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Abstract. Precise image alignment is considered a critical issue in indus-
trial visual inspection, since it performs an accurate pose to the object in
inspected images. Recently, image alignment based on neural networks
has become very popular due to its performance at speed. However, such
a method has difficulty when applied to the alignment of images on a large
range of affine transformation. To address this, a cooperative neural-fuzzy
network (CNFN) with association rule mining-based evolutionary learning
algorithm (ARMELA) is proposed. Unlike traditional neural network–based
approaches, the proposed CNFN utilizes a coarse-to-fine alignment pro-
cedure to adapt image alignment to a larger range of affine transformation.
The proposed ARMELA combines the self-adaptive method and associa-
tion rules selection method to self-adjust the structure and parameters of
the neural-fuzzy network. Furthermore, L2 regularization is adopted to
control ARMELA such that the convergence speed increases. Experimen-
tal results show that the performance of the proposed scheme is superior
to the traditional neural network methods in terms of accuracy and robust-
ness. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/
1.OE.51.2.027006]
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1 Introduction
Among industrial applications, such as object orientation,
automatic visual inspection, assembly automation, and
robotic machine vision, image alignment is the most widely
used. For instance, in an industrial inspection system, objects
appearing in images are not always aligned with the desired
position or orientation. Therefore, an accurate geometric
transformation of image alignment is desirable.

The problem of precise image alignment has been well
studied in several fields. In Ref. 1, Liu et al. point out
that image alignment techniques are broadly classified as
feature-based2,3 and area-based matching approaches.4–6 In
feature-based methods, the features of the sensed image
and reference image represented by salient control points are
usually detected first, and then the correspondence between
these two images can be found by matching the descriptions
of the features. Although features-based methods have been
widely applied in many image registration tasks, they have
difficulties to detect the respective features in less detailed
images and are heavily dependent on control points. In area-
based methods, such as correlation-like methods, they are
popular for real-time applications because of simplicity and
hardware implementation.7,8 The main constraints of these
methods are high computational complexity and are not sui-
table for complicated geometric deformation.

In Ref. 9, Amintoosi et al. pointed out that area-based
methods produce better results than results with low sig-
nal-to-noise ratio (SNR) from feature-based methods.

Moreover, Zitova and Flusser indicated10 that area-based
methods are preferably applied to less detailed images and
that the captured images generally have less detail in an
industrial inspection system. Therefore, the area-based meth-
ods are recommended in this paper.

In area-based fields, the most commonly used geometric
transformation for image alignment is affine transformation,
which consists of scaling, rotation, and translation. Next,
global features of sensed images fed to a neural network
are a widespread technique for estimation of affine transfor-
mation. In other words, neural networks are helpful in
designing image alignment systems.

In recent years, neural network–based image alignment
utilizing global features has been a relatively new research
subject.11–15 In Ref. 11, Elhanany et al. presented a feedfor-
ward neural network (FNN) to align images through 144 dis-
crete cosine transform (DCT) coefficients as the feature
vectors. Although such an approach has successfully aligned
several deformed and noisy images, it still needs a larger
dimension of feature vector to represent an image sufficiently
in the unorthogonality of DCT-based space. To improve such
approach, Wu and Xie12 utilized low-order Zernike moments
to replace DCT to estimate affine parameters. In their experi-
ments, the alignment results were not satisfied. Recently, Xu
and Guo13 have adopted an isometric mapping (ISOMAP)
method to reduce the dimension of the feature vector. For
FNN improvement, Xu and Guo used a Bayesian regulariza-
tion method to generalize the FNN.14 They have shown in
some comparative experiments that FNN with regulariza-
tion indeed performs better than that without regularization.
In addition to FNN-based methods, Sarnel et al.15 used0091-3286/2012/$25.00 © 2012 SPIE
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a radial basis function neural network (RBFNN) to align
images. According to their results, the training time of a
RBFNN has been reduced, and the alignment accuracy
and robustness against noise are better than those of
FNN-based methods.

However, a major drawback of the existing neural net-
work–based methods is that they have difficulty when
applied to align images on a large range of affine transfor-
mation (i.e., large range of affine parameters). The reason is
that a large range of affine parameters would lead to a large
amount of training data such that the mapping surface
becomes more complex. To solve such a phenomenon, a
large-sized neural network is required, but this network is
often difficult to train. Thus, applying a one-stage neural net-
work to estimate a large range of affine parameters accurately
is almost impossible.

In this paper, a cooperative neural-fuzzy network (CNFN)
is proposed to overcome the problem produced by the one-
stage neural network. The notion of this approach is to divide
the large-sized network into several small cooperative net-
works, aiming to gradually reduce the image alignment
error and finally obtain the desired accuracy. The cooperative
network presented in this study indicates that each network
manages a certain range of affine parameters and that the net-
works cooperate to adapt image alignment to a larger range
of affine transformation. Such a phenomenon can be consid-
ered a coarse-to-fine alignment of the sensed image and the
reference image. Moreover, based on the concept of the
cooperative networks, this study proposes a self-organized
training data–creating method that generates an appropriate
training set for each network. The benefits of this method
are that it not only provides a self-organized training set
but also prevents the yielding redundant training data.
Finally, this paper develops an association rule mining-
based evolutionary learning algorithm (ARMELA) that com-
bines self-adaptive method (SAM) and association rules
selection method (ARSM) to tune the structure and para-
meters of the network automatically. Moreover, L2 regular-
ization is utilized to control ARMELA such that the
convergence speed increases. Therefore, these operations
can make the structure and parameters of neural-fuzzy net-
works become more robust.

The rest of this paper is organized as follows. In Sec. 2,
the proposed image alignment system is introduced. Sec-
tion 3 describes ARMELA. The experimental results are

presented in Sec. 4. The conclusion is presented in the
last section.

2 The Proposed Image Alignment System
This section describes the proposed image alignment system
that contains off-line and on-line procedures for training and
executing the CNFN, respectively. Figure 1 illustrates the
two procedures of the proposed approach, which will be
explained in detail to show how the image alignment system
works.

2.1 Off-Line Procedure

The objective of the off-line procedure is to train the CNFN.
The four main parts of the procedure are creating synthesized
training images, generating the Gabor-weighted gradient
orientation histogram (WGOH) descriptor, yielding self-
organized training data, and training the CNFN. These
parts are described as follows.

2.1.1 Creating synthesized training images

The synthesized training images can be generated by apply-
ing various combination of translation, rotation, and scaling
transformations within a predefined range. The transforma-
tion model is affine transformation, which is described by the
following matrix equations:�
x2
y2

�
¼ s

�
cos θ − sin θ
sin θ cos θ

��
x1 − xc
y1 − yc

�
þ
�
xc þ Δx
yc þ Δy

�
;

(1)

where ðx1; y1Þ is the original image coordinate, ðx2; y2Þ is the
transformed image coordinate, s is a scaling factor, ðΔx;ΔyÞ
is a translation vector, θ is a rotation angle, and ðxc; ycÞ is the
center of rotation.

2.1.2 Generating Gabor-WGOH descriptor

The main idea of a WGOH descriptor was inspired by a scale
invariant feature transform (SIFT) descriptor.16 It was intro-
duced by Bradley et al.17 to show its high speed. This
descriptor calculates the orientation histograms within a
region and uses the magnitude of the gradient at each
pixel and the two-dimensional Gaussian function to weight
the histogram.18 However, using the pixel difference to com-
pute the gradient is sensitive to noise. To avoid such
sensitivity, Moreno et al.combined a Gabor filter with the

Fig. 1 Block diagram of the proposed image alignment system.
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WGOH descriptor to suppress noise.19 Thus, we adopt the
Gabor-WGOH descriptor in representing an image.

To create the Gabor-WGOH descriptor, each image is
split into 4 × 4 subimages. On each pixel of the subimage,
the gradient magnitude and orientation are computed using
the Gabor filter. Next, the 8-bin orientation histograms,
which are weighted by the gradient magnitude and the Gaus-
sian function, are calculated within each subimage. The 8-
bin histograms of 16 subimages are then concatenated
into a 128-element feature vector. To lower the dimension
of the feature vector, we further employ the principal com-
ponent analysis method to reduce the 128-elemet feature vec-
tor into a 33-element one. Therefore, each image can be
represented by a 33-elemet feature vector.

2.1.3 Yielding self-organized training data

After describing the Gabor-WGOH descriptor, we propose a
self-organized training data–creating method to provide an
appropriate training data set for training neural networks.
The major advantages of the proposed training data–creating
method are that it can prevent the generation of the redundant
data and supply a self-organized training data set for training
a neural network efficiently. The steps for yielding the self-
organized training data are as follows:

Step 1: First, generate a small training data set fStraing.
Then, utilize this data set to train a neural network.

Step 2: Input a fixed number of testing data sets fStestg into
the neural network to create the alignment

alignment errorfEtestg.Check each errorfEtestðiÞg∶
If EtestðiÞ > PdError; then fStestðiÞg →

insertfStraing
and ErAcc ¼ ErAccþ 1:

for i ¼ 1; 2; : : : ;N test;

(2)

where PdError is the predefined error, ErAcc is the
accumulator of large error counts, and N test is the
number of the test data set.

Step 3: If ErAcc < ter, then accumulate the Loop
Num ¼ LoopNum þ 1. Otherwise, set Loop
Num ¼ 0. The symbol ter indicates the threshold

of the error accumulator, and LoopNum means
the accumulating number of loop.

Step 4: If LoopNum > loop thresholdtloop terminate the
training and output the training set fStraing. Other-
wise, go to step 2 to run recursive training.

In Step 2, the insert testing data is the data that the neural
network does not perform well. Therefore, inserting such
data can enhance the learning ability of the neural network
and prevent the selection of the redundant training data.
Moreover, from Step 4, LoopNum > tloop means that the
amount of training data set has converged. At this time, it
also indicates that the training data set is self-organized.
Thus, we can utilize the self-organized training data–creating
method to provide the training data for training CNFNs.

2.1.4 Training the CNFN

The notion of the CNFN is to combine several networks
to all cooperate in adapting to a large range of affine transfor-
mation. The aim of this operation is to improve the traditional
one-stage neural network, which can cause a large amount of
training data; such a network is difficult to train. The coop-
erative networks can be considered a coarse-to-fine alignment
of the captured image and the reference image.

Figure 2 presents the process of the CNFN. Based on this
figure, each stage deals with a certain range of affine para-
meters, and all the stages cooperate to obtain a large range of
affine parameters. As an input image with an unknown pose,
the CNFN gradually reduces the pose difference between the
input and the reference images. Thus, the final pose with
respect to the reference image can be written as the following
equation:

Pfinal ¼ P1 þ P2 þ : : : þ PN ; (3)

where P1, P2, and PN indicates the estimated pose from first,
second, and Nth stages of the neural network.

To perform training CNFN with providing the training
data, this study proposes an ARMELA to accomplish it.
In CNFN, once the range of affine parameters of each
stage has been determined, each network can be trained inde-
pendently. Thus, the learning process of each stage of CNFN
is identical. Regarding this fact, only a one-stage ARMELA

Fig. 2 Process of cooperative neural-fuzzy networks.
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is discussed. The details of ARMELA are introduced
in Sec. 3.

2.2 On-line Procedure

In the on-line phase, the sensed image is sent to the Gabor-
WGOH descriptor to extract a feature vector and is then fed
into ARMELA-trained CNFN to estimate the transformation
parameters, which include the scaling factor s, rotation angle
θ, and translation (Δx, Δy), to be incorporated into aligning
images. Specifically, the proposed CNFN performs N-stages
of the neural-fuzzy network (Fig. 2) to align the sensed
image with the reference image gradually. Thus, the image
alignment error will be reduced by stage. Finally, the best
aligning pose with the reference image will be obtained.

3 Association Rule Mining-based Evolutionary
Learning Algorithm

In this work, ARMELA is based on a Takagi-Sugeon-Kang
(TSK)-type neural-fuzzy network (TNFN)20 employing a
linear combination of the crisp inputs as the consequent
part of a fuzzy rule. The structure of the TNFN is shown
in Fig. 3. In the TNFN, the firing strength of a fuzzy rule
is calculated by performing the “AND” operation on the
truth values of each variable to its corresponding fuzzy
sets by:

uð3Þij ¼
Yn
i¼1

exp

�
−
½uð1Þi − mij�2

σ2ij

�
; (4)

where uð1Þi ¼ xi and uð3Þij are the outputs of the first and third
layers, and mij and σij are the center and the width of the
Gaussian membership function of the jth term of the ith
input variable xi, respectively.

The output node of the fuzzy system integrates all of the
actions recommended by the third and forth layers and acts

as a defuzzifier with:

y ¼ uð5Þ ¼
Σ
M

j¼1
uð4Þj

Σ
M

j¼1
uð3Þj

¼
Σ
M

j¼1
uð3Þj

�
w0j þ Σ

n

i¼1
wijxi

�

Σ
M

j¼1
uð3Þj

; (5)

where uð5Þ is the output of the fifth layer, wij is the weighting
value with ith dimension and jth rule node, andM is the num-
ber of a fuzzy rule.

After determining the structure of the neural-fuzzy net-
work, we discuss further the learning process of ARMELA.
Instead of multi-groups cooperation-based symbiotic evolu-
tion (MGCSE)21 encoding the whole fuzzy rule into a chro-
mosome, the proposed ARMELA encodes an antecedent
part of a fuzzy rule into a chromosome. The consequent
part of a fuzzy rule used in ARMELA is then estimated
using L2 regularization. Such an operation not only reduces
the number of parameters that must be trained but also
increases the convergence speed. The following describes
the details of the L2 regularization:

3.1 Regularization

Assume a TSK-type neural fuzzy model composed of m
fuzzy rules in the following form:

Rj∶IF x1 isA
j
1 : : : and xn isAj

n; THEN

yj ¼ wj
o þ wj

1x1 þ : : : þ wj
nxn;

(6)

where j ¼ 1; : : : ;m and Aj
i is the linguistic part with respect

to input i and Rule j. From Eq. (6), the output can be written
as follows:

y ¼
Σ
m

j¼1
ujyj

Σ
m

j¼1
uj

¼ û1y1 þ û2y2 þ : : : þ ûmym; (7)

where uj is the firing strength of Rule j, and
ûj ¼ uj∕ðu1 þ : : : þ umÞ. Thus, expressing the equation
above into the following form is possible:

y ¼ û1ðw1
0 þ w1

1x1 þ : : : þ w1
nxnÞ þ : : :

þ ûmðwm
0 þ wm

1 x1 þ : : : þ wm
n xnÞ ¼ aW ; (8)

whereW ¼ ½WT
1 · · · WT

m�T ,Wj ¼ ½wj
0 · · · wj

n�T , j ¼ 1; : : :m
and

a ¼

2
6664

û1û1x1 · · · û1xn
û2û2x1 · · · û2xn

..

.

ûmûmx1 · · · ûmxn

3
7775

T

:

As y and a are known values, the only unknown value is
the consequent partW . Suppose a given set of training inputs
and desired outputs is fxðtÞ; ydðtÞgMt¼1 Equation (8) can be
rewritten as:

AW ¼ Yd; (9)

where A ¼ ½að1Þ að2Þ · · · aðMÞ�T .Fig. 3 TNFN structure.
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In general, in most cases of the proposed alignment sys-
tem, the number of training sets (i.e., M) is always much
greater than the dimensions of each training picture. Regard-
ing this fact, Eq. (9) is always an overdetermined system.
Thus, a least-square method can be utilized to obtain an
approximate solution. However, to obtain the smooth estima-

tion, the regularization is adopted. Thus, this method is
called the L2 regularization. By using L2 regularization,
the approximation solution is obtained as follows:

Ŵ ¼ ðATAþ λIÞ−1ATYd; (10)

where λ is a regularization parameter that adjusts the smooth-
ness. Therefore, by obtaining Eq. (10), we complete the esti-
mation of the consequent part of the fuzzy rules.

The chromosome structure to construct the TNFNs in
ARMELA is discussed and shown in Fig. 4. In this figure,
each antecedent part of a fuzzy rule represents a chromosome
selected from a group, Psize denotes that there are Psize groups
in a population, andMk indicates that there areMk rules used
in the TNFN construction.

3.2 ARMELA Procedure

The evolutionary process of ARMELA in each group involves
seven major operators: initialization, SAM, ARSM, fitness
assignment, reproduction strategy, crossover strategy, and
mutation strategy. Figure 5 presents the learning process.

The detailed learning processes of ARMELA are
described as follows:

Fig. 4 Chromosome structure to construct the TNFN in ARMELA.

Fig. 5 Learning process of ARMELA.

Table 1 Transactions in the ARSM.

Transaction index Groups Performance Index

1 1,4,8 g

2 2,4,7,10 b

: : : : : : : : :

Transaction Num 1,3,4,6,8,9 g
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3.2.1 Initialization

Before ARMELA learning is applied, the initial groups of
individuals should be generated. The initial groups of
ARMELA are generated randomly within a fixed range.
The following formulations show how to generate the initial
chromosomes in each group:

Deviation∶chrg;c½p� ¼ random½σmin; σmax�;
where p ¼ 2; 4; : : : ; 2n; g ¼ 1; 2; : : : ;Psize;

c ¼ 1; 2; : : : ;NC;

(11)

Mean∶chrg;r½p� ¼ random½mmin;mmax�;
where p ¼ 1; 3; : : : ; 2n − 1;

(12)

where Chrg;c represents cth chromosome in the gth group,
NC is the total number of chromosomes in each group, p
represents the pth gene in a Chrg;c and ½σmin; σmax�
½mmin;mmax� represent the predefined range to generate the
chromosomes.

3.2.2 Self-adaptive method

To select fuzzy rules automatically, the proposed ARMELA
adopts our previous research (i.e., the SAM22) to determine
the suitability of the TNFNmodels with different fuzzy rules.
The SAM encodes the probability vector VMk

, which stands
for the suitability of a TNFN with Mk rules. In addition, in
SAM, the minimum and maximum numbers of rules must be
predefined to limit the number of fuzzy rules to a certain
bound, that is, ½Mmin; Mmax�. The processing steps of SAM
are described as follows:

Step 1: Update the probability vectors VMk
according to the

following equations:
�
VMk

¼VMk
þðUptvalueMk

�λÞ; if Avg≤ fitMk

VMk
¼VMk

− ðUptvalueMk
� λÞ; otherwise

(13)

Fig. 6 Example of visual inspection images: (a) reference image, (b) transformed image with a scale of 0.9, a rotation of 10 deg, a vertical transla-
tion of 5, and a horizontal translation of 10.

Table 3 Affine parameters range of three-stage CNFNs.

Affine parameter
The coarse range of
affine parameter

The medium range of
affine parameter

The fine range of
affine parameter

Scale [0.7 to 1.3] [0.85 to 1.15] [0.9 to 1.1]

Rotation
(degrees)

[−100 to 100] [−50 to 50] [−5 to 5]

Vertical translation
(pixels)

[−100 to 100] [−30 to 30] [−5 to 5]

Horizontal translation
(pixels)

[−100 to 100] [−30 to 30] [−5 to 5]

Table 2 Target alignment range.

Affine parameter The range of affine parameter

Scale [0.7 to 1.3]

Rotation (deg) [−100 to 100]

Vertical translation (pixels) [−100 to 100]

Horizontal translation (pixels) [−100 to 100]

Hsu, Cheng, and Lin: Precise image alignment using cooperative neural-fuzzy networks : : :

Optical Engineering 027006-6 February 2012/Vol. 51(2)

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



Avg ¼
XMmax

Mk¼Mmin

fitMk
∕ðMmax −Mmin þ 1Þ; (14)

UptvalueMk
¼ fitMk

∕
XMmax

Mk¼Mmin

fitMk
; (15)

if FitnessMk
≥ ðBestFitnessMk

− Thread Fitness valueÞ
then fitMk

¼ fitMk
þ FitnessMk

;

(16)

where VMk
is the probability vector, λ is a prede-

fined threshold value, Avg is the average fitness
value in the whole population, BestFitnessMk

is
the best fitness value of TNFN with Mk rules,
and fitMk

is the sum of the fitness values of the
TNFN with Mk rules.

Step 2: Determine the selection times of TNFNwith different
rules according to the probability vectors as follows:

RpMk
¼ ðSelectionTimesÞ � ðVMk

∕TotalVelocyÞ;
for Mk ¼ Mmin;Mminþ1; : : : ;Mmax;

(17)

TotalVelocy ¼
XMmax

Mk¼Mmin

VMk
; (18)

where selection_Times is the total selection times in
each generation, and RpMk

is the selection times of
TNFN with Mk rules in one generation.

Step 3: Accumulator calculation: If the current best combi-
nation of chromosomes does not improve, then the
accumulator can be computed as follows:

if BestFitnessg ¼ BestFitness;

then Accumulator ¼ Accumulator þ 1;
(19)

where BestFitnessg is the best fitness value of the
best combination of chromosomes in the gth gen-
eration, and Best_Fitness is the best fitness value
of the best combination of chromosomes in the cur-
rent generations.

3.2.3 The association rule selection method

Following the selection times determined by SAM, the selec-
tion steps, including the selection of chromosomes and
groups, are performed. In chromosome selection, chromo-
somes are randomly selected from groups. In the group
selection, this paper proposes the use of ARSM to determine
the suitable groups for chromosome selection. To prevent the
selected groups from falling into the local optimal solution,
ARSM uses a transaction built action and an association rule
mining action to select the well-performing groups. The
details of ARSM are described in the following actions:

Fig. 7 Recursive training curve of performing the self-organized train-
ing data–yielding method: (a) coarse range, (b) medium range, and
(c) fine range.
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Step 1: Transaction built action.
The aims of this action are twofold: to accumulate
the transaction set and to select groups. Regarding
the accumulation of transaction set, the transactions
are built using the following equations:

if FitnessMk
≥ ðBest FitnessMk

− Thread Fitness valueÞ
Transactionj½i� ¼ TFCRule SetMk

½i�
then Performance Index ¼ g;

(20)

if FitnessMk
< ðBest FitnessMk

− Thread Fitness valueÞ
Transactionj½i� ¼ TFCRule SetMk

½i�
then Performance Index ¼ b;

(21)

where i ¼ 1; 2; : : : ;Mk, Mk ¼ Mmin;Mminþ1; : : : ;
Mmax, j ¼ 1; 2; : : : ;TransactionNum, the
FitnessMk

is the fitness value of TNFN with Mk
rules, ThreadFitnessvalue is a predefined value,
TransactionNum is the total number of transactions,
Transactionj½i� is the ith item in the jth transaction,
TFCRule SetMMk

½i� is the i is the ith group in the
Mk groups used for chromosomes selection, and
Performance Index ¼ g and Performance Index ¼
b represent the good and bad performance, respec-
tively. Hence, transactions have the form shown in
Table 1. As shown in Table 1, the first transaction
indicates that the three-rule TNFN formed by the
first, fourth, and eighth groups have “good” perfor-
mance. In contrast, the second transaction indicates
that the four-rule TNFN formed by the second,
fourth, seventh, and the tenth groups have “bad”
performance.
Regarding the group selection, ARSM selects
groups using the following equation:

if Accumulator ≤ Normal times

Group Index ¼ Random½1;Psize�;
(22)

where i ¼ 1; 2; : : :Mk, Mk ¼ Mmin,Mminþ1; : : : ;

Mmax, Accumulator is used to determine which
action should be adopted, GroupIndex½i� is the
selected ith group of the Mk groups, and PSize indi-
cates that there are PSize groups in a population in
ARMELA. If the best fitness value does not
improve for a sufficient number of generations
(Normal Times), then ARSM selects groups accord-
ing to the association rule mining action.

Step 2: Association rule mining action.
In the transaction-built action, suitable groups are
randomly selected from populations. In the associa-
tion rule mining action, suitable groups are selected
according to the association rules. To consider the
association rules further, they can be found using
three steps: (1) obtain the frequently occurring
groups from FP-growth, (2) generate association
rules, and (3) select suitable groups. The details
of these three steps are presented as follows.

i. Finding frequently occurring groups:
In this step, only good groups, whose perfor-
mance index is “g” in Table 1, are performed
by finding the frequently occurring groups;
bad groups are left out. Thus, frequently occur-
ring groups can be found according to the pre-
defined Minimum_Support, which stands for
the minimum fraction of transactions contain-
ing the item set. After Minimum_Support is
defined, this paper adopts the FP-growth algo-
rithm23 to perform frequent pattern mining. In
FP-growth, frequently occurring groups can
be found by exploring the FP-tree.23 After
exploring the frequently occurring groups in
the FP-tree, FP-growth data mining is com-
pleted by the concatenation of the suffix
group23 with the generated frequently occurring
groups. Thus, in this paper, frequent groups
denote the frequently occurring groups found
by FP-growth algorithm.

ii. Generating association rules.
To produce the association rules with good per-
formance, the frequent groups must combine
with the groups with bad performance shown
in Table 1 to count the confidence degree,
which can be computed by the following for-
mula:

confidenceðfrequent groups ⇒ goodÞ ¼ Pðgoodjfrequent groupsÞ

¼ suppðfrequent groups ∪ goodÞ
suppðfrequent groups ∪ goodÞ þ suppðfrequent groups ∪ badÞ ; (23)

where Pðgoodjfrequent groupsÞ is the condi-
tional probability, frequent groups ∪ good or
bad is the union of frequent groups and good
or bad performance, and suppðfrequent groups
∪ good or badÞ is the counts of frequent groups

with good or bad performance occurring in
transactions. Then, the rule is valid if

confidenceðfrequent groups ⇒ goodÞ
≥ minconf; (24)
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where minconf is the minimal confidence given
by a user or an expert. Hence, we can infer that
if a rule satisfies Eq. (24), then the frequent
groups can be considered as the suitable groups.
For example, if the confidence of f2; 5; 8g ⇒<
fgg is larger than the minimum confidence, we
produce this association rule, which indicates
that the combination of the second, fifth, and
eighth groups have “good” performance.
After doing so, the frequent groups are con-
ducted to produce association rules and generate
the Associated Good Pool, which contains all
frequent groups that satisfy Eq. (24).

iii. Selecting suitable groups.
After the association rules are constructed,
ARSM selects groups according to the asso-
ciation rules. The group indexes are selected
from the associated good groups according
to the following equations:

if NormalTimes <Accumulator

≤ ExploreTimes

thenGroupIndex½i� ¼w;

where w¼Good ItemSet½q�
¼Random½AssociatedGoodPool�;

(25)

where q ¼ 1; 2; : : : ;Associated Goodpool
Num, i ¼ 1; 2; : : :Mk , Mk ¼ Mmin, Mminþ1;
: : : ;Mmax, Explore Times is a predefined
value that judge to perform the association
rule mining action, Associated Good Pool is
the sets of good item set obtained from the
association rules, Associated Good Pool
Num is the total number of sets in Associated
Good Pool, and GoodItemSet½i� presents a
good item set randomly selected from Asso-
ciated Good Pool. In the Eq. (25), if Mk is
greater than the size of GoodItem Set, the
remaining groups are selected using Eq. (22).

Step 3: If the best fitness value does not improve for a suf-
ficient number of generations (Explore Times),
ARSM selects groups based on the transaction
built action and sets Accumulator ¼ 0.

Step 4: After the Mk groups are selected, Mk chromosomes
are selected from Mk groups as follows:

Chromosome Index½i� ¼ q; (26)

where q ¼ Random½1;Nc�, i ¼ 1; 2; : : : ; k, Nc is
the total number of chromosomes in each group,
and ChromosomeIndex½i� is the index of a chromo-
some that is selected from the ith group.

3.2.4 Fitness assignment

To assign the fitness value of an individual, the following
detailed steps in the fitness value assignment are performed:

Table 4 Initial parameters of ARMELA training.

Parameters Value of coarse range Value of medium range Value of fine range

Psize 60 40 40

Nc 20 20 20

Selection_Times 50 50 50

NormalTimes 10 10 5

ExploreTimes 15 15 8

Crossover Rate 0.6 0.6 0.6

Mutation Rate 0.2 0.2 0.2

[Mmin, Mmax] [38, 45] [18, 25] [18, 25]

[mmin, mmax] [−9.5, 9.5] [−8.5, 8.5] −14.5, 14.5]

[σmin, σmax] [14, 16] [13, 15] [40, 43]

[wmin, wmax] L2 regularization
determined

L2 regularization
determined

L2 regularization
determined

Minimum_Support Transaction
Num∕2.5

Transaction
Num∕2.8

Transaction
Num∕3

Minimum_Confidence 60% 60% 60%

L2 regularization
parameter (λ)

0.003 0.003 0.003
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Fig. 8 Alignment results of different systems: (a) ground truth, (b) proposed system, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.

Table 5 Alignment errors in different image alignment systems.

Method

Errors

ErrScale ErrAngle (deg) ErrDx (pixels) ErrDy (pixels)

Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

Proposed 0.0070 0.01134 0.0353 0.2601 0.2829 0.2164 0.3095 0.5673

DCT15 0.0302 0.0350 6.8495 8.8052 6.7206 10.0008 6.3597 10.6839

FFT29 0.0229 0.0348 7.9348 8.8924 9.7631 10.2108 9.0485 9.4451

KICA14 0.0333 0.0370 9.8534 14.1339 6.6953 10.9533 6.0219 9.5207

ISOMAP13 0.0670 0.0557 14.3922 21.0862 8.4077 14.4331 7.3752 9.7249
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Step 1: Choose Mk antecedent part of fuzzy rules using L2
regularization to construct a TNFN RpMk

times from
Mk groups with size NC. The Mk groups are
obtained from the ARSM.

Step 2: Evaluate every TNFN that is generated from Step1
to obtain a fitness value. In this paper, the fitness
value is designed according to the following formu-
lation:

Fitness Value ¼ 1∕ð1þ Eðy; ȳÞÞ; (27)

where Eðy; ȳÞ ¼
XN
i¼1

ðyi − ȳiÞ2; (28)

where yi and y
−
i represents the desired and predicted

values of the ith output, respectively, Eðy; ȳÞ is an
error function and N represents the number of the
training data in each generation.

Step 3: Divide the fitness value by Mk and accumulate the
divided fitness value to the selected antecedent part
of fuzzy rules with their fitness value records.

Step 4: Divide the accumulated fitness value of each chro-
mosome from Mk groups by the number of times
that it has been selected.

3.2.5 Reproduction strategy

This study utilizes our previous research, namely, elite-based
reproduction strategy (ERS),21 to perform reproduction. In
ERS, every chromosome in the best combination of Mk
groups must be kept by performing the reproduction step.
In the remaining chromosomes in each group, this study
uses the roulette-wheel selection method24 for the reproduc-
tion process. The well-performing chromosomes in the top
half of each group25 proceed to the next generation. The
other half is created by executing crossover and mutation
operations on the chromosomes in the top half of the parent
individuals.

Fig. 9 Alignment results of different systems under a 10-dB SNR condition: (a) ground truth, (b) the proposed system, (c) DCT, (d) FFT, (e) KICA,
and (f) ISOMAP.
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3.2.6 Crossover strategy

The main method to attain the inheritance of parents is the
crossover operator, the operation of which occurs for a
selected pair with a crossover rate. In this paper, a two-
point crossover strategy24 is adopted. The benefits of the
two-point crossover are the ability to introduce a higher
degree of randomness into the selection of genetic material26

and the ability to yield better performance than one-point
crossover.27

3.2.7 Mutation strategy

Mutation can randomly alter the allele of a gene. In this
paper, uniform mutation24 is adopted. The mutated gene is
drawn randomly from the domain of the corresponding vari-
able. The major advantage of uniform mutation is its ability
to provide new and highly diverse information for a popu-
lation.28

• Termination condition.
The aforementioned seven operators are performed
repeatedly and are stopped when the number of
generations reaches a predefined value or when the fit-
ness value is greater than the fitness limit.

4 Experimental Results
In this section, the visual inspection images with a size of
640 × 480 pixels are utilized to verify the utility of the pro-
posed alignment method. Figure 6 demonstrates such images
whose left and right sides are the reference and transformed
images, respectively. In this figure, the dashed window of the
image represents the template window with a size of 200 ×
200 pixels, and the cross sign denotes the reference location
of the template. Furthermore, Table 2 defines the target align-
ment range for aligning the visual inspection images. All
image alignment systems mentioned in this section are
implemented to reach the target alignment range.

Fig. 10 Comparison of the average affine transformation errors using the proposed method, DCT, FFT, KICA, and ISOMAP under various SNRs:
(a) error with respect to scale, (b) rotation, (c) translation on X-axis, and (d) translation on Y-axis.
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All experiments are performed by using an Intel Core i7
860 chip with a 2.8 GHz CPU, a 3G memory, and the Matlab
7.5 simulation software.

4.1 Cooperative Neural-Fuzzy Network with the
ARMELA Training

To achieve the target alignment range defined in Table 2, we
choose three ranges of affine parameters described in Table 3
to accomplish the three-stage CNFNs. In this table, each
range contains a single neural-fuzzy network, and these
ranges cooperate to adapt to a coarse image alignment
level. For the supply suitable training data for networks,
this paper uses the self-organized training data-yielding
method to generate 1165, 137, and 219 training data for
coarse, medium, and fine alignment ranges, respectively.
The map of recursive loop versus increased training data
for each range defined in Table 3 is shown in Fig. 7.
Based on this figure, the number of the increased training
data decreases gradually and then self-organizes.

Prior to performing the training, the initial parameters
of ARMELA are given in Table 4. Based on the training
feature vectors and initial parameters, we perform the

coarse, medium, and fine ARMELA training individually.
These three-stage training stops when the fitness is greater
than the predefined value. Therefore, once the training
process has been performed, our image alignment system
can be concluded to reach the target range defined in
Table 2.

4.2 Comparison with Existing Neural Network-based
Image Alignment Systems

To compare the proposed system with other existing neural
network-based systems,13–15,29 this paper carefully imple-
ments these systems according to the descriptions in their
original paper. In this experiment, two typical comparisons
including the alignment accuracy and robustness are dis-
cussed in the following parts.

4.2.1 Alignment accuracy

In the training phase, as utilizing the same number of training
images (i.e., 1165þ 137þ 219 ¼ 1521) as in the proposed
CNFN on traditional neural network–based methods13–15,29

can yield large alignment error, we randomly generate

Fig. 11 Results of image alignment on real-images. (a) The proposed system, (b) DCT, (c) FFT, (d) KICA, and (e) ISOMAP.
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another 4400 training images from the target alignment range
described in Table 2 for training traditional methods. In the
testing phase, we examine the alignment accuracy of the pro-
posed and other systems by using the same 600 testing
images randomly generated from the target alignment range.

Figure 8 presents an example of a synthesized testing
image on five different systems. The cross sign in Fig. 8
denotes the estimated results. In this figure, the proposed sys-
tem can estimate more accurate position and orientation of
the cross sign than other systems.

To proceed to analyze the alignment accuracy, Table 5
describes the average and standard deviation error of five
image alignment systems for 15 runs using different testing
images. From this table, the proposed system exhibited the
lowest alignment error than other systems. The result indi-
cates that the proposed CNFN not only gets much higher
alignment accuracy but also using fewer training data to
reach better performance than other one-stage neural net-
work methods.

4.2.2 Alignment Robustness

In this subsection, we verify further the robustness of the pro-
posed image alignment system by adding different levels of
random Gaussian noise. To achieve the aim of testing the
robustness, 600 testing images are randomly generated
with the addition of various strengths of Gaussian noise
to examine different image alignment systems.

Figure 9 illustrates an image alignment example under a
10-dB SNR condition. From this figure, the proposed system
depicts more accurate cross sign location than other methods.

Figures 10(a)–10(d) present the results of the absolute
errors of the affine parameters under eight levels of SNR.
As shown in these figures, the proposed system demonstrates
much lower affine parameters error than other systems. This
result indicates that the adopted Gabor-WGOH descriptor is
not disturbed by a high noise level, and so is the proposed
ARMELA-trained CNFN.

4.3 Real-Image Alignment Testing

In addition to the synthesized images, real-image testing
cases are used to verify the alignment performance of the
proposed system. Figures 11(a)–11(e) depict the experimen-
tal results of aligning the same real image utilizing the pro-
posed system, discrete cosine transform (DCT), FFT, kernel
independent component analysis (KICA), and ISOMAP,
respectively. The proposed system demonstrates a more pre-
cise position and rotation of the cross sign than other sys-
tems. Thus, applying the proposed image alignment
system to real-image alignment cases is feasible.

5 Conclusion
In this paper, the use of a CNFNwith an ARMELA to perform
image alignment tasks is proposed. The proposed CNFN
offers a larger range of affine transformation and higher
alignment accuracy in comparison with other traditional one-
stage neural network–based approaches. Moreover, the self-
organized training data-creating method can supply proper
training data and prevent the selection of redundant ones
for each stage of CNFN such that the total amount of training
data decreases. The proposed ARMELA is a useful learning
method for training CNFN such that the trained network can

estimate affine parameters accurately. This evidence can be
found in the experimental results of both synthesized and
real-images cases. The results show that the proposed align-
ment system can reach a high accuracy and noise robustness
level. In summary, this finding is helpful in developing accu-
rate and robust image alignment systems.

Although the proposed model can demonstrate high per-
formance, it still has some limitations. Specifically, as the
application problem becomes more complicated, the number
of cooperative neural-fuzzy networks would increase. Such
condition leads the proposed model to suffer from the diffi-
culty of choosing the suitable number of cooperative net-
works. If the unsuitable number of networks is chosen,
the overall system will yield large estimated errors. There-
fore, future works should identify a well-defined method to
determine the number of cooperative neural-fuzzy networks
automatically. Moreover, the noise consideration is only the
Gaussian case and it is not sufficient in every case. Thus, in
future studies, more noise cases should be considered to
demonstrate the robustness of the proposed algorithm.
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