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ABSTRACT   

Light trapping techniques such as textured interfaces and highly reflective back contacts are important to thin-film solar 
cells. Scattering at rough interfaces inside a solar cell leads to enhanced absorption due to an increased optical path 
length in the active layers, which is generally characterized by a haze ratio. In this work, we demonstrate the measured 
haze characteristics of indium tin oxide nano-whiskers deposited on an ITO-coated glass substrate. A theoretical model 
based on a modified Mie theory is also employed to analyze the scattering effects of nano-whiskers. Instead of spherical 
model, a cylindrical condition is imposed to better fit the shapes of the whiskers. The calculated haze-ratio of an ITO 
whisker layer matches the measurement closely.    
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1. INTRODUCTION  
The power conversion efficiency (PCE) of thin film solar cell depends on the effective light absorption, which can 

improved by light trapping mechanism in broadband wavelength range [1]. The high scattering efficiency of incident 
light will increase the optical path and enhance the light absorption in thin film solar cell. Conventionally, the 
transmission scattering is designed at the top surface, which can scatter the incident light and distribute the light field in 
the solar active layer. In experiment, the capability of scattering could be defined by the haze ratio where: 
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With this definition, the scattering capability of the solar cell can be easily evaluated by this haze ratio of the 

surface. In the past, micro-scale surface structures were applied to raise the scattering capability. However, the micro 
structure would increase the haze-ratio but reduce the total transmittance due to the surface reflection, which in turn 
decreases the photons absorption. On the other hand, the nano-scale structure for scattering layer has shown superior 
properties for both antireflection and scattering efficiency [2]. In our research, the scattering characteristics of the nano-
scale whisker layer on transparent substrate were investigated. The whiskers were fabricated by electron beam 
evaporation system. We demonstrate the measured haze characteristics of novel indium tin oxide (ITO) nano-whiskers 
deposited on an ITO-coated glass substrate. The ITO nano-whiskers for scattering layer have shown superior properties 
for both antireflection and scattering efficiency. Moreover, as ITO is a widely used transparent conductive oxide material 
and the growth technique involves only deposition in low temperature, it is very appealing to employ nano-whiskers in 
thin-film solar cells as light trapping textures. 

 
Then, we attempted to construct an equivalent sphere model to fit the haze ratio and analysis characteristics of ITO 

whisker. With a correct model, we can decide the scattering efficiency by designing the structure and shape size. The 
scattering effect will be discussed in the later with the model fitting results. 
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After the nano-structure was grown, we can use the regular Haze measurement setup to evaluate its light-scattering 
capability. The instrument of U-4100 UV-Visible-NIR Spectrophotometer with a 6-cm diameter integrated sphere was 
used to characterize the scattered light following the standard ASTM D1003-95 

 

3. MIE THEORY WITH CYLINDRICAL ROD  
In the ordinary Mie theory, the shape of scattering particle is spherical. In our case, however, the nanowhisker is 
nowhere close to spherical shape, and so a better simulation should be obtained by using cylindrical particles in modified 
Mie theory. There have been some efforts in the past to solve the Mie scattering for particles with non-spherical shapes. 
Shapes like cylinders, spheroids, etc., are common in nature, such as ice pellets, aerosol pollutants, and even organic 
tissues. Equivalent volume-to-surface-ratio spheres [10], and Mie approximation [11][12] have been proposed as a 
possible solution. In this paper, we adapt the Mie approximation as our major method to solve the problem. 

In the scattering event of a infinitely-long cylinder shown in Fig. 2, the electromagnetic excitation can strike the long 
axis of the cylinder with an angle of ζ. In the regular Mie theory, we need to find out the scattering coefficient, and 
scattering cross section such that we can calculate the attenuation coefficient [12]. Similar treatment needs to be carried 
out in the cylindrical case. The scattered EM field are written in the series form of the generating functions[12]: 
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, where an and bn are the scattering coefficients, and Mn and Nn are the generating functions that can satisfy the scalar 
wave equation in polar coordination [12]. The coefficients can be determined by the Maxwell equations and the 
expansion of the scattered EM field [12]. And if we assume the electric field is perpendicular to the axis of the cylinder, 
we can obtain the scattering coefficients like [11]: 
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and Jn(x), Hn(1)(x) are the Bessel function of the 1st order, and 3rd order, x is 2πa/λ, a is the radius of the cylinder, and 
m is the complex refractive index of the cylinder material. If the electric field is parallel to the axis of the cylinder, a 
similar set of formula can also be found[11][12]. The scattering efficiency factor Qi (i=ext, and sca, for extinction and 
scattering, respectively) can then be calculated through the summation of an and bn [12]: 
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, where a is the radius of the cylinder and the nI is the real part of the refractive index of the cylinder. We are assuming 
the electric field is perpendicular to the axis of the cylinder in this case. If the electric field is parallel to the axis, the 
coefficients an and bn need to be exchanged in their positions in the eq.(5). If the incident light is unpolarized, the 
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4. RESULTS AND DISCUSSION  
 
From the aforementioned theory, we can use MatlabTM and reference to published codes[13] to program the wavelength-
dependent haze ratio of nanowhisker and compare the calculation to our measurement. Figure 4 shows our haze fitting of 
nanowhiskers under various deposition conditions. Two different thickness of ITO nanowhisker films deposited at 260oC 
were tested and fitted. To better match the real situation, we put a vertical and horizontal orientation mix of cylinders 
(4:1) in the calculation. The vertical cylinders are tilted in 25o and the horizontal ones are at 75o, both with respect to 
normal direction of the surface. A illustrative diagram of our simulation model is shown in the inset of Fig. 4. The radii 
of the cylinders are picked as 28 and 35 nm, which are close to what was observed in the TEM picture[7], and real ITO 
refractive index was used. The effective thickness in the Mie calculation for both cases are 650nm and 500nm, 
respectively. These numbers are also obtained from the SEM pictures. A close match was found with the parameters we 
assigned. Little deviations were found at long wavelength range, which might rise from the randomness of the 
nanowhisker orientation, and the different sizes of whiskers' radii. At short wavelength, the fine branches of whiskers 
took effect and drove the scattering away from the ideal infinitely-long cylinder condition. 
 

parameters  Sample 1 Sample 2 
The broad rods   

Mean particle radius ,a 35 nm 28 nm 
The angle to incident light ζ 25° 25° 

The narrow rods   
Mean particle radius ,a 27 nm 20 nm 

The angle to incident light ζ 
 

75° 75° 

Whicker layer thickness , h  650 nm  500 nm  
particles per unit volume , N 1/118nm3 1/90nm3  

Table 1 Fitting parameters 

 
Fig. 5. The measurement data (red and magenta) and the fitted haze ratio (blue and cyan).  

 

5. RESULTS AND DISCUSSION  
 
A cylinder-based Mie scattering model was used to calculate the haze ratio of nanowhiskers, and we successfully 
correlate the physical dimensions to our measurement. The result of curve fitting shows that it is a practical and accurate 
model for visible light range, but some errors induced by difference of ideal and real case exhibit at short and long 
wavelength. We believe this Mie model can provide a quick estimate of haze ratio and should be helpful for design of 
next generation of highly diffused nanostructure. 
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