the last subsection.
Obtain the corresponding |a| using (10) and let
/a = /pH

1 p2.
4. Update the relay gains by setting the gain of the ith relay to
a and multiplying the gains of all other relays by b.
5. Exit if some stopping criteria are satisfied; otherwise go to
step 1.

4 System design via suboptimal analytical
solutions

Although algorithmic optimisation can yield good results, it
provides little insight into the analytical properties of the
solutions. We thus consider an analytical approach in this
section. Since no closed-form solution can be obtained for
the general situation, we consider several simplified
situations which are more amenable to analysis. In
particular, note that in AF systems the receiver noise arises
from two sources: the relay noise nR and the destination
terminal noise nD. The design problem becomes
mathematically more tractable when one of the two
dominates in the overall receiver noise so that the other
may be ignored. The results obtained from ignoring one
noise source may be viewed as upper bounds on system
capacity or as asymptotic performance of the system. For
convenience, we term the two simplified conditions the
relay noise-dominant condition and the destination noise-
dominant condition, respectively.

Interestingly, closed-form analytical solutions are not
available for arbitrary L even in these simplified conditions.
However such solutions can be found if L is restricted to
some specific values depending on M. It thus prompts a
(suboptimal) relay selection approach wherein a judiciously
selected subset of the relays is used to participate in signal
transmission and the subset size is such that an analytical
solution exists. This approach also helps us to study the
resulting capacity outage diversity and compare it to that of
single-hop MIMO systems with or without antenna
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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selection [26, 27]. For convenience of reference, Appendix 3
contains a brief overview of some concepts related to the
capacity outage diversity of single-hop MIMO systems.

4.1 Destination noise-dominant condition

From (3), when the destination noise dominates in the overall
noise we have W � s2

DI . Then from (4) we obtain

C(R) � det IM + s2
x

s2
D

HHH

[ ]
(28)

Hence the capacity is approximately that of an M × M single-
hop point-to-point MIMO system with channel matrix H and
transmitted signal-to-received noise power ratio (transmit-to-
receive SNR) s2

x/s
2
D. However, even in this rather simplified

condition, no general solution is available to the optimisation
problem (5) for arbitrary L . M. However an analytical
solution can be obtained for L ¼ M. Thus we consider a
relay selection approach wherein M relays are selected to

perform the relaying. Let the total of
L
M

( )
selections be

indexed from 1 to
L
M

( )
. For the kth selection define the

corresponding optimisation target based on (28) as

C(k)
D (RD) W det IM + s2

x

s2
D

(FkRDGH
k )(FkRDGH

k )H

[ ]
(29)

where Fk [ C
M×M and Gk [ C

M×M , respectively, denote
the submatrices of F and G constructed by collecting the
columns corresponding to the active relays in the kth
selection, and RD denotes the diagonal matrix of relay gains
of the active relays. Let rD(i) be the ith diagonal term in
RD. In high SNR

C(k)
D (RD) � det

s2
x

s2
D

(FkRDGH
k )(FkRDGH

k )H

[ ]

= sx

sD

( )2M

det(FkFH
k ) det(GkGH

k )
∏

i

|rD(i)|2

(30)

To maximise C(k)
D (RD) subject to the power constraint (7)

given Fk and Gk, we equivalently find the optimum rD such
that

rD = arg max
rD

∏
i

|rD(i)| (31)

subject to

∑M

i=1

(s2
R + s2

x‖g(k)
i ‖2)|rD(i)|2 = PR (32)

where rD ¼ [rD(1), . . . , rD(M )]T and g(k)
i denotes the ith

column of Gk. Employing the Lagrange multiplier
technique leads to the optimum relay power allocation as

|rD(i)| =
���������������������

PR

M (s2
R + s2

x‖g(k)
i ‖2)

√
(33)
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Denote the resulting C(k)
D (RD) by C(k)

DO(RD). The final solution
is then given by the optimal selection

�k W arg max
k

C(k)
DO(RD) (34)

together with its corresponding optimum relay power
allocation.

To see its performance, substitute (33) into (30) and
assume s2

x‖g(k)
i ‖2≫s2

R (i.e. consider the high SNR limit).
Then we obtain an upper bound for any C(k)

DO(RD) as

C(k)
DO(RD) � sx

sD

( )2M

det(FkFH
k )

det(GkGH
k )∏

i ‖g(k)
i ‖2

PR

s2
xM

( )M

(35)

A simpler upper bound can be obtained by considering a QR
decomposition of GH

k as GH
k = QT , where Q is a unitary

matrix and T is an upper triangular matrix. Denote the ith
column of T by ti and the ith diagonal term of T by T (i, i).
Then ‖ti‖2 = ‖g(k)

i ‖2 because ti and g(k)
i are related by a

unitary transform Q and |T (i, i)|2‖ti‖2. Consequently,

det(GkGH
k )∏

i ‖g(k)
i ‖2

= | det(Q)|2| det(T)|2∏
i ‖g(k)

i ‖2

=
∏M
i=1

|T(i, i)|2

‖g(k)
i ‖2

≤
∏M
i=1

‖ti‖2

‖g(k)
i ‖2

= 1 (36)

where equality holds only when Gk has orthogonal columns.
Substituting into (35) yields the desired upper bound

C(k)
DO(RD) , det(FkFH

k )
PR

s2
DM

( )M

(37)

Thus we obtain an upper bound CDU on the capacity measure
for the suboptimal solution as

C(�k)
DO(RD) , det(F�kFH

�k )
PR

s2
DM

( )M

≤ max
k

det(FkFH
k )

PR

s2
DM

( )M

WCDU (38)

log2 CDU is actually the asymptotic capacity of an (M, L; M )S

system at transmit-to-receive SNR PM
R /(s2

DM )M , where (X, Y;
Z )S denotes an X × Y single-hop point-to-point MIMO
system wherein the receiver selects, out of the total Y
received antenna signals, the Z that yields the maximum
capacity for receiver processing. (See the review in
Appendix 3.)

By (35) we may also obtain a lower bound for C(�k)
DO(RD).

Letting

k = arg max
k

det(GkGH
k )

Pi‖g(k)
i ‖2

(39)

we have the lower bound CDL as

CDL WC
(k)
DO(RD) ≤ max

k
C(k)

DO(RD) (40)

When L ≫ M, it becomes more likely to find a set of M nearly
orthogonal columns in G. In this case, we will have
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det(GkGH
k )/

∏
i ‖g

(k)
i ‖2 � 1 and thus

CDL = C
(k)
DO(RD) � det(FkFH

k )
PR

s2
DM

( )M

(41)

Now since k is a selection based on G without taking F into
consideration and since from (41) log2 CDL resembles the
form of the capacity of an M × M single-hop point-to-point
MIMO system with channel matrix Fk at transmit-to-
receive SNR PM

R /(s2
DM )M , we can view log2 CDL as the

capacity of an (M, M; M )S system.
Therefore from (38) and (40) we conclude that in the

destination-noise dominant condition, the performance of
relay selection with optimal power allocation is
asymptotically upper-bounded by that of the (M, L; M )S

MIMO antenna selection system and lower-bounded by that
of (M, M; M )S. The capacity outage diversity order is thus
similarly bounded by that of these two systems. Simulation
results in the next section will show that, although the
above derivation has been carried out mostly assuming
asymptotic conditions, relay selection systems operating in
practical conditions exhibit some similar performance
characteristics.

4.2 Relay noise-dominant condition

We now turn to the relay noise-dominant situation. Again, no
closed-form general solution can be found for arbitrary values
of L and M, but a solution can be found if they are related in a
specific way. We thus again propose a relay selection scheme.

To start, let N out of the L relays be selected to participate
in the relaying, where N ≥ M but is otherwise undetermined

for the moment. Altogether there are
L
N

( )
selections. For

the jth selection we let Fj [ CM×N and Gj [ CM×N denote
the corresponding channel submatrices of F and G,
respectively. From the derivation up to (52) in Appendix 1
we may infer that, in the relay noise-dominant situation

C(j)
R (RR) � det IM + s2

x

s2
R

GjV jV
H
j GH

j

( )
(42)

where RR is the diagonal matrix of relay gains, V j [ C
N×M is

the matrix of right singular vectors of FjRR with its jth
column corresponding to the jth largest singular value of
FjRR. Comparing with the situation addressed in Appendix
2 [in particular, see (62)] we find that relay noise-dominant
systems behave similarly to systems with very high relay
transmission power. Hence by Theorem 2, C(j)

R (RR) is
upper-bounded as

C(j)
R (RR) ≤ det IM + s2

x

s2
R

GjG
H
j

( )
(43)

where equality holds and C(j)
R (RR) is maximised if the rows of

FjRR span the same space as that of Gj. Note that, contrary to
the destination noise-dominant case, in the present case
the total relay transmission power does not affect the
performance at all, only the row space of FjRR matters. The
relay network should try to align the row space of FjRR

with that of Gj, which is a beamforming problem.
To proceed, let f (j)H

i denote the ith row of Fj. Let
Oj [ C

N×(N−M ) be a matrix of basis vectors for the
orthogonal complement of the row space of Gj; that is, Oj is
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such that GjOj ¼ 0 where 0 denotes a zero matrix. Also, let
F(j)

i = diag(f (j)H
i )Oj. Immediately we have

rT
RF

(j)
i = rT

Rdiag(f (j)H
i )Oj = f (j)H

i RROj (44)

where rR [ C
N is the vector formed by the diagonal elements

of RR. To make the row space of FjRR equal to that of Gj,
therefore we may equivalently find rR such that rT

RF
(j)
i = 0

∀i. For this, define

Fj W [F(j)
1 F(j)

2 · · · F(j)
M ] [ C

N×N (N−M ) (45)

Then the optimal solution or beamformer rR should be such
that rT

RFj = 0. The existence of such a solution would
require Fj to have a non-empty null column space.
Therefore let M(N 2 M ) , N. Combined with the earlier
assumption that N ≥ M, the only choice is N ¼ M + 1 for
any M ≥ 2.

In conclusion, the final solution is given by the selection

�j = arg max

1≤j≤
L

M + 1

( )C(j)
R (RR) (46)

where for each j, RR is given by diag(rR) with rR being the
solution to the equation rT

RFj = 0 and ‘normalised’ such
that SM+1

i=1 (s2
R + s2

x‖g(j)
i ‖2)|rR(i)|2 = PR [where g(j)

i is the ith
column of Gj and rR(i) is the ith element of rR].

Regarding its performance, from (43) we see that the resulting
capacity measure is approximately given by CRO as follows

max
j

C(j)
R (RR) ≃ max

j
det IM + s2

x

s2
R

GjG
H
j

( )
WCRO (47)

where the middle expression indicates that log2 CRO should
behave similarly to an (M, L; M + 1)S MIMO antenna
selection system with transmit-to-receive SNR s2

x/s
2
R. We

will not develop upper and lower bounds to the capacity
performance as in the destination noise-dominant case because
(47) is already a good approximation.

5 Simulation results

In presenting the simulation results, we first consider the
performance of the iterative algorithm. We arbitrarily let
M ¼ 4, s2

x = 1, PR ¼ 10 and s2
R = s2

D = 0.1. We consider
two relay network sizes: L ¼ 6 and 12. The channel
matrices F and G are generated by letting all their elements
be independent and identically distributed (i.i.d.) complex
Gaussian random variables. The relays are initialised to an
identical gain that satisfies the power constraint (7). Thus
their initial performance also serves as a benchmark to
compare algorithm results with.

Fig. 2 illustrates the progression of average capacity with
number of iterations under two methods of solving for the
relay gains adjustment factor b: line search and quadratic
approximation, where the former has a much higher
computational complexity than the latter. The results show
that line search performs better than quadratic approximation,
but both show a qualitatively similar convergence behaviour
and the final results after convergence are quite close.

Next, we consider the methods derived under the two
dominant noise assumptions. This serves two main
purposes. First, their performance is compared with two
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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benchmarks, namely, that of equal-gain allocation and that
obtained with our iterative algorithm. Secondly, their
capacity outage behaviour is observed. In this we also look
at how close the bounds CDU and CDL and the
approximation CRO are to the actual results.

For the destination noise-dominant case, Fig. 3 shows some
cumulative distribution function (CDF) curves of the obtained
capacity at M ¼ 3, L ¼ 6, sx ¼ 1, sD ¼ 0.1 and PR ¼ 1. Not
surprisingly, the iterative algorithm performs better than the
suboptimal relay-selection solutions, and the equal-gain
allocation performs worse. The CDU curve is rather close to
the iterative algorithm results at the same sD/sR ratio. As to
the relay-selection solutions, we see that the capacity
performance drops as sR increases (which worsens the
SNR). However even though the destination noise becomes
less dominant with increasing sR, the capacity outage
diversity order (indicated by the slope of the curve) remains
similar and similar to that of CDU.

Next, we consider how the diversity order varies with
number of relays (L). Fig. 4 shows some results with all
system parameters the same as above except for a fixed
sR ¼ 1022 and a variable L. As the purpose is to examine
the diversity order behaviour but not the actual capacity, we
‘bias’ the CDF curves horizontally to make their 50% points

Fig. 3 Capacity CDF of distributed relay system designed under
destination noise-dominant assumption

Fig. 2 Progression of average capacity with number of iterations
in algorithmic optimisation
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
doi: 10.1049/iet-com.2010.0981
co-located at zero capacity. The curves verify that the
proposed relay selection method indeed yields a similar
diversity order to CDU, and the diversity order increases (i.e.
the CDF curve steepens) with number of relays. To compare
with the diversity behaviour of CDL, we also show a curve
for a (3, 3; 3)S system.

Now consider the design based on the relay noise-
dominant assumption. Fig. 5 shows some results. Again,
the iterative algorithm performs better and the equal-gain
worse. We verify that the diversity order behaviour at sR/
sD ¼ 10 is similar to that of a (3, 6; 4)S system (the
behaviour of CRO). As expected, capacity drops as sD

increases (which lowers the SNR and also makes the relay
noise less dominant). However the great difference with
Fig. 3 is the reduction in diversity order (i.e. reduction in
steepness of CDF curve) with reduced relay noise
dominance.

In Fig. 6, we compare the capacity CDFs of
distributed relay networks of different sizes, all designed
with the relay selection method for the relay noise-
dominant condition, with the (M, L; M + 1)S MIMO
antenna selection systems. We see that the performance of
the latter tightly upper bounds the corresponding
distributed relay systems.

Fig. 4 Horizontally ‘biased’ capacity CDF curves of distributed
relay systems for diversity comparison

Fig. 5 Capacity CDF of distributed relay system designed under
relay noise-dominant assumption
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6 Conclusion

We considered the design of distributed AF relay networks
for two-hop MIMO transmission. More specifically, we
considered the determination of relay gains for
maximisation of system capacity. As no closed-form
analytical solution could be found for the problem, we
considered two alternative approaches. One approach was
algorithmic, for which we derived an efficient iterative
algorithm. Since the algorithmic solution gave little insight
into the analytical properties of the solution, we also took
an analytical approach, assuming some asymptotic noise
conditions. The analytical approach resulted in several relay
selection-type of solutions and facilitated an analysis of the
diversity behaviour of the solutions. It turned out that their
capacity diversity performance behaved similarly to some
single-hop point-to-point MIMO antenna selection systems
previously analysed by other researchers.

Some simulation results were presented. The results
showed that, not surprisingly, the iterative algorithm did
yield better designs than the relay selection methods, but at
the cost of a substantially higher computational complexity.
More significantly, they also confirmed our outage diversity
analysis and verified that increasing the number of relays
could enhance the outage diversity performance.
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9 Appendix 1: Proof of Theorem 1

First, it is easy to verify for (4) that C(sR) ¼ C(|s|R). Thus,
without loss of generality, we assume s [ R+ (the set of
positive real numbers) hereunder.

Consider a singular value decomposition of FR as

FR = ULV H (48)

where for convenience we let L be M × M. Thus U [ CM×M

is the matrix of left singular vectors as usual, but the matrix of
right singular vectors V becomes L × M, that is, V [ CL×M .
Further, let the singular values on the diagonal of L be
arranged in descending numerical order, and let li denote
the ith value therein. Substituting the above into (3) and (4),
we obtain

W = USUH (49)

C(R) = det{IM + s2
xG[(FR)HW−1(FR)]GH}

= det[IM + s2
xG(VSV H)GH] (50)

where S and S are diagonal matrices with their ith diagonal
terms given by

S(i, i) = s2
D + (sR|li|)2 (51)

S(i, i) = |li|2

s2
D + (sR|li|)2 = |li|2

S(i, i)
(52)

By scaling R to sR and using Ws to denote the resulting noise
correlation matrix at the destination (in place of W ), we find
that

W s = s2
DI + (ssR)2(FR)(FR)H = USsU

H (53)

C(sR) = det{IM + s2
xG[s2(FR)HW−1

s (FR)]GH}

= det[IM + s2
xG(VSsV

H)GH] (54)

where Ss and Ss are diagonal matrices with their ith diagonal
terms given by

Ss(i, i) = s2
D + (ssR|li|)2 (55)

Ss(i, i) = s2|li|2

s2
D + (ssR|li|)2 = a(i)S(i, i) (56)

with a(i) defined as

a(i) W
s2[s2

D + (sR|li|)2]

s2
D + s2(sR|li|)2 (57)

For s2 . 1, we have a(i) . 1 ∀i [ [1, M ]. Then since
|li| ≥ |lj| for all i, j [ [1, M ], we obtain a(i) ≤ a( j) ∀i ≤ j.

Let a ¼ [a(1), . . . , a(M )]T and aD ¼ [aD(1), . . . , aD(M )]T

where aD(i) ¼ a(i) 2 a(1), 1 ≤ i ≤ M. The elements of aD
are all non-negative. Further, let diag(v) denote the diagonal
matrix having the ith element of vector v as its ith diagonal
element. Then from (52) and (56), Ss can be expressed as
IET Commun., 2012, Vol. 6, Iss. 3, pp. 246–256
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the sum of two diagonal matrices as

Ss = diag(a)S = [a(1)IM + diag(aD)]S

= a(1)S+ diag(aD)S︸����︷︷����︸
WSD

(58)

Therefore Ss is the sum of two non-negative diagonal
matrices. As a result, from (50), (54) and (58) we have

C(sR) = det[IM + a(1)V+VD] (59)

where

V Ws2
xG(VSV H)GH, VD Ws2

xG(VSDV H)GH (60)

Note that VD is positive-semidefinite.
We now invoke an inequality concerning the eigenvalues

of sum matrices [28, Section 6.4]. Specifically, let A and B
be Hermitian matrices and let C ¼ A + B. Let the
respective ith largest eigenvalues be denoted ri(A), ri(B)
and ri(C ). Then ri(C ) ≥ ri(A) and ri(C ) ≥ ri(B).

Applying the above inequality to (59), we obtain

C(sR) ≥ det[IM + a(1)V] . det(IM +V) = C(R) (61)

where the second inequality is due to a(1) . 1.

10 Appendix 2: Proof of Theorem 2

From (56), as |s| � 1 the significance of sD vanishes. Then
Ss(i, i) � s−2

R and

C(sR) � det[IM + (sx/sR)2GVV HGH]

= det[IL + (sx/sR)2GHGVV H] (62)

where V is the matrix of right singular vectors of FR as given
in (48). For convenience, let ri(M ) denote the ith largest
eigenvalue of a matrix M that has real eigenvalues. We have

r1(GHG) ≥ r2(GHG) ≥ · · · ≥ rM (GHG) . 0 (63)

ri(VV H) = 1, 1 ≤ i ≤ M (64)

ri(G
HG) = ri(VV H) = 0, M + 1 ≤ i ≤ L (65)

Now, it is known that for any two non-negative-definite
Hermitian matrices A and B, we have the eigenvalue
relation ri(AB) ≤ ri(A)r1(B) [28, Section 6.6]. Hence

ri(G
HGVV H) ≤ ri(G

HG)r1(VV H) = ri(G
HG) (66)

and finally

C(sR) ≤ det[IM + (sx/sR)2GGH]

11 Appendix 3: capacity outage diversity of
MIMO antenna selection systems

Since in Section 4 we use concepts of MIMO antenna
selection systems for diversity analysis, we briefly review
some known results relevant to this topic.
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Consider a point-to-point MIMO system with M transmitter
antennas and N receiver antennas, where N ≥ M. Let
H [ C

N×M be the channel matrix and let the transmitted
signal-to-received noise power ratio (transmit-to-receive
SNR) r2. Then the system capacity is given by

log2 C(H) = log2 det(IM + r2HHH) (67)

For a flat-fading H, a statistical lower bound is [27]

log2 C(H ) ≥
∑M

i=1

log2 (1 + r2g2
N−i+1) (68)

where g2
N−i+1 denotes a gamma-distributed random variable

with N– i + 1 degrees of freedom. This lower bound
indicates that the capacity of an M × N MIMO system is
statistically equivalent to or better than that of a system
composed of M parallel independent single-input multi-
output (SIMO) subsystems wherein the ith subsystem
performs maximal-ratio combining (MRC) on N–M + i
receiver antennas. In other words, the overall capacity
outage diversity of an M × N MIMO system is bounded
between N–M + 1 and N.
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Consider a system where the receiver selects M out of its N
antennas for use in signal detection. Let HS be the M × M
channel matrix of the resulting MIMO channel. This matrix
contains the M rows in H that correspond to the selected

receiver antennas. There are
N
M

( )
possible antenna

choices. Let (M, N; M )S denote a system wherein the
antennas are chosen to maximise the capacity. Then the
system capacity can be described as

log2 CS = max
HS

log2 det(I + r2HH
S HS) (69)

It is shown in [26] that the capacity of such a system is again
statistically equivalent to or better than a MIMO system
composed of M parallel independent SIMO subsystems
wherein the ith subsystem performs antenna selection by
choosing one out of N– i + 1 receiver antennas.

In a nutshell, both the full system (M, N; N )s and the
receiver antenna selection system (M, N; M )s can be
statistically modelled as a set of parallel SIMO
transmissions and thus share a similar capacity outage
diversity order.
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