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a b s t r a c t

Recently, data replication algorithms have been widely employed in data grids to replicate frequently
accessed data to appropriate sites. The purposes are shortening file transmission distance and delivering
files from nearby sites to local sites so as to improve data access performance and reduce bandwidth
consumption. Some of the algorithms were designed based on unlimited storage. However, they might
not be practical in real-world data grids since currently no system has infinite storage. Others were
implemented on limited storage environments, but none of them considers data access patterns which
reflect the changes of users’ interests, and these are important parameters affecting file retrieval efficiency
and bandwidth consumption. In this paper, we propose an adaptive data replication algorithm, called
the Popular File Replicate First algorithm (PFRF for short), which is developed on a star-topology data
grid with limited storage space based on aggregated information on previous file accesses. The PFRF
periodically calculates file access popularity to track the variation of users’ access behaviors, and then
replicates popular files to appropriate sites to adapt to the variation.We employ several types of file access
behaviors, including Zipf-like, geometric, and uniform distributions, to evaluate PFRF. The simulation
results show that PFRF can effectively improve average job turnaround time, bandwidth consumption
for data delivery, and data availability as compared with those of the tested algorithms.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Generally, a data grid, a specific grid system that provides users
with a huge amount of storage space, often maintains a high
volume of distributed data to serve users. Many recent large-scale
scientific systems [1–4] and commercial applications [5], e.g., the
Biomedical Informatics Research Network (BIRN) [6], the Large
Hadron Collider (LHC) [7], the DataGrid Project (EDG) [8], and
physics data grids [9,10], have collected a huge amount of data and
performed complex experiments and analyses on the data [11–13].

According to the Pareto principle (also known as the 80/20
rule) [14], a part of data grid files is frequently accessed and
transferred. If a file has no replicas distributed over the data grid,
the efficiency of accessing the file is often poor since long distance
data transfer always occupies a lot of bandwidth and causes long
transmission delays [15]. Hence, how to decrease data access
latency, lower bandwidth consumption for data transmission, and
improve data availability have been the key issues in data grid
research [16]. Data replication is a general and simple approach to
achieve these goals. It has been widely used in many areas, such as
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the Internet, peer-to-peer systems, and distributed databases [17–
21]. A well-defined data replication method should meet the
requirements of being able to determine an appropriate time to
replicate files, decide which files should be replicated, and store
these replicas in appropriate locations [15,16,22–24].

On the other hand, the analyses of data access patterns
have been the critical steps in designing efficient dynamic data
replication schemes [25–27]. Several distributions have been used
to model data access patterns, defined as the distribution of access
counts on files of a system, and file popularity, defined as howoften
a file is accessed by users, i.e., how popular a file is [28,29]. Breslau
et al. [28] claimed that using the Zipf-like distribution can more
accurately model the distribution of webpage accesses. Cameron
et al. [29] showed that the distribution of file accesses in data grids
follows the Zipf-like distribution. Ranganathan and Foster [22,
30] claimed that the geometric distribution can properly model
file access behaviors and the property of temporal/geographical
locality.

Further, Ranganathan and Foster [31] derived file popularity
by using both Zipf and geometric distributions on a multi-tier
data grid with unlimited storage space. Tang et al. [23] also used
Zipf-like and geometric distributions to simulate users’ file access
behaviors on a multi-tier data grid. Chang et al. [32,24] proposed
two data replication strategies on a cluster-based data grid with
limited storage. However, the strategy they proposed in [32] did
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not consider the data access pattern. Hence, it might lead to
inefficient data access as the users’ access pattern changes; the
strategy proposed in [24] only replicates the file most frequently
accessed in the last time period, consequently resulting in long file
transmission delays for those files with similar but low weights.

In this study, we propose an adaptive data replication
algorithm, called the Popular F ile Replicate F irst algorithm (PFRF
for short), which is developed on a star-topology data grid with
limited storage space. A star-topology data grid is a simplified tree-
topology data grid with a central cluster that connects all other
clusters. A link l between two arbitrary clusters will go through the
central cluster, and l might comprise several routers, and physical
links. Directly evaluating the components of l is difficult since too
many analytical items might be involved. Hence, this study treats
l as a logical link to simplify the original topology as a whole [33,
34]. The simplification process will be proposed. To adapt to the
changes of users’ interests in files, the PFRF aggregates file access
information and replicates popular files to suitable clusters/sites.
We simulate several cases in which file popularity follows a Zipf-
like distribution, geometric distribution, and uniform distribution
under the assumption that user behaviors vary with the changes
of users’ interests. The simulation results show that PFRF provides
users with a system that has higher data availabilities, lower data
transmission delays, and less bandwidth consumption for data
access.

The rest of the paper is organized as follows. Section 2
introduces background and related work of this study. Section 3
describes the architecture of a star-topology data grid and the
details of the PFRF. Simulation results are presented and discussed
in Section 4. Section 5 concludes this article and addresses our
future research.

2. Background and related work

In this section, we describe the architectures of data grids and
several existing replication strategies and algorithms.

2.1. Data grid architecture

Data grids can be classified into multi-tier data grids, first
proposed by the MONARC project [35], and cluster data grids,
initially introduced by Chang et al. [32]. The multi-tier data
grid architecture in which a leaf node represents a user or a
computational node, and internal nodes are resource sites keeping
sharable files. In this architecture, a file held by a site will also
be held by all its ancestor sites. Therefore, the root site holds all
files stored in the data grid. When an end user requires a file F
which does not exist in his/her site, the user requests F from its
immediate ancestor. If the ancestor does not have the file, it in turn
requests F from its immediate ancestor. The process repeats until
the user obtains the file from a node which holds the file. After
that, the file will be replicated to all the nodes on this requesting
path following the reverse direction of the requests. It is clear that
file access latency can be reduced in a multi-tier data grid, but it
leads to higher storage cost since files will be redundantly stored
in multiple locations.

A cluster data grid consists of n clusters connected by the
Internet [24]. Files are stored in these clusters. Each cluster has
a header node (a header for short) responsible for managing site
information and exchanging file access information with other
cluster headers. A header periodically determineswhich file should
be replicated by computing file weights. After that, the file with
the highest weight will be replicated to clusters that need the file.
Sites in these clusters can then locally and quickly retrieve the file.
Compared with a multi-tier data grid, a cluster data grid consumes
less storage to hold files.
2.2. Existing data replication algorithms/strategies

Least Frequently Used (LFU) [36] and Most Frequently Used
(MFU) [36] are two simple dynamic replication strategies widely
used in many areas, such as disk and cache memory duplication. If
a storage device has insufficient space to hold a new file, LFU (MFU)
will be invoked to choose the files that have been the least (most)
frequently used as the victims tomake room for the newone. In the
experiments of this study, MFU and LFU are both involved, called
the MFU/LFU strategy (M/LFU for short) in which MFU is used to
choose themost frequently used files and LFU is employed to select
victims once the destination cluster has insufficient storage space
to save the replicated files.

Ranganathan and Foster [22] presented six replication/caching
strategies for a multi-tier data grid: No Replication or Caching,
Best Client, Cascading Replication, Plain Caching, Caching plus
Cascading Replication, and Fast Spread, and three types of
localities: temporal locality, geographical locality, and spatial
locality. The experimental results showed that the Fast Spread and
Cascading Replication outperform the other four strategies and
their file access latencies are shorter than those of the other four
strategies. They also found that Fast Spread (Cascading) is better
when the data access pattern is random (geographical locality).
However, the six strategies cannot avoid the disadvantages of a
multi-tier data grid, i.e., a file may be redundantly stored in a
multi-tier. In fact, the storage space utilization and access latency
are a trade-off [32]. Ranganathan and Foster [31] also proposed
a suite of job scheduling and data replication algorithms for a
multi-tier data grid and evaluated the performance of different
combinations of the replication and scheduling strategies. One
of the data replication algorithms, called DataRandom (DR for
short), replicates a file when the corresponding access frequency
exceeds a pre-defined threshold. Although DR is designed for an
unlimited storage environment, it can also be run on a limited
storage environment. DR is therefore involved in the experiments
of this study.

Tang et al. [23] introduced Simple Bottom-Up (SBU) and
Aggregate Bottom-Up (ABU) algorithms to reduce the average data
access response time for amulti-tier data grid. The basic idea of the
two algorithms is to replicate a file to sites close to its requesting
clients when the file’s access rate is higher than a pre-defined
threshold. SBU considers the file access history for individual site,
but ABU aggregates the file access history for a system. With ABU,
a node sends aggregated historical access records to its upper tiers,
and the upper tiers do the same until these records reach the root.
Due to the aggregation capability, ABU has a shorter job response
time and less bandwidth consumption than those of SBU.

Khanli et al. [37] proposed an algorithm called Predictive
Hierarchical Fast Spread (PHFS), which is an extended version of
fast spread [22], in a multi-tier data grid. PHFS utilizes spatial
locality [22,38] to predict data files required in the future,
and pre-replicates these files to suitable sites to improve the
performance of file accesses. Kunszt et al. [39] presented a
replicamanagement gridmiddleware to reduce file access/transfer
time. Their experimental results showed that this middleware
significantly reduces wide area transfer times. However, this
model was developed for multi-tier data grids with unlimited
storage space.

Chang et al. [24,32] presented two dynamic replication strate-
gies, Latest Access Largest Weight (LALW) [24] and Hierarchical
Replication Strategy (HRS) [32], on cluster-based data grids. LALW
utilizes the half-life concept to evaluate file weights. A file with a
higher access frequency has a larger weight. Their experimental
results show that LALW outperforms LFU and no-replication data
replication strategies [22] in network utilization and efficiency.
However, LALW only replicates the most popular file in each time
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(a) A tree-topology data grid. (b) A star-topology data grid.

Fig. 1. The architectures of a tree-topology data grid and a star-topology data grid.
Fig. 2. (a) A physical link between site A and site B. (b) A logical link between site A and site B.
interval. Hence, the transmission delays of those files with similar
but lower weights are still long. HRS, which is an extended version
of BHR (Bandwidth Hierarchy based Replication) [40], aims to re-
duce expensive cluster-to-cluster replica transmission. Whenever
the file is required, but cannot be retrieved from the local cluster,
HRS replicates the file to a local site from a remote cluster. How-
ever, HRS does not consider data access patterns, and thus it might
not be able to adapt to changes of user access behaviors and pro-
vide efficient data accesses.

3. System framework

The proposed data grid as shown in Fig. 1 consists of a global
replica controller (GRC) and several clusters connected to the GRC
through the Internet. As illustrated in Fig. 1(a), each connection
comprises several routers and links, forming a tree-topology data
grid rooted at the GRC. In other words, a file transmitted between
two clusters will go through the routers and links on the two
connections being considered. For example, when a site X in
a cluster i issues a file access request to the GRC to request
a file F stored in site Y which is a member of cluster e, the
GRC then requests Y to deliver F to X . F then goes through
routers and links between clusters i and e. Basically, it might
not be easy to analyze the performance of the file transmission
since in such a tree-topology too many network components and
environmental parameters are involved. To simplify the evaluation
of file transmission, in this study, we reduce a tree-topology data
grid to a star-topology (see Fig. 1(b)).

3.1. Tree-to-star reduction

As shown in Fig. 2(a), site A connects to site B through link l1,
router r1, link l2, router r2, and link l3. The corresponding physical
path is denoted by lA_l1_r1_l2_r2_l3_B. The bandwidth of the path is

|P|

Tl1+Wr1+Tl2+Wr2+Tl3
in which |P| is the size of a packet P delivered

through the path, Tli =
|P|

Bli
is the transmission delays of link li,

Wrj =
1

µrj−λrj
is the service (queueing) delay of router rj under

the assumption that rj is an M/M/1 queueing model where Bli is
the bandwidth of li, i = 1, 2, and λrj and µrj are respectively the
arrival rate and departure rate of rj, j = 1, 2, 3. lA_B shown in
Fig. 2(b) is the logical link of lA_l1_r1_l2_r2_l3_B. Its bandwidth is |P|

TA_B
where TA_B is the transmission delay of P from A to B. It is clear that
TA_B = Tl1 + Wr1 + Tl2 + Wr2 + Tl3 . Therefore, we can conclude
that lA_l1_r1_l2_r2_l3_B can be reduced to a logical link lA_B, and the
tree-topology data grid shown in Fig. 1(a) could be reduced to a
star-topology data grid shown in Fig. 1(b). Now a star-topology
with the performance equivalent to that of the tree-topology can
be obtained.

3.2. GRC and LRC

In the proposed architecture, each cluster comprises sites and a
local replica controller (LRC). They are connected by a LAN or LANs.
The LRC maintains a local replica table (LRT ) includes filename,
file location, access count, file weight, and master file fields, to
record file access information. A master file is an original file that
cannot be deleted from the data grid. File weight is the popularity
of the file. Its calculation will be described later. File access count
shows the frequency that the file is accessed by sites within a
cluster. All master files are distributed to sites of different clusters.
The GRC as a central server located somewhere in the Internet is
responsible for aggregating file access records for all clusters and
determining which files should be replicated to which clusters.
The GRC maintains a global replica table (GRT ) to collect the
information recorded in LRTs. When the GRC decides to replicate a
file to a cluster, it records the location of the new replica in GRT so
that some time later when a LRC requests the location of the file, it
can answer the LRC accordingly. Similarly, the cluster holding this
new replica will record the related information in its LRT.

3.3. Zipf-like distribution and geometric distribution

To achieve a better file access performance, we need to keep
track of users’ file access behaviors to accordingly predict which
files will be accessed frequently in the near future. The prediction
is a main task of a data replication algorithm/strategy based
on the assumption of temporal locality [22] in which a popular
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Fig. 3. PFRF data replication algorithm.
file will be accessed more frequently than unpopular ones [23].
Breslau et al. [28] showed that webpage requests follow a Zipf-like
distribution [29,41] derived from Zipf’s law [42]. In the Zipf-like
distribution, the access probability of the i-th most popular file,
denoted by P(fi), is

P(fi) = 1/iα (1)

where i = 1, 2, . . . , n and α is a factor determining the file access
distribution, 0 ≤ α < 1.

Ranganathan and Foster [30,31] adopted the geometric distri-
bution to simulate file popularity in which the access probability
of the i-th most popular file, denoted by P(i), is

P(i) = (1 − p)i−1
· p (2)

where i = 1, 2, . . . , n and 0 < p < 1. A larger p represents that
a smaller portion of files has been frequently accessed. As stated
above, we assume that our users’ access behaviors follow either
Zipf-like or geometric distributions with different parameters.

3.4. Popular file replicate first (PFRF) algorithm

The PFRF algorithm, as illustrated in Fig. 3, is performed by the
GRC at the end of a round, where a round is a fixed time period Td
in which y jobs, y ≥ 0, are submitted by users from each cluster.
A job might require several files as its input data. The algorithm
comprises four phases: file access aggregate phase, file popularity
calculation phase, file selection phase, and file replication phase.

1. File access aggregate phase: Between lines 2 and 5 of the
algorithm, PFRF aggregates the access count for each file fi
stored in cluster c at round r , denoted by Ar

c(fi), sorts all the
files onAr

c(fi)s in a descending order, and stores the sorted result
into a set S. After that, PFRF calculates the total number of files
having been accessed by all sites in cluster c at round r , denoted
by TNF r
c , based on the information stored in LRT C . Note that

1 ≤ i ≤ Nk, and 1 ≤ c ≤ Nc where Nk is the number of files
in cluster c in round r , and Nc is the number of clusters that the
data grid has, and r = 1, 2, 3, . . ..

2. File popularity calculation phase: In line 6, PFRF calculates a
popularity weight for file fi, denoted by PW r

c(fi),

PW r
c(fi) =


PW r−1

c (fi) + Ar
c(fi) · a, if Ar

c(fi) > 0
PW r−1

c (fi) − b, otherwise
,

r ≥ 1, c ≥ 1, i ≥ 1. (3)

where a and b are constants and a < b. The reason why a < b
is described later. If Ar

c(fi) > 0, i.e., fi has been accessed by users
in round r , PFRF increases PW r−1

c (fi) by Ar
c(fi) · a. Otherwise,

it decreases PW r−1
c (fi) by b. Basically, a higher PW r

c(fi) implies
that fi ismore popular.We assume that in round 0 all files follow
the binomial distribution, i.e., PW 0

c (fi) =0.5, which means that
the initial access probability of fi is 0.5. Note that the minimum
value of each PW r−1

c (fi) is 0. From previous access records of fi,
PFRF derives the variation of the popularity of fi and predicts
the popularity of fi for the next round, where 1 ≤ i ≤ Nk. For
instance, if f3 has been accessed 5 times by cluster 2 in round
1, PW 1

2(f3) = 0.5 + 5 · a. After the derivation and prediction,
PFRF calculates the average popularity of the files in all clusters,
denoted by PW r

avg(fi),

PW r
avg(fi) =

Nq
k=1

PW r
c(fi)

Nq
(4)

where Nq is the total number of clusters holding fi in the data
grid.

3. File selection phase: Between lines 7 and 10, PFRF sorts the set S
on the average popularweights in a decreasing order, calculates
Nf which is the number of files that might be replicated, and
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Fig. 4. The simulation topology.
selects the firstNf files as cluster c ’s replication candidates from
S, where

Nf = ⌊TNF r
c · (1 − x)⌋ (5)

in which x is a constant, 0 < x < 1. In this study, we use the
80/20 rule as an example, i.e., PFRF will replicate the top 20% of
frequently accessed files in this phase. Therefore, x is set to 0.8.
If different rules or principles are employed, xmay be changed.

4. File replication phase: Between lines 12 and 27, PFRF first
checks to see whether each file, e.g., file fj, in cluster c ’s
replication candidates is stored in cluster c or not. If yes, PFRF
does nothing. Otherwise, it further checks to see whether a site
in cluster c has sufficient storage space to accommodate fj or
not. If yes, PFRF replicates fj to the site from a nearest cluster
holding fj. Otherwise, PFRF deletes v files (v ≥ 1) that are less
popular than fj from a site of cluster c so that it has enough
storage space to keep fj.

Since files and users may be located at different sites in the
same cluster or different clusters in a star-topology data grid, a
file transmission might go across clusters, consequently raising
transmission delays. With the PFRF, popular files can be properly
replicated and inter-cluster access can be dramatically reduced.

4. Simulation and performance comparison

To evaluate the proposed scheme, a real grid testbed or a
grid simulator is required. However, to establish and maintain a
real testbed is expensive. Instead, we choose a grid simulator as
the simulation tool. Many grid simulators have been introduced,
such as GridSim [43], MicroGrid [44], OptorSim [45], SimGrid [46],
MONARC [47], and ChicSim [48], among which GridSim is chosen
since it provides a flexible and extensible simulation environment
and allows researchers to add new components/functions. In
the following simulation, the existing data replication algorithms
includingM/LFU (recallMFU/LFU), DR (recall DataRandom), andNo
Replication (NR for short) are implemented and comparedwith the
PFRF on a star-topology data grid.

4.1. Experimental environment and parameters

The test environment illustrated in Fig. 4 consists of a GRC and
eight clusters. Each cluster has a LRC. The resource specifications
and job parameters are listed in Tables 1 and 2, respectively.
Each site comprises six computers, and each computer has four
processors, i.e., a cluster has 24 processors. The processor rate
of a processor is 1600 MIPS, i.e., the total processor rate of a
cluster is 38,400 (=1600 × 24) MIPS. A cluster has 75 GB storage
space to accommodate files. The inter-router, router-to-site,
user-to-router, GRC-to-router, and LRC-to-router bandwidths are
10 Gb/s, 2.5 Gb/s, 100Mb/s, 2.5 Gb/s, and 1 Gb/s, respectively. A
total of 200 master files, each 1 GB in size, are randomly stored in
this environment. A job randomly requests 5–10 files as its input
files. On average, 10 jobs are submitted by each cluster in each
round, i.e., on average a total of 80 jobs are submitted by all clusters
in each round, and the time period of a round Td is 1600 s.

In round r , M/LFU replicates cluster’s most frequently used files
to a cluster c in descending order. The replication is performed one
by one until exhausting c ’s storage space. When c has insufficient
storage space to replicate a remote file F , M/LFU selects k local
files of c , denoted by v = {fc1 , fc2 , . . . , fck}, as the victims in the
situation where the access count of fci is smaller than that of F and
k is the smallest integer that satisfies

k
i=1 fci ≥ |F |, where |F | is

the size of F . After that, M/LFU deletes the k files and replicates F
to c.

We implemented two types of DR. One is DR-Local, in which
a replication threshold of cluster c is set to the average access
counts of all the files stored in c. For example, c has k files which
have been accessed a total of m times in round r . The replication
threshold is m

k . When a file, e.g., F , that is not stored in c has a
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Table 1
Resources specifications of the following experiments.

Resources Value

Total number of clusters 8
Total number of processors in a cluster 24
Single processor rate (MIPS) 1600
Total processor rate of a cluster 38,400

(=1600 × 24)
Storage available in a cluster 75 GB
Inter-router bandwidth 10 Gb/s
Router-to-site bandwidth 2.5 Gb/s
User-to-router bandwidth 100 Mb/s
GRC-to-router bandwidth 2.5 Gb/s
LRC-to-router bandwidth 1 Gb/s

Table 2
Job parameters of the following experiments.

Job parameters Value

Total number of master files 200
Size of a master file 1 GB
Average number of jobs submitted by each cluster in a
round

10

Average number of jobs submitted by all clusters in each
round

80
(8 × 10 jobs)

Number of files accessed by a job 5–10
The duration of a round (Td) 1600 s

higher access count than m
k in round r, F will be replicated to c

at the end of r, 1 ≤ c ≤ 8. The other is DR-Global, in which the
replication threshold is set to the average access counts of all files
in all clusters, i.e., if the 200 files have been accessed h times in
round r , the replication threshold will be h

200 for all clusters. When
F has been accessed at least h

200 times by c in round r , it will be
replicated to c. If c has insufficient space to hold the file, DR-Local
and DR-Global will delete the files that have been least frequently
accessed from c to make room for F .

Two types of NR were also implemented, denoted by NR-GRC
and NR-LRC. In the NR-GRC, the 200 master files are all stored in
the GRC. When a job requires a file, it remotely accesses the file
from the GRC without storing the file locally. In the NR-LRC, the
200master files are randomly distributed to the eight clusters. The
GRC only maintains the GRT. A job locally accesses a file if the file
is locally available. When it requires a remote file, it has to consult
the GRC for the file location, and then remotely access the file. Due
to duplicating no files, files are only stored in fixed sites and fixed
clusters. Table 3 summarizes the master file settings for the tested
algorithms.

4.2. Access patterns

Five access patterns listed in Table 4were employed to simulate
user access behaviors. File popularities follow Zipf-like (ZipfL
for short), geometric (Geo for short), and uniform distributions
(Uniform for short) where a uniform distribution represents that
the probability of accessing a file by each user is the same. JRR,
standing for job repeating rate, of round r is the probability of re-
accessing those files that have been accessed in round r − 1, 0 ≤
Table 4
Different data access patterns employed.

No. Data access pattern α/p JRR (%) p(fi)/p(i)

1 ZipfL-0.8 0.8 25 1/i0.8

2 ZipfL-0.6 0.6 25 1/i0.6

3 Geo-0.2 0.2 25 (1−0.2)i−1
·0.2

4 Geo-0.5 0.5 25 (1−0.5)i−1
·0.5

5 Uniform None 25 None

JRR ≤ 1, and parameters α and p are respectively used when ZipfL
and Geo are employed.

To effectively analyze the algorithms, we evenly partitioned
the popularities of the 200 master files into 10 levels and divided
twenty consecutive rounds into three phases. As listed in Table 5,
the first, the second, and the third phase respectively contain
rounds 1–7, 8–14, and 15–20. In the first phase, we assume
that File0–File19 are the most popular files, i.e., belonging to
the first popularity level. File20–File39 are the second popular
files, thus belonging to the second popularity level, and so on. In
the second phase, we swap the files of the first two popularity
levels, i.e., File20–File39 become the most popular, File0–File19
become the second, to simulate the change of file popularities,
and other files’ popularities remain unchanged. In the third phase,
File40–File59 are the most popular files, File20–File39 the second,
and File0–File19 the third. Other levels’ file popularities remain
unchanged.

To better understand the behaviors of data access patterns,
i.e., file popularities, over the three phases, we first conduct
the following experiments: 2000 jobs, instead of 80 jobs, were
submitted for file accesses in each phase. The experimental
results of ZipfL-0.8, ZipfL-0.6, Geo-0.2, Geo-0.5, and Uniform
are illustrated in Figs. 5–9, respectively. Fig. 5(a) shows users’
file access behaviors in the first phase; Fig. 5(b) and Fig. 5(c)
respectively plot those in the second and the third phases. The
access count (AC) of each most popular file in all the three
phases/figures is about 215, and unpopular files, i.e., File60 to
File199, are accessed less. In the case of ZipfL-0.6 (see Fig. 6), the
AC of each most popular file in all the three phases is about 170.
However, the ACs of the other popularity levels, i.e., between levels
4 and 10, are not evidently different, like a uniform distribution,
in all three phases. When Geo-0.2 is invoked (see Fig. 7), the AC of
eachmost popular file is about 175.When file IDs increase, the ACs
decline more sharply than those in ZipfL-0.6 and ZipfL-0.8. In the
Geo-0.5 case (see Fig. 8), the difference between/among the most
popular files’ ACs and those of the second and the third popular
files in the three phases is significant. Generally, the ACs of the first
three popularity levels on all access patterns are clearly different
from those of the other popularity levels, implying that File0 to
File59 are frequently accessed, while accesses of File140 to File199
are rare. Thedifference among theACs of different popularity levels
on the Uniform as shown in Fig. 9 is insignificant.

4.3. Simulation results

The tested algorithms were run on the same experimental
environment so their performance can be fairly compared. Several
Table 3
Master files settings for PFRF, M/LFU, DR-Local, DR-Global, NR-GRC, and NR-LRC algorithms.

No. Data replication algorithm Setting

1 PFRF 200 master files are randomly distributed to the eight clusters
2 M/LFU ’’
3 DR-Local ’’
4 DR-Global ’’
5 NR-GRC 200 master files are all stored in the GRC
6 NR-LRC 200 master files are randomly distributed to the eight clusters
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Table 5
The file popularities in the three phases (Rounds 1–7, 8–14, and 15–20).

Popularity level (files) Phases
Phase 1
(rounds 1–7)

Phase 2
(rounds 8–14)

Phase 3
(rounds 15–20)

1 (File0–File19) 1st popular 2nd popular 3rd popular
2 (File20–File39) 2nd popular 1st popular 2nd popular
3 (File40–File59) 3rd popular 3rd popular 1st popular
. . . . . . . . . . . .
10 (File180–File199) 10th popular 10th popular 10th popular
0
0

20
40
60
80

100
120

A
cc

es
s 

C
ou

nt
s

140
160
180
200
220
240

20 40 60 80 100

File ID

120 140 160 180 199 0
0

20
40
60
80

100
120

A
cc

es
s 

C
ou

nt
s

140
160
180
200
220
240

20 40 60 80 100

File ID

120 140 160 180 199 0
0

20
40
60
80

100
120

A
cc

es
s 

C
ou

nt
s

140
160
180
200
220
240

20 40 60 80 100

File ID

120 140 160 180 199

(a) Phase 1. (b) Phase 2. (c) Phase 3.

Fig. 5. Distributions of file requests against the 200 master files in the simulation process on ZipfL-0.8.
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Fig. 6. Distributions of file requests against the 200 master files in the simulation process on ZipfL-0.6.
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Fig. 7. Distributions of file requests against the 200 master files in the simulation process on Geo-0.2.
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Fig. 8. Distributions of file requests against the 200 master files in the simulation process on Geo-0.5.
test metrics were used. The first is average job turnaround time
(ATT ), which is an average time interval from the time point when
a job sends a file request to its LRC to the time point when the
requested files are successfully received by the job. ATT is derived
by dividing the total turnaround time of all jobs in all clusters
in round r by the total number of jobs. The second is average
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Fig. 9. Distributions of file requests against the 200 master files in the simulation process on Uniform.
data availability (ADA). Data availability, which was proposed by
GridSim [43] for a job, e.g., jobx, in cluster c to access a file fi of size
dxi , denoted by Availx,c , is defined as

Availx,c =

k
i=1

txi,c

k
i=1

dxi

(6)

where k is the number of files accessed by jobx running on cluster
c in round r , and txi,c is the time that jobx consumes to acquire fi,
locally or remotely. Let avgAvailc be the average data availability of
cluster c which is defined as

avgAvailc =


x∈jobsc

Availx,c

|jobsc |
(7)

where jobsc is the set of jobs submitted to cluster c by users to
access files. The ADA of all clusters is defined as

ADA =

Nc
m=1

avgAvailm

Nc
(8)

where Nc is the number of clusters in the data grid. The last is
average bandwidth cost ratio (ABCR). Bandwidth cost ratio of cluster
c in a round, denoted by BCRc , is defined as

BCRc =
LFAc · LC c + RFAc · RC c

AFAc · Cbaseline

=
LFAc · LC c + RFAc · RC c

(LFAc + RFAc) · Cbaseline
(9)

where LFAc(RFAc) is the number of files that users in cluster c can
locally (should remotely) access,AFAc = LFAc+RFAc, LC c is the cost
for a user in cluster c to locally access a file. RC c is the cost for the
user to access a file from a remote cluster or the GRC, and Cbaseline is
the average cost for a user to access a file from a remote cluster to
local cluster c. If LFAc is larger than RFAc , that implies the particular
data replication algorithm can more accurately predict user access
behaviors. Otherwise, the algorithm due to inaccurate prediction
would consume a lot of network resources to remotely access files.
Eq. (9) only involves the number of files and neglects file sizes
since in the simulation all files are of the same size, i.e., 1 GB. The
ABCRused to determinewhether a data replication algorithmcould
accurately predict popular files or not is defined as

ABCR =

Nc
m=1

BCRm

Nc
(10)

where Nc is the total number of clusters in the data grid. A data
replication algorithm with a smaller ABCR value will lead to better
grid performance since most data can be locally retrieved. In the
following, each simulation was performed ten times to obtain the
values of the three performance metrics.
Fig. 10. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on ZipfL-0.8 with JRR = 25%.

Fig. 11. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on ZipfL-0.6 with JRR = 25%.

4.3.1. Average job turnaround time (ATT) and average data availabil-
ity (ADA)

Fig. 10 show the experimental results of ATTs for PFRF, M/LFU,
DR-Local, DR-Global, and NR-LRC on access pattern ZipfL-0.8 with
JRR = 25%. The results of ZipfL-0.6, Geo-0.2, Geo-0.5, and Uniform
are illustrated in Figs. 11–14, respectively. When ZipfL-0.8 with
JRR= 25% is employed, as shown in Fig. 10, PFRF’s ATTs are shorter
than those ofM/LFU, DR-Local, andDR-Global after the sixth round.
This is also true on ZipfL-0.6 and Geo-0.2 (see Figs. 11 and 12,
respectively). Fig. 13 plots the experimental results of Geo-0.5. On
Uniform with JRR = 25% as shown in Fig. 14, ATTs of PFRF, M/LFU,
DR-Local, and DR-Global are longer than those shown in Figs. 10–
13 since the tested algorithms cannot effectively discriminate file
popularity. It is clear that PFRF has shorter ATTs than those of
M/LFU, DR-Local, and DR-Global on all of ZipfL-0.8, ZipfL-0.6, and
Geo-0.2.
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Fig. 12. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on Geo-0.2 with JRR = 25%.

Fig. 13. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on Geo-0.5 with JRR = 25%.

Fig. 14. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on Uniform with JRR = 25%.

When the data access pattern is Geo-0.5 with 25% (see Fig. 13),
PFRF, M/LFU, and DR-Global have similar ATTs since the popular
files shown in Fig. 8 can be easily identified. This is also why
these algorithms onGeo-0.5 have the shortestATTs comparedwith
ATTs of these algorithms on other data access patterns (see scale
of Y -axis of Figs. 10–14). Note that, on Geo-0.5, DR-Local does
not effectively keep up with the change of user access behaviors
especially at the end of phase 1 and phase 2. The reason is
that it keeps accumulating the access count of certain popular
files, resulting in a higher average access count as the replication
threshold. It is impossible for a rising-popularity file, e.g., F , to have
Fig. 15. Total popular file replication delays for PFRF, M/LFU, DR-Global, and DR-
Local on ZipfL-0.8 with JRR = 25%.

its access count suddenly larger than the threshold. Hence, F will
not be replicated.

ATTs of PFRF on ZipfL-0.8, ZipfL-0.6, and Geo-0.2 in the twenty
rounds are shown in Figs. 10–12, in which when file popularities
change, i.e., between rounds 7 and 8 and between rounds 14 and
15 according to Table 5, ATTs of PFRF increase less sharply than
those of other algorithms, implying that the PFRF can quickly adapt
to the change of user access behaviors and provide better access
performance as compared with all the other algorithms.

We have not mentioned NR-GRC and NR-LRC since NR-LRC’s
plots are high above those of the other four access patterns (see
Figs. 10–14), and NR-GRC leads to a longer ATT (4714 s in average)
which is about three times the highest scale of each figure. If we
plot the results of NR-GRC in Figs. 10–14, the ATTs of the other
algorithmswill be close to each other and cannot be discriminated.
The cause of longer ATTs for NR-GRC is that because there are no
local files, all jobs have to remotely access all required files from
the GRC. On NR-LRC, a job in each round spent about 1625–1675 s
(see Figs. 10–14). Apparently, NR’s access performance is not better
than those of the other four algorithms on all access patterns.

Fig. 15 shows the total popular file replication delays of the
PFRF,M/LFU, DR-Local, and DR-Global on ZipfL-0.8with JRR= 25%.
Note that NR does not replicate files. Hence, its experimental
results are absent from this figure. Due to the page limit, we omit
the total popular file replication delays of these algorithms on the
other access patterns since they are similar to those illustrated
in Fig. 15. According to the 80/20 rule, PFRF only replicates the
top 20% of popular files, and thus PFRF always spends less than
5000 s to replicate popular files from remote clusters to local sites
in each round. For each cluster, due to the number of remote
files becoming less over time, ATTs of PFRF as shown in Figs. 10–
14 reduce gradually. M/LFU replicates required files from remote
clusters in each round, consequently, like that of PFRF, taking a
longer time (about 14,000 s) to replicate files in the first round,
and spending less in the later rounds.

After the fourth rounds, the total popular file replication delays
of DR-Local are almost the same as those of M/LFU. Thus, ATTs
of DR-Local are then similar to those of M/LFU on all data access
patterns except on Geo-0.5. That is why in Figs. 10–12 and 14,
the two curves almost overlap. DR-Global results in longer file
replication delays than those of other algorithms and the delays are
always higher than 5000 s in each round since it keeps replicating
files in each round. That is why ATTs of DR-Global as shown in
Figs. 10–14 can remarkably decline after the first round. However,
ATTs of DR-Global are longer than those of PFRF after the sixth
round in all access patterns except on Geo-0.5. The reason has been
stated above.
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Fig. 16. Average data availabilities for PFRF, M/LFU, DR-Local, DR-Global, and NR-
LRC on ZipfL-0.8 with JRR = 25%.

Fig. 16 illustrates the ADAs for PFRF, M/LFU, DR-Local, DR-
Global, and NR-LRC on ZipfL-0.8 with JRR = 25%. According to the
definition of Availx,c presented in Eq. (6), the numerator txi,c is the
turnaround time of jobx in cluster c , and hence the ADAs of all the
tested algorithms have similar trends to that of their ATTs on all
data access patterns. For example, all curves in Fig. 10 are similar
to those in Fig. 16 on ZipfL-0.8 with JRR = 25%. Note that the ADAs
of NR-GRC in each round are also omitted from Fig. 16 because they
are the worst (about 0.637 which is far above the top scale, 0.23, of
Fig. 16). The cause of these high ADAs was mentioned above.

4.3.2. Average bandwidth cost ratio (ABCR)
Fig. 17 illustrates the ABCRs of PFRF, M/LFU, DR-Local, DR-

Global, NR-GRC, and NR-LRC on ZipfL-0.8 with JRR = 25%. The
bandwidths of the inter-router link, router-to-site link, user-
to-router link, and GRC-to-router link as listed in Table 1 are
respectively 10, 2.5, 0.1, and 2.5 Gb/s, and the corresponding
unit costs are respectively 1

10 ,
1
2.5 ,

1
0.1 , and

1
2.5 . With the tested

algorithms other than NR-GRC, files required by a job may be
stored in remote clusters or a local cluster. To fairly compare all
these algorithms, the router-to-site link andGRC-to-router link are
given the same bandwidth, i.e., 2.5 Gb/s.

With NR-GRC, LC c and LFAc in Eq. (9) are zero since all master
files are located at the GRC, i.e., AFAc = RFAc, RC c =

1
2.5 +

1
10 +

1
0.1 = 10.5, and Cbaseline =

1
2.5 +

1
10 +

1
10 +

1
0.1 = 10.6. Thus, BCRc =

RCc
Cbaseline

= 0.99, ABCR = BCRc , and ABCR = 0.99 in all rounds on all
access patterns. For PFRF,M/LFU, DR-Local, DR-Global, andNR-LRC,
RC c = Cbaseline = 10.6, and LC c =

1
2.5 +

1
0.1 = 10.4.

Comparing the plots shown in Figs. 17–21, ABCRs of NR-LRC
in the five figures are all the worst, between 0.997 and 0.998.
The reason is that NR-LRC does not replicate files among clusters;
hence, each cluster has to access required files from remote
clusters, even though it has frequently accessed these files. PFRF
can effectively adjust file weights and lead to the best ABCRs on
ZipfL-0.8, ZipfL-0.6, and Geo-0.2 after the sixth round, as compared
with all the other algorithms. However,ABCRs of NR-GRC are better
than those of other algorithms on ZipfL-0.6 (see Fig. 18) since all
unpopular files have similar access count (see Fig. 6), like those
of a uniform distribution. As shown in Fig. 20, PFRF, M/LFU, and
DR-Global on Geo-0.5 have similar ABCRs, which are better than
those of DR-Local, NR-GRC, and NR-LRC since the former three
algorithms can effectively identify popular files and replicate them
to the clusters requiring these files.

As shown in Fig. 21, NR-GRC on Uniform with JRR = 25%
outperforms all the other algorithms since all required files can
be accessed from the GRC rather than from remote clusters. On
the other hand, ABCRs of PFRF, M/LFU, DR-Local, and DR-Global
Fig. 17. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on ZipfL-0.8 with JRR = 25%.

Fig. 18. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on ZipfL-0.6 with JRR = 25%.

Fig. 19. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on Geo-0.2 with JRR = 25%.

are similar because popularities of all files as shown in Fig. 9 are
similar and remain unchanged over time. According to Eqs. (9)
and (10), the increase of RFAcs will result in higher BCRcs and
ABCRs, indicating that the bandwidths consumed by all algorithms
except NR-GRC on Uniform, of which ABCR is about 0.993 after
the sixth (see Fig. 21), are higher than those on the other access
patterns. Please compare theABCR value 0.993with those shown in
Figs. 17–20, all between 0.983 and 0.992.

If we change the bandwidth of the user-to-router links shown
Fig. 4 from 100 Mb/s to 1 Gb/s, when NR-GRC is employed, RC c =

1.5, Cbaseline = 1.6, and BCRc = ABCR = 0.937 which is lower
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Fig. 20. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on Geo-0.5 with JRR = 25%.

Fig. 21. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on Uniform with JRR = 25%.

than that calculated above, i.e. 0.99. When NR-LRC is used, RC c =

Cbaseline = 1.6, LC c = 1.4, and ABCR ≈ 0.984 which is also lower
than the value calculated above for NR-LRC, i.e., between 0.997 and
0.998, implying that when there is a bottleneck along a path, the
ABCRwill be bigger. Other algorithms have similar phenomena.

4.3.3. Comparison of PFRF parameters a and b
The experimental environment used to evaluate the parameters

a and b in Eq. (3) is the same as the one mentioned in Section 4.1.
Fig. 22 shows experimental results for ATTs of PFRF when a <

b(i.e., a = 0.1, b = 0.15), a = b (i.e., a = 0.1, b = 0.1), and
a > b (i.e., a = 0.15, b = 0.1) on ZipfL-0.8 with JRR= 25%. Fig. 23,
a zoomed-in portion of Fig. 22, illustrates the ATTs of PFRF from
round 6 to round 20. Evidently, the case of (a = 0.1, b = 0.15)
has the best ATTs, showing that it can accurately reflect which files
are more popular. Therefore, in this study we select (a = 0.1, b =

0.15) to do the previous simulations.

4.3.4. Discussion
From an end user viewpoint, the goal of invoking a data replica-

tion algorithm is to shorten average turnaround time and enhance
data availability. From the whole system viewpoint, the data repli-
cation algorithm should reduce bandwidth cost/consumption for
grid systems. From the simulation results, we can see that PFRF,
M/LFU, DR-Local, and DR-Global can improve turnaround time,
bandwidth cost ratio, and data availability. Although NR-LRC can
slightly reduce job turnaround time and improve data availability,
Fig. 22. The average job turnaround time against different rounds.

Fig. 23. The zoom-in figure between rounds 6 to 20 in Fig. 22.

its average bandwidth cost is still high. NR-GRC has the best aver-
age bandwidth cost ratios on the uniform distribution, but it has
the worst turnaround time and data availability on all data access
patterns.

In most situations, PFRF outperforms M/LFU, DR-Local, DR-
Global, and NR-LRC on the three performance metrics. Although
DR-Global has similar performance to that of PFRF, its high
replication frequency will run out of storage space quickly, and
consume considerable network bandwidth, resulting in high disk
I/O costs for all clusters in a data grid. In our simulations, the
average job turnaround time does not include the total popular file
replication time. In other words, DR-Global is not really optimal.

Note that theGRC is only responsible for supplying the locations
of files/replicas, instead of files/replicas themselves, to all clusters
when PFRF, M/LFU, DR-Local, DR-Global, and NR-LRC algorithms
are employed. Therefore, the bandwidth of the GRC will not be
the bottleneck of these algorithms. However, with NR-GRC, all
requested files are transmitted from the GRC. The bandwidth of
the GRC might be a bottleneck when it receives a high volume of
file requests from clusters.

5. Conclusions and future work

In this paper, we propose a novel data replication algorithm for
a star-topology data grid with limited storage space to improve
system performance. Although some previous studies have done
that, such as providing shorter job response time, higher network
usage, and less storage occupation on limited storage space, they
did not consider data access patterns and the change of user
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access behaviors over time. Therefore, PFRF is designed to improve
these weaknesses. It can effectively adapt to the changes of users’
interests by dynamically adjusting file weights and replicating
these files to appropriate clusters to improve performance of the
whole system. We also analyze the average job turnaround time,
average data availability, and average bandwidth cost ratio as the
performance metrics of PFRF and compare them with those of five
existing algorithms on five data access patterns. The simulation
results show that PFRF outperforms all the tested algorithmswhen
file popularity changes with time.

In the future, we plan to validate our simulation results on real
data grids so that the proposed scheme can be evaluated on a
real testbed. We would also like to enhance the reliability of the
architecture by providing a hot-standby GRC like that presented
in [49] to take over as the GRCwhen theGRC cannotwork properly.
Wewill also try to replicate popular files to users’ local sites, rather
than to users’ local clusters. This can further reduce intra-cluster
bandwidth consumption and unnecessary data transmission time.
Finally, we plan to develop a reliability model to evaluate how
many replicas are required for a file such that the file can stand
against site failures. Those constitute our future studies.
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