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Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel

analysis (model-based approach) are commonly used for analyzing complex survey data with

nonindependent observations. Although these 2 approaches perform equally well on analyzing

complex survey data with equal between- and within-level model structures (B. O. Muthén &

Satorra, 1995), the performances of these 2 approaches for analyzing multilevel data with unequal

between- and within-level structures have not yet been systematically examined. In this study,

we extended B. O. Muthén and Satorra’s (1995) study by comparing these 2 approaches and

an additional model-based maximum model for analyzing multilevel data considering number

of clusters, cluster size, intraclass correlation, and the equality of different level structures. The

simulation results showed the model-based maximum model generally performed well across

conditions. This model is also recommended as an alternative for analyzing nonindependent survey

data, especially when the information of the higher level model structure is not known.

Keywords: complex survey data, design-based approach, maximum model, model-based approach,

multilevel SEM

The cluster sampling or multistage sampling technique is widely used in educational research

for its efficiency in time and resources. Unlike simple random sampling (SRS), which randomly

selects a sample from a target population to ensure independence of observations, cluster

sampling randomly samples naturally occurring groups and clusters of individuals or obser-

vations (Gall, Gall, & Borg, 2003; Stapleton, 2006). Data collected using cluster sampling
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COMPARING MODEL-BASED AND DESIGN-BASED MULTILEVEL APPROACHES 17

tend to have correlated observations within clusters. For example, students from the same

classroom are more likely to respond in a similar way because of the influence from the same

environment. Conventional statistical methods that assume independent observations should

not be used with data collected from cluster sampling due to the potential of nonindependent

observations. The use of conventional statistical methods on nonindependent data can result in

biased estimations of standard errors and incorrect statistical conclusions (Hox, 2002; Kalton,

1997; Kish, 1965).

In structural equation modeling, data are typically assumed to be collected through SRS

and to be independently and identically distributed (du Toit & du Toit, 2008; Stapleton,

2006). However, in social and educational research, data with a hierarchical structure are not

uncommon, especially when data are obtained through cluster sampling or multistage sampling.

In these sampling techniques data are characterized by dependency among observations, such

as students nested within schools or individuals nested within households (Lee, Forthofer, &

Lorimor, 2006; Skinner, Holt, & Smith, 1989). “By ignoring the hierarchical structure of the

data, incorrect parameter estimates, standard errors, and inappropriate fit statistics may be

obtained” (du Toit & du Toit, 2008, p. 456).

Three analytic approaches are usually employed for analyzing data collected through cluster

sampling, namely, disaggregated analysis, aggregated analysis, and multilevel modeling (Hof-

mann, 1997; Klein & Kozlowski, 2000). The first approach, disaggregated analysis, ignores

higher level data structures (e.g., classroom level) and only models observations at the lower

level structure (e.g., student level). This approach has been criticized for violating the assump-

tion of independency under SRS (Hofmann, 1997; Raudenbush & Bryk, 2002). Neglecting the

dependency among observations will generally result in underestimating fixed effects standard

errors and lead to an inflated Type I error rate (De Leeuw & Kreft, 1995; Raudenbush & Bryk,

2002; Snijders & Bosker, 1999).

Conversely, the second approach, aggregated analysis, as its name suggests, only analyzes

aggregated data from the lower or individual level. Studies have shown that regression analysis

performed on aggregated data can result in biased parameter estimates and underestimated stan-

dard errors associated with fixed effects (Croon & van Veldhoven, 2007; Lüdtke et al., 2008).

Moreover, aggregated data cannot fully reflect the individual level variation (Au & Cheung,

2004; Klein et al., 2001). Studies have shown that neither approach—disaggregated analysis

or aggregated analysis—can adequately reveal the complete picture of the relations between

different levels of variables in multilevel data (Holt, Scott, & Ewings, 1980; Raudenbush &

Bryk, 2002).

The third approach is to take the multilevel data sampling scheme into account, using

either design-based or model-based approaches. The design-based approach takes the mul-

tilevel data or dependency into account by adjusting for parameter estimate standard errors

based on the sampling design. The model-based approach analyzes the multilevel data by

specifying a level-specific model for each data level. For example, for two-level clustered

sampling data, the design-based approach analyzes the data with only one overall model

and adjusts parameter estimate standard errors based on the sampling design, whereas the

model-based approach analyzes the data by specifying (different) within-level and between-

level models, respectively. Nevertheless, the design-based approach is commonly used by

substantive researchers (e.g., Agrawal & Lynskey, 2007; Davidov et al., 2006; Hox & Klei-

boer, 2007; Mathews et al., 2009; B. O. Muthén & Asparouhov, 2006). The design-based
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18 WU AND KWOK

approach is seemingly to be often preferred given that it only requires specification of one

single model, and researchers might be primarily interested in examining the within-level

model.

Although the design-based approach is relatively simpler for model specification, it presumes

that the within-level and between-level models are exactly the same. This assumption might not

be always true. The advantage of the multilevel model is the flexibility for specifying different

models with more than one data level. Indeed, B. O. Muthén and Satorra (1995) showed that

these two approaches (design-based vs. model-based) performed equally well when analyzing

complex survey data with exactly the same model structure for all data levels. However, the

following design factors were not considered in their simulation: the structure or equality of

the within- and between-level models, evaluation criteria (e.g., the coverage of the parameter

estimates), and the empirical power for detecting the parameter estimates.

In this study, we extended B. O. Muthén and Satorra’s (1995) findings by comparing

the design-based and model-based approaches for analyzing multilevel data considering the

following set of design factors: number of clusters, cluster size, intraclass correlation (ICC),

and the structure/equality of the between-level and within-level models. We adopted Mplus

(version 6.0; L. K. Muthén & Muthén, 1998–2010) for all data generations and analyses.

Mplus (version 6.0) has built-in routines (i.e., TYPEDCOMPLEX and TYPEDTWOLEVEL)

for analyzing multilevel data with the two approaches. The TYPEDCOMPLEX routine is

used for the design-based approach in which only one (single-level) model is needed for

specification. The TYPEDTWOLEVEL routine is used for the model-based approach. The

model-based approach allows researchers to specify models with different levels of data.

By default, both routines use the maximum likelihood parameter estimator and the robust

sandwich standard error estimator. The formula for calculating the variance components using

the robust estimator includes a score factor “sandwiched” between two copies of the Hessian

matrix (Hardin & Hilbe, 2007). In Mplus, this estimation procedure is called the Maximum

Likelihood Estimation with robust standard error correction (MLR). The MLR is useful for

nonnormality and nonindependence of observations. The corresponding chi-square test statistic

is asymptotically equivalent to the Yuan-Bentler T2* test statistic (L. K. Muthén & Muthén,

1998–2010). The robust parameter estimator, widely used in survey statistics, is also known

as the Huber–White robust standard error estimate, survey variance estimate, design-based

variance estimate, and empirical variance estimate (Hardin & Hilbe, 2007). Using this robust

estimator, an asymptotically consistent estimate of covariance matrix can be derived free from

the distributional assumptions of observations (Hardin & Hilbe, 2007; Huber, 1967; White,

1980).

There is another feasible but rarely mentioned modeling strategy for complex survey data

called the maximum model (Hox, 2002). In the maximum model strategy, a saturated between-

level model is specified; that is, all the unique elements in the between-level variance–covariance

matrix are estimated, resulting in the consumption of all available degrees of freedom in the

higher level. In other words, we estimate all possible correlations among variables in the

between-level.

Originally suggested as the baseline model before any further higher level model construction

with theoretical evidence, the maximum model has been discussed by several researchers (e.g.,

Hox, 2002; Stapleton, 2006; Yuan & Bentler, 2007). In a recent study, Ryu and West (2009)

employed the maximum modeling strategy to examine the performance of level-specific fit in-
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COMPARING MODEL-BASED AND DESIGN-BASED MULTILEVEL APPROACHES 19

dexes. Nevertheless, the performance of this modeling strategy for addressing data dependency

has not yet been systemically examined.

The purpose of this study is to compare potential differences on the overall model chi-

square test and several commonly used fit indexes, the parameter estimates, 95% coverage for

both fixed-effect and random-effect estimates, and the respective statistical inferences when

analyzing multilevel data with a design-based single-level confirmatory factor analytic (CFA)

model and two model-based multilevel CFA (MCFA) models (i.e., the two-level true model and

the maximum model). Specifically, our major research question is this: What are the effects

of the number of clusters, cluster size, ICC, and model specification on the overall model fit

indexes, the fixed-effect and random-effect estimates, the 95% coverage rate, and respective

statistical inferences when:

1. The between-level and within-level have the same model structure.

2. The between-level and within-level have different model structures, including

a. Complex within-level and simple between-level structure.

b. Simple within-level and complex between-level structure?

METHOD

Three simulation scenarios were created to answer these research questions. We had equal

between-level and within-level structures for Scenario 1, a simple between-level and complex

within-level structures for Scenario 2, and a complex between-level and simple within-level

structures for Scenario 3. The details of these scenarios are described later as well as in

both Table 1 and Figure 1. In each scenario, a two-level MCFA model was constructed. This

MCFA model was similar to the model examined by Yuan and Bentler (2002) with some

modifications referred to Hu and Bentler’s (1998, 1999) research. Four factors were controlled

when conducting each scenario simulation: cluster number (CN D 50, 150, and 300; Hox &

Maas, 2001; B. O. Muthén & Satorra, 1995), cluster size (CS D 10, 50, and 200; Hox &

Maas, 2001), ICC (low ICC D 0.1 and high ICC D 0.5; Hox & Maas, 2001), and model

specification. The Monte Carlo procedure of Mplus 6.0 (L. K. Muthén & Muthén, 1998–2010)

was used to produce 1,000 replications for each combination of factors in each scenario; that

is, a total of: 3 (scenarios) � 3 (cluster numbers) � 3 (cluster sizes) � 2 (ICCs) � 1,000 D

54,000 replications were generated.

TABLE 1

The Data Generation Scheme for the Three Scenarios

Scenario

1 2 3

Within-level structure (A) Complex 3-factor (A) Complex 3-factor (B) Simple 1-factor
Between-level structure (A) Complex 3-factor (B) Simple 1-factor (A) Complex 3-factor

Note. Scenario 1: Equal between-level model/within-level model. Scenario 2: Simple between-level

model/complex within-level model. Scenario 3: Complex between-level model/simple within-level model.
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20 WU AND KWOK

(a)

(b)

FIGURE 1 The multilevel confirmatory factor analytical model for data generation: (a) Complex three-factor

model. (b) Simple single-factor model (with all factor loadings set to be .80).

Three different types of model specification were used, including: a single-level

MLR model using TYPEDCOMPLEX, and two different multilevel MLR models using

TYPEDTWOLEVEL. The single-level model (or “one-level model” as described later) had

correctly specified the within-level structure without modeling the between-level structure.

Both of the two multilevel MLR models also had correctly specified the within structure. One

model had a correctly specified between-level structure (i.e., the “two-level true model”), and
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COMPARING MODEL-BASED AND DESIGN-BASED MULTILEVEL APPROACHES 21

the other had a saturated between-level structure (i.e., the “two-level maximum model” with all

the nondirectional parameters in the between-covariance matrix being free for estimation). All

generated data sets (i.e., the 54,000 replications) were analyzed separately by these three model

specifications using Mplus 6.0 (L. K. Muthén & Muthén, 1998–2010). Detailed information of

each scenario was depicted next as well as in Table 1 and Figure 1.

Scenario 1: Equal Between-Level Model and Within-Level Model

As presented in Table 1, the complex survey data were generated based on an equal between-

and within-level three-factor model with nine observed variables loaded on three common

factors (i.e., Figure 1a). By following previously published simulation studies (e.g., Hox &

Maas, 2001; B. O. Muthén & Satorra, 1995), the correlations between the common factors

were set to .3, and most of the factor loadings between the latent factors and the outcomes

were assigned to be .8. Two cross-loaded factor loadings were specified to .4 in both within-

level and between-level models (i.e., F2 ! V3 and F3 ! V6). The residual variances of

all outcome variables were taken as values that would mostly yield unit-variance measured

variables under normality (Hu & Bentler, 1998) and were specified to be equal to .36.

Scenario 2: Simple Between-Level Model/Complex Within-Level Model

In Scenario 2, the between-level model was reduced to a single-factor model as shown in

Figure 1b, and the within-level model was the same as the within-level model in Scenario 1

and Figure 1a. The parameterization of the within-level model in Scenario 2 was exactly the

same as the within-level model in Scenario 1. In the between-level model, all factor loadings

were fixed at .8 and the residual variances of the outcome variables were set to .36.

Scenario 3: Complex Between-Level Model/Simple Within-Level Model

The model setup in Scenario 3 was the opposite of Scenario 2. In Scenario 3, the between-level

model was a three-factor model as shown in Figure 1a, and the within-level model was a single-

factor model as shown in Figure 1b. The parameterization of the between- and within-level

models in Scenario 3 was the same as the corresponding factor models specified in Scenario 2.

RESULTS

The results for each scenario were presented in the following order: the convergence rate,

overall model chi-square test statistic and fit indexes, fixed effect estimates, and random effect

estimates for each scenario, respectively.

Scenario 1: Equal Between-Level Model and Within-Level Model

In general, all three modeling approaches resulted in adequate model fit and similar parameter

estimates that were very close to the true parameter values. We have summarized the findings

here; complete results for Scenario 1 can be obtained from the first author on request. All
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22 WU AND KWOK

replications converged for each of the three modeling approaches (i.e., the one-level model,

the two-level true model, and the maximum model).

Evaluation of test statistic and model fit indexes. Both the one-level model and the

two-level maximum model chi-square values were generally close to the theoretical value (i.e.,

22), which was the degrees of freedom of the two models across all simulation conditions.

Similarly, the chi-square values of the two-level true model were close to the theoretical value

(i.e., 44) under the large cluster size condition (CN D 300) but inflated under the smaller

cluster size condition (e.g., [CN, CS, ICC] D [50, 10, 0.5], ¦2 D 50:28).

According to recommended cutoff criteria for commonly used fit indexes (e.g., comparative

fit index [CFI] > .95, root mean squared error of approximation [RMSEA] � .05, and

standardized root mean square residual [SRMR] � .05 for good fit models), all three model-

ing approaches showed adequate model fit to the dependent data with equal between/within

structure. That is, all models had a CFI greater than 0.99 and an RMSEA smaller than 0.019.

Two different SRMRs, SRMR-between and SRMR-within, were reported for the two-level true

model and the two-level maximum model. Only one SRMR was reported in the one-level

model. Most SRMRs were smaller than the recommended cutoff value (.05). Only a few of the

SRMR-between of the two-level true model were larger than the recommended cutoff value,

which were all from the small number of clusters condition (i.e., CN D 50).

Fixed effect estimates. In general, one-level model produced consistent and efficient

estimates of factor loadings in Scenario 1. As for the two-level true model, the parameter

estimates in the within-level model were more consistent and efficient than the parameter

estimates in the between-level model. The between-level model parameter estimates were less

consistent and efficient because of the larger sample size in the within-level model and the

relatively smaller sample size (i.e., number of clusters) in the between-level model. Moreover,

in the high ICC setting, the between-level model produced more efficient fixed effect estimates

than in the low ICC setting. When the two-level maximum model was used, the fixed effect

estimates were more consistent and efficient. In addition, the standard errors were smaller

than those from the one-level model and closer to the two-level true model values. All three

modeling approaches mostly resulted in statistically significant fixed effect estimates. Only in

low ICC and small overall sample size conditions some between-level fixed effect estimates of

the two-level true model were not statistically significant.

Random effect estimates. All three modeling approaches resulted in similar estimate

patterns for both residual variances and factor variances. In general, all estimates were consistent

and became more efficient (with smaller standard error) as the overall sample size increased.

For the factor covariances, the two-level true model and the two-level maximum model had

consistent estimates around the population value (.30). The factor covariance estimates from

the one-level model were around .600, twice the size of the factor covariance estimates in the

two-level true model. This enlarged estimate was mainly due to the redistribution of the one-

level model factor variance. Factor covariances were mostly significant in all three modeling

approaches. Only some between-level factor covariances in the two-level true model were not

statistically significant, generally under the small number of clusters condition.
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COMPARING MODEL-BASED AND DESIGN-BASED MULTILEVEL APPROACHES 23

Scenario 2: Simple Between-Level Model/Complex Within-Level Model

The convergence rate was generally equal to 100% for all three modeling approaches. A few

of the replications with low ICC and small overall sample size conditions for the two-level

true model were not equal to 100% (e.g., convergence rate reduced from 99% with CS D 50

to 95% with CS D 10).

Evaluation of test statistic and model fit indexes. Model fit indexes showed adequate

fit in all three modeling approaches even though the one-level model assumed equivalent

between- and within-model structure. Table 2 presents the overall model-fit chi-square test

statistic (shown as ¦2), CFI, RMSEA, and SRMR for the three modeling approaches under

different simulation settings. Due to the unequal between- and within-level structures, chi-

square values in the one-level model deviated from the theoretical chi-square value (i.e., model

df D 22). However, the two-level maximum model (df D 22) and the two-level true model

(df D 49) still had chi-square values close to their degrees of freedom across all settings. Both

CFI and RMSEA for the one-level model still showed very good fit even though the between-

and within-models were different from each other. SRMR-between and SRMR-within were

reported for the two-level true and maximum models and a single SRMR was reported for the

one-level model. Similarly, most of the SRMRs, especially the ones from the one-level model,

indicated good model fit.

Fixed effect estimates. For conciseness, only the fixed effect estimates of F2 by V3,

V4, V5, and V6 in the within-level model were reported because they contained both single-

loaded (i.e., V4 and V5) and cross-loaded (i.e., V3 and V6) observed indicators. The estimates

and standard errors of the other single-loaded factor loadings and the corresponding residual

variances of the observed indicators V1, V2, V7, V8, and V9 were very similar to those of V4

and V5. The between-level factor loading estimates of F4 by V3, V4, V5, and V6 in the two-

level true model were reported for illustration purposes. According to Table 3, the two-level true

model produced unbiased factor loading estimates for both single- and cross-loaded variables.

However, the one-level model in the large sample size setting yielded unbiased single-loaded

factor loading estimates but inconsistent cross-loaded factor loading estimates. For example,

the parameter estimates for the cross-loaded observed variables, V3 and V6, were substantially

underestimated ( OœY 3F W 2 D 0:290 and OœY 6F W 2 D 0:679 given [CN, CS, ICC] D [50, 10, 0.5]).

The standard errors of the fixed effect estimates also exhibited distinct patterns. In the two-

level true model, the standard errors of the factor loadings were larger in the between-level

model than those in the within-level model. For the one-level model, the standard errors of

the loading estimates became smaller as ICCs decreased. Nevertheless, the 95% coverage rate

of the cross-loaded fixed effects (i.e., from F2 to V3 and V6) was very poor in the one-level

model, mainly due to the seriously attenuated factor loading estimates (e.g., given [CN, CS,

ICC] D [300, 200, 0.5], 95% coverage rate D 0.023 for V6 and 0.013 for V3 in the one-level

model). Conversely, the two-level maximum model produced unbiased and efficient factor

loading estimates for both single-loaded and cross-loaded indicators.

Random effect estimates. We decided to only present the result of random effects under

the large sample size condition (i.e., [CN, CS] D [200, 300]) given that the residual variances,

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
24

 2
8 

A
pr

il 
20

14
 



24 WU AND KWOK

TABLE 2

Test Statistic and Model Fit Indexes for Scenario 2: Simple Between-Level/Complex

Within-Level Structures

SRMR

Model ¦
2 CFI RMSEA Between Within

ICC D .1

50(10)
Two-level 58.716 .998 .017 .098 .010
One-level 30.666 .995 .024 — .015

Maximum model 23.774 .999 .012 .006 .017
50(200)

Two-level 54.109 1.000 .003 .043 .002
One-level 34.639 .995 .007 — .011
Maximum model 22.656 1.000 .002 .000 .002

300(10)
Two-level 51.136 1.000 .004 .045 .004
One-level 25.156 .999 .006 — .011

Maximum model 22.243 1.000 .004 .002 .007
300(200)

Two-level 49.416 1.000 .001 .017 .001

One-level 25.483 .999 .001 — .009
Maximum model 22.216 1.000 .001 .000 .001

ICC D .5
50(10)

Two-level 55.549 .996 .014 .050 .020

One-level 28.069 .993 .020 — .024
Maximum model 23.250 .999 .011 .002 .020

50(200)

Two-level 53.987 1.000 .003 .041 .004
One-level 29.733 .995 .005 — .020
Maximum model 22.703 1.000 .002 .000 .004

300(10)
Two-level 50.571 1.000 .004 .020 .008
One-level 33.763 .998 .012 — .012

Maximum model 22.248 1.000 .004 .001 .008
300(200)

Two-level 49.453 1.000 .001 .016 .002
One-level 37.626 .998 .003 — .011
Maximum model 22.226 1.000 .001 .000 .002

Note. Two-level D two-level true model (df D 49); one-level D one-level model (df D

22); maximum model D two-level maximum model (df D 22). In the model column, 50(10)

represents cluster number D 50 and cluster size D 10; thus, sample size for this setting equals
500. The same notation is used for the rest of the settings. ¦

2
D overall model chi-square test

statistics; ICC D intraclass correlation; CFI D comparative fit index; RMSEA D root mean
squared error of approximation; SRMR D standardized root mean square residual.

factor variances, and covariances had exactly the same pattern of results across all sample

size settings in all three modeling strategies. The complete results can be obtained from the

first author on request. As shown in Table 4, the estimated factor variances of the one-level

model were twice the size of those from the two-level true and maximum models. The two

two-level models produced almost identical results. As for residual variance, the one-level

model produced single-loaded indicator residual variances close to the sum of the residual
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variance estimates in the between- and within-levels of the two-level true model. However,

for the residual variance of the cross-loaded indicators (i.e., V3 & V6), particularly under

the high ICC condition, the one-level model resulted in overestimated residual variances. The

inflated residual variance of cross-loaded indicators in the one-level model was likely due to the

inaccurate estimates of the factor loadings. The one-level model also resulted in substantially

biased estimates of the factor covariances as shown in the 95% CI coverage rate (ranged from

0–16%).

Scenario 3: Complex Between-Level Model/Simple Within-Level Model

Most of the analyses for the three modeling approaches converged. Some two-level true model

replications did not converge, especially those with small overall sample size (e.g., given the

number of clusters equal to 50, the convergence rate reduced from 96% for cluster size D 50

to 89% for cluster size D 10).

Evaluation of test statistic and model fit indexes. Unlike the previous two scenarios,

the model fit chi-square test statistic and some of the fit indexes showed noticeable differences

between the one-level model and the two two-level models. Table 5 compared overall model-

fit chi-square test statistic (shown as ¦2), CFI, RMSEA, and SRMR for the three modeling

approaches. The overall model chi-square test statistic of the one-level model deviated from the

theoretical value (i.e., the model df D 27). As sample size increased, the discrepancy became

larger.

For the model fit indexes, all three modeling approaches resulted in fairly good model fit

under the low ICC condition. However, as ICC increased to 0.5, the one-level model fit indexes

showed incongruent patterns of lack of fit. CFIs consistently showed lack of fit (ranging from

.74–.78), signaling unequal between- and within-structures. Only some of the one-level model

RMSEAs (especially the ones under the small cluster size condition) indicated different model

structure at a different level. Unlike CFI and RMSEA, most of the SRMRs still exhibited good

fit of the one-level model to the data.

Fixed effect estimates. Fixed effect estimates of the factor loadings between indicators

(V3, V4, V5, and V6) and the between-level factor (F2) as well as the within-level factor (F4)

were tabulated in Table 6. In the small sample size and low ICC settings, the two-level true

model generated inconsistent and inefficient estimates of factor loadings for both single- and

cross-loaded indicators, except for V4, which was the marker variable (e.g., OœV 5F 2 D 1:085,
OœV 6F 2 D 1:015, and OœV 3F 2 D 0:372 at [CN, CS, ICC] D [50, 10, 0.1]). The one-level model

generated biased fixed effect estimates for cross-loaded indicators (V3 and V6) that positively

deviated (or overestimated) from the population values. The proportion of the bias in the

estimate to the true parameter value ranged from 6.3% to 29% as ICC increased from 0.1 to

0.5. Moreover, the factor loading estimates of the single-loaded indicators (V4 and V5) in the

one-level model were also overestimated with relative bias as large as 8% more than the true

parameter value. The standard errors of the fixed effect estimates also exhibited inflated patterns

as ICC increased in the one-level model. Conversely, the two-level maximum model generated

unbiased estimates of the fixed effects and standard errors for both single- and cross-loaded

indicators in the within-level model.
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28 WU AND KWOK

TABLE 5

Test Statistic and Model Fit Indexes for Scenario 3: Complex Between-Level/Simple

Within-Level Structures

SRMR

Model ¦
2 CFI RMSEA Between Within

ICC = .1

50(10)
Two-level 55.830 1.000 .021 .099 .019
One-level 44.471 .991 .030 — .026

Maximum model 28.626 1.000 .019 .008 .018
50(200)

Two-level 53.981 1.000 .003 .074 .003
One-level 49.748 .992 .017 — .021
Maximum model 27.932 1.000 .003 .000 .003

300(10)
Two-level 49.861 1.000 .004 .038 .009
One-level 95.882 .997 .033 — .019

Maximum model 27.024 1.000 .003 .003 .008
300(200)

Two-level 50.014 1.000 .001 .030 .001

One-level 120.653 .996 .010 — .015
Maximum model 27.281 1.000 .001 .000 .001

ICC = .5
50(10)

Two-level 55.680 1.000 .018 .076 .013

One-level 187.072 .762 .112 — .089
Maximum model 28.615 1.000 .017 .003 .012

50(200)

Two-level 54.216 1.000 .002 .062 .002
One-level 238.213 .744 .035 — .083
Maximum model 27.904 1.000 .001 .000 .002

300(10)
Two-level 49.694 1.000 .002 .032 .010
One-level 816.442 .781 .108 — .074

Maximum model 27.031 1.000 .001 .001 .010
300(200)

Two-level 49.912 1.000 .001 .020 .002
One-level 1021.833 .772 .034 — .072
Maximum model 27.271 1.000 .001 .000 .002

Note. Two-level D two-level true model (df D 49); one-level D one-level model (df D

27); maximum model D two-level maximum model (df D 27). In the model column, 50(10)

represents cluster number D 50 and cluster size D 10; thus, sample size for this setting equals
500. The same notation is used for the rest of the settings. ¦

2
D overall model chi-Square test

statistics; ICC D intraclass correlation; CFI D comparative fit index; RMSEA D root mean
squared error of approximation; SRMR D standardized root mean square residual.

Random effect estimates. Results of the random effect estimates from the largest sample

size (CS D 300, CN D 200) condition are reported in Table 7. The two-level maximum model

produced almost identical within-level random effect estimate results as the two-level true

model, including the variance component estimates with standard errors and the corresponding

statistical inferences. On the other hand, both factor and residual variance estimates in the one-

level model substantially deviated from the true parameter values. When ICC increased from .1
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to .5, the factor variance estimates of the one-level model were underestimated and less efficient

(with larger standard error). The relative bias was as large as �31% for ICC D .5. When ICC

increased from .1 to .5, the residual variance estimates of both cross-loaded and single-loaded

indicators of the one-level model were overestimated and less efficient with relative bias as

large as 32%. All the 95% coverage rates of all the factor and residual variance estimates in

the one-level model were close to zero due to the substantially biased point estimates.

DISCUSSION

One interesting finding from this simulation study is that the overall model chi-square test

and commonly used fit indexes could not consistently provide much helpful information on

the necessity of specifying a different higher level model. This occurred more often when the

design-based single-level model was used for analyzing data with truly unequal between-level

and within-level model structures. For example, although the model fit test statistic values for

the one-level model deviated slightly from the expected values (df D 22) due to the unequal

between and within structures, the p value of the overall model chi-square value in the simple

between-/complex within-level structure scenario (i.e., Scenario 2), was still larger than .05.

Overall model chi-square values that are not statistically significant can lead to erroneous

conclusions about the equivalence of the between-level and within-level models. Similarly,

based on the traditional cutoff criteria of three commonly used fit indexes (i.e., RMSEA <

.08, SRMR < .08, and CFI > .95 for adequately fitted models), none of these three fit indexes

from the one-level model was sensitive to deviations between the within-level model and the

between-level model.

On the other hand, in Scenario 3 (i.e., complex-between/simple-within structure), the overall

model chi-square test of the design-based one-level model indicated a poor fit. As for the model

fit indexes, only the CFI of the one-level model consistently showed poor model fit under the

high ICC condition (i.e., ICC D 0.5). In general, both RMSEA and SRMR failed to indicate

the lack of fit of the one-level model to the multilevel data with different model structures at

different levels. To sum up, the overall model chi-square test statistic and CFI model fit index

can only offer partial information regarding model misspecification when the design-based

approach is used for analyzing the clustered data.

For the fixed effects estimates, our simulation results showed different patterns for the equal-

structure and unequal-structure scenarios. In the equal-structure scenario, all factor loading

estimates were close to the population values in all three modeling approaches. However, in

the unequal-structure scenario, different patterns of result occurred for the single- and cross-

loaded factor loadings. In the simple between-/complex within-level scenario (Scenario 2), the

estimates of the single-loaded factor loadings were generally unbiased. The statistical inferences

of these single-loaded factor loadings in the one-level model were close to those of the within-

level model in both two-level true and maximum models. Nevertheless, the estimates of the

cross-loaded indicators of the one-level model were biased. These biased cross-loaded factor

loading estimates were exacerbated as the ICC increased and the standard errors became larger.

The corresponding 95% confidence interval coverage rates for these loading estimates were

generally low due to the substantially biased factor loading estimates. The situation grew worse

when the between-level structure became more complex than the within-level structure (i.e.,
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32 WU AND KWOK

Scenario 3: the complex between-/simple within-level scenario). The factor loading estimates

of both single-loaded and cross-loaded indicators in the one-level model seriously deviated

from the population values. Biases became more severe as ICC increased. Additionally, almost

all 95% confidence interval coverage rates of biased cross-loading estimate in the one-level

model were close to zero, especially under the large sample size condition.

For the random effect estimates, the design-based one-level model estimated the overall

variance components (i.e., the combination of the between- and within-level variances) in the

equal between- and within-structure scenario (i.e., Scenario 1). For the unequal structures with

simple between-level and complex within-level models (i.e., Scenario 2), the design-based

one-level model could still produce fairly unbiased estimates of the sum of the between- and

within-factor variances. However, the estimate of the factor covariance in the one-level model

no longer equaled the sum of the factor covariance from each level. Moreover, the estimates of

the residual variances of the cross-loaded indicators were substantially biased. A more severe

pattern of biased factor and residual variances of the one-level model was found under the

complex between-/simple within-level scenario (i.e., Scenario 3).

To understand the change in the estimation of variances and covariances of the random

effects, we need to take the variation of the fixed effect estimates into account. In the equal

structure scenario, the fixed effect estimates for the one-level model were asymptotically close

to the population values. With unbiased fixed effect estimates, the variance and covariance

components for the latent factors as well as the residuals were directly the sum of the

corresponding between- and within-level variance components for the one-level model.

However, the variance component estimates in the one-level model were no longer the sum

of the different level component estimates when these different levels had different model

structures. In the simple-between/complex-within scenario (i.e., Scenario 2), the single-loaded

factor loading estimates were generally consistent, whereas the cross-loaded estimates gradually

deviated from the true parameter values as ICC increased. Because of the use of the marker

variable strategy for model identification, the factor variances were defined by the metric

of the marker variable (e.g., V4 loaded on F2 in Figure 1a and Table 3) when both factor

covariances and residual variances were allowed to vary. To maintain a consistent amount of

indicator variance and to compensate for the inaccurate estimates of the cross-loaded factor

loadings, the variance and covariance estimates had to be adjusted. As a result, factor covariance

estimates were no longer close to the summed between- and within-level factor covariance.

Moreover, the unexplained portion of the indicator variance was then added to the residual

variance. For this reason the cross-loaded indicators had higher residual variances than the

single-loaded indicators. This situation further deteriorated in the complex between-/simple

within-level scenario (i.e., Scenario 3). The one-level model produced an inconsistent factor

variance estimate due to the biased single-loaded factor loading estimates. As ICC increased,

the underestimation of the factor variance became larger because of the inflated single-loaded

factor loading estimates.

Conversely, the two-level maximum model generally resulted in unbiased single- and cross-

loaded fixed effect estimates in both Scenarios 2 (simple between-/complex within-level sce-

nario) and 3 (complex between-/simple within-level scenario). Thus, we could obtain consistent

variance and covariance estimates of the latent factors and residuals that were close to the true

variance components in the within-level of the two-level true model. Moreover, the two-level

maximum model, compared to the two-level true model, offered greater statistical power for
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testing the lower level estimates, especially under small sample size conditions. Although

the two-level true model correctly specified the multilevel structure of the data and yielded

the asymptotically identical lower level estimates as should occur under most conditions, the

two-level true model might still produce parameter estimates with inflated standard error, and

inflated Type II error rates, especially under conditions with low ICC and small sample size.

CONCLUSIONS AND SUGGESTIONS

Our study compared the similarities and differences of analyzing complex survey data with

equal and unequal multilevel structures using a design-based single-level CFA model (the

one-level model) and two model-based multilevel CFA models (the two-level true model

and the two-level maximum model). In particular, we examined overall model fit indexes,

parameter estimates, 95% coverage for both fixed and random effects, and statistical inferences

for detecting the parameter estimates.

The simulation showed that the one-level model (the design-based model) provided satisfying

results only under equal between/within structures. Under the simple between-/complex within-

level structure, the one-level model yielded erroneous cross-loaded factor loading estimates and

biased random effect estimates. As the between-level structure became more complicated than

the within-level structure (i.e., Scenario 3: complex between-/simple within-level structure),

the design-based approach produced biased estimates for both single- and cross-loaded factor

loadings as well as for the random effect variances and covariances.

Modeling the data structures using the two model-based multilevel models turned out

to be the best analytical strategy for analyzing multilevel data. However, the higher level

model structure might not always be the focus or interest of a study in which there is no

hypothesized model for the higher level. As indicated previously, this might be the reason that

the design-based single-level approach is commonly used for analyzing multilevel data given

its simplicity (i.e., only one model is needed for specification). Under such circumstances,

constructing multilevel models can be difficult and daunting for researchers with limited

higher level information from the available data, theories, or prior research. The two-level

maximum model, where the between-level model is a saturated model (i.e., estimating all the

unique nondirectional parameters in the between-level model), is a better and more feasible

alternative than the design-based one-level approach and the model-based two-level model.

Thus, if a researcher’s goal is only to validate the pooled-within covariance structure of the

complex survey data (in other words, only a within-level model is of interest and hypothesized),

we recommend the use of the two-level maximum model instead of the design-based one-

level model. In these circumstances, the two-level maximum model generally produces more

consistent and efficient model parameter estimates.
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