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In traditional scheduling problems, the processing time for the given job is assumed to be a constant
regardless of whether the job is scheduled earlier or later. However, the phenomenon named ‘‘learning
effect’’ has extensively been studied recently, in which job processing times decline as workers gain more
experience. This paper discusses a bi-criteria scheduling problem in an m-machine permutation flowshop
environment with varied learning effects on different machines. The objective of this paper is to minimize
the weighted sum of the total completion time and the makespan. A dominance criterion and a lower
bound are proposed to accelerate the branch-and-bound algorithm for deriving the optimal solution.
In addition, the near-optimal solutions are derived by adapting two well-known heuristic algorithms.
The computational experiments reveal that the proposed branch-and-bound algorithm can effectively
deal with problems with up to 16 jobs, and the proposed heuristic algorithms can yield accurate near-
optimal solutions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In classical scheduling problems, all the processing times of jobs
are often assumed to be fixed and known before processing the
jobs (Pinedo, 2002). However, in reality, the workers acquire expe-
rience after repetitiously operating similar tasks in many practical
environments. As a result, the processing times of the jobs decline
as the skill of the workers improves. This phenomenon is known as
the ‘‘learning effect’’.

Biskup (1999) addressed a learning effect model in a single-
machine scheduling problem in which the processing time of the
job is a function of its position in a schedule. The problems for min-
imizing the deviation from a common due date and minimizing the
total flow time were demonstrated to be polynomially solvable.
Subsequently, the learning effect has received extensive discussion
in the scheduling field (Janiak & Rudek, 2008, 2010; Mosheiov &
Sidney, 2003). Biskup (2008) proposed a detailed review of
scheduling problems with learning effect in which the existing
models are distinguished into two distinct types: the position-
based learning and the sum-of-processing-time-based learning
types. The position-based learning effect is affected by the number
of processed jobs. Meanwhile, the sum-of-processing-time-based
learning effect is influenced by the total processing times of the
finished jobs.
ll rights reserved.
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With regard to the position-based learning effect, Lee, Wu, and
Hsu (2010) studied a single-machine scheduling problem with
release times under learning consideration. They proposed a
branch-and-bound and a heuristic algorithm to obtain the optimal
and near-optimal solution for minimizing the makespan. Toksari
(2011) addressed a single-machine scheduling problem with
unequal release times for minimizing the makespan, in which the
learning effect and the deteriorating jobs are concurrently consid-
ered. Several dominance criteria and the lower bounds are estab-
lished to facilitate the branch-and-bound algorithm for deriving
the optimal solution. In addition, Zhu, Sun, Chu, and Liu (2011)
studied two single-machine group scheduling problems. The job
processing time is a function of job position, group position and
the amount of resources assigned to the group. They verified that
minimizing the total weighted sum of the makespan and the total
resources constrained remain polynomial solvable. Huang, Wang,
and Wang (2011) investigated two resources constrained single-
machine group scheduling problems in which the learning effect
and deteriorating jobs are considered simultaneously. They pro-
posed polynomial solutions under certain constraints to minimize
the makespan and the resource consumption, respectively. More-
over, Lee and Lai (2011) considered both the effect of learning
and deterioration in a scheduling model. The actual job processing
time is a function on the processing times of scheduled jobs and its
position in the schedule. They showed that some single-machine
scheduling problems remain polynomial solvable.

In terms of the sum-of-processing-time-based learning effect,
Koulamas and Kyparisis (2007) indicated that employees learn
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more when performing jobs with a longer processing time. They
brought in a sum-of-job-processing-time-based learning effect
scheduling model and showed that the makespan and the total
completion time problems for the single machine setting, and
two-machine flowshop setting with ordered job processing times
remain polynomially solvable. Furthermore, Cheng, Lai, Wu, and
Lee (2009) introduced a learning effect model into a single-
machine scheduling problem. The actual job processing time is de-
rived from the sum of the logarithm of the processing times of pro-
cessed jobs. They showed that the makespan and total completion
time problems are polynomially solvable. Wang and Wang (2011)
introduced an exponential sum-of-actual-processing-time-based
learning effect into a single-machine scheduling problem. The spe-
cial cases of the total weighted completion time problem and the
maximum lateness problem are proved to be polynomial solvable
under an adequate condition. In addition, Cheng, Cheng, Wu,
Hsu, and Wu (2011) proposed a two-agent scheduling problem
with a truncated sum-of-processing-time-based learning effect
on a single machine. A branch-and-bound algorithm was utilized
to obtain the optimal solution for minimizing the total weighted
completion time for the jobs of the first agent subject to no tardy
job of the second agent.

The position-based and the sum-of-processing-time-based
learning effects have been concurrently considered in recent
literatures. Cheng, Wu, and Lee (2008) developed a model of the
learning effect on a single machine in which the actual processing
time of the job is a function of the total normal processing time of
processed jobs and the position of the job in a schedule. They then
proved that the makespan and total completion time problems re-
main polynomially solvable. Lai and Lee (2011) addressed a general
scheduling model in which the position-based and the sum-of-pro-
cessing-time-based learning effects are concurrently considered.
They showed that most of the models in the literatures are special
cases of the model they proposed. Furthermore, Yin, Xu, Sun, and Li
(2009) considered learning effect in some single-machine and
m-machine flowhop scheduling problems. The actual job process-
ing time is a function of the total normal processing times of the
jobs already processed and the number of processed jobs. Lee
and Wu (2009) developed a general learning model that associates
with the position-based and sum-of-processing-time-based
learning effects. They then showed that the single-machine make-
span and the total completion time problems are polynomially
solvable, and proposed polynomial-time optimal solutions to
minimize the makespan and total completion time under certain
agreeable conditions for the flowshop setting.

In terms of the flowshop scheduling problems, Johnson (1954)
was the pioneer for discussing this topic. Chung, Flynn, and Kirca
(2002) investigated an m-machine flowshop problem with a total
completion time objective. Then a brand-and-bound algorithm
incorporated with a creative lower bound and a dominance rule
was conducted to derive the optimal solution. Chung, Flynn, and
Kirca (2006) studied a total tardiness minimization scheduling
problem in an m-machine flowshop environment. They sought
the optimal solution by implementing a branch-and-bound algo-
rithm. In addition, the learning effect has been recently introduced
into flowshop scheduling problems (Lee and Wu (2004), Wu, Lee,
and Wang (2007)). Chen, Wu, and Lee (2006) considered a bi-crite-
ria two-machine flowshop scheduling problem with the learning
effect in which the objective is to minimize the weighted sum of
the total completion time and the maximum tardiness. They estab-
lished a branch-and-bound algorithm and two heuristic algorithms
to obtain the optimal and near-optimal solutions. Li, Hsu, Wu, and
Cheng (2011) discussed a two-machine flowshop scheduling prob-
lem with a truncated learning effect which considers the position
of the job in a schedule and the control parameter. Then the
branch-and-bound and three simulated annealing algorithms were
conducted to seek the optimal and near-optimal solutions. Addi-
tionally, Wang and Xia (2005) considered flowshop scheduling
problems with a learning effect. They demonstrated examples to
prove that the Johnson’s rule is not the optimal method to
minimize the makespan problem for a two-machine setting with
learning consideration. Then they showed that two special cases
remained polynomially solvable with makespan and total comple-
tion time objectives. Wu and Lee (2009) discussed a flowshop
scheduling problem with a learning effect for minimizing the total
completion time and then utilized a branch-and-bound algorithm
to obtain the optimal solution. Then they adapted four well-known
heuristic algorithms to derive the near-optimal solutions and
compare the proposed heuristic algorithms.

Due to the complexity of the flowshop environment, most of the
researchers have devoted to discovering near-optimal solutions.
Nawaz, Enscore, and Ham (1983) investigated an m-machine flow-
shop scheduling problem with the makespan objective. They sta-
ted that jobs with larger total processing times have higher
priority and should be scheduled earlier. Then they showed that
the algorithm they proposed has remarkable performance, particu-
larly in the large job-sized problems. Subsequently, Liu and Ong
(2002) and Ruiz and Maroto (2005) pointed out that the algorithm
Nawaz et al. (1983) proposed is preferable to other existing poly-
nomial algorithms for the m-machine flowshop scheduling prob-
lem with makespan objective. Framinan, Gupta, and Leisten
(2004) presented a review and classification for the heuristic algo-
rithms with a makespan objective. Furthermore, Framinan and
Leisten (2003) considered an m-machine flowshop scheduling
problem for minimizing the mean flow time. They established an
efficient constructive heuristic algorithm by first utilizing the con-
cept of the algorithm proposed by Nawaz et al. (1983), and then
implemented a general pairwise interchange movement to im-
prove the solutions. Thereafter, Wu and Lee (2009) indicated that
the heuristic algorithm proposed by Framinan and Leisten (2003)
is recommended to approximate the total completion time for
the flowshop scheduling problem with a general position-based
learning effect. In addition, Wang, Pan, and Tasgetiren (2011) pro-
posed a modified global-best harmony search algorithm to obtain
the near-optimal solution for dealing with a makespan scheduling
problem in a blocking permutation flowshop environment. Zhang
and Li (2011) addressed an estimation of distribution algorithm
for a permutation flowshop scheduling problem with the objective
of minimizing the total flowtime.

In most of the literature for the flowshop scheduling problems
with learning effects, it is assumed that the learning effects are
identical on all machines. Therefore, in this paper, the machine-
based learning effect is introduced to the model of Biskup (1999)
for the m-machine permutation flowshop setting, in which the
learning effects are varied on different machines. In scheduling
field, most of the objective functions are relative to the completion
time of the tasks, and proposing approaches to minimize the com-
pletion time is an important topic in many studies. Therefore, two
widely used objective functions are considered simultaneously in
this paper, which are total completion time and makespan. Due
to the combinative performance of these two objective functions
is emphasized, the objective function of proposed problem in this
paper is to minimize the weighted sum of total completion time
and makespan. The outline of this paper is constructing algorithms
for obtaining the optimal and near-optimal solutions of proposed
problem, and utilizing the computational experiment to evaluate
the performance of proposed algorithms. The description of the
remaining sections of this paper is structured as follows. The
formulation of the problem is elaborated on Section 2. Then four
heuristic algorithms are proposed in Section 3 to obtain the near-
optimal solution. A dominance criterion and a lower bound of
the branch-and-bound algorithm are established in Section 4 for
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optimizing the proposed problem. The computational experiments
are implemented in Section 5 to assess the performances of all
proposed algorithms. Eventually, the conclusions are represented
in Section 6.

2. Problem description

The following notations are utilized throughout this paper.

N: Set of jobs which contains n jobs, i.e., N = {1, 2, . . ., n}.
S: Subset of N with s scheduled jobs.
U: Subset of N with n � s unscheduled jobs.
m: Number of machines.
Mi: ith machine, where i = 1, 2, . . ., m.
Jj: Job j, where j = 1, 2, . . ., n.
pij: Basic processing time of Jj on Mi.
pijr: Actual processing time of Jj on Mi when Jj is scheduled at
position r.
ai: Learning index on Mi with ai < 0 for i = 1, 2, . . ., m.
[]: The symbol which denotes the job order in a sequence.
a: The weight of the objective function with 0 6 a 6 1.
Ci[r](h): The completion time at the position r on Mi in sequence
h.
LB: The lower bound for the objective based on the given node.

The details of the proposed problem with the machine-based
learning effect in an m-machine permutation flowshop environ-
ment are described as follows: Assume that there is a jobs set N
with n jobs to be processed on m machines. Each Jj includes m
operations on corresponding machines which denote as Oi,j for
i = 1, 2, . . ., m and j = 1, 2, . . ., n. For the processing procedure, the
starting time of Oi,j must be the larger one of the completion times
of Oi�1,j and Oi,j�1. In addition, a permutation flowshop does not al-
low sequence changes between machines (Pinedo, 2002). There-
fore, the sequence of jobs is identical to all the machines in this
paper. Since the machine-based learning effect is considered, the
actual processing time pijr of Jj scheduled at position r on Mi de-
clines based on its position, i.e.,

pijr ¼ pijr
ai

where i = 1, 2, . . ., m, and j, r = 1, 2, . . ., n.
The aim of this paper is to seek a sequence for minimizing the

weighted sum of total completion time and makespan. And then
the proposed problem is defined as Fmjpijr ¼ pijr

ai ja
Pn

j¼1Cjþ
ð1� aÞCmax.

3. Heuristic algorithms

For the m-machine permutation flowshop scheduling problem,
the total completion time problem is demonstrated to be a strongly
NP-hard problem for m P 2 without considering the learning effect
(Lenstra, Rinnooy Kan, & Brucker, 1977). In addition, Garey,
Johnson, and Sethi (1976) showed that the classical makespan
problem is NP-hard for m P 3. Therefore, the proposed problem
in this paper is conjectured to be a NP-hard problem. While the
number of jobs increases, obtaining the optimal solution of an
NP-hard scheduling problem is time consuming. Therefore, many
studies are devoted to developing efficient heuristic algorithms to
derive the near-optimal solution. In this paper, four heuristic algo-
rithms are proposed and denoted as NEH, FL, NEH_W and FL_W.
Since the objective function in this paper consists of the makespan
and the total completion time, NEH and FL are respectively adapted
from the heuristic algorithm proposed in Nawaz et al. (1983) and
Framinan and Leisten (2003) by considering the learning effect
and adjusting the objective function to the bi-criteria one proposed
in this paper. In the procedure of proposed heuristic algorithms, the
jobs with larger total processing time (i.e.

Pm
i¼1pij for j = 1, 2, . . ., n)

have higher priority to be selected in NEH, while smaller in FL. In
addition, since the machine-based learning effects are considered
in this paper, the ratios of the reduction for the actual processing
time are varied on different machines. Therefore, NEH_W and
FL_W are adapted from NEH and FL by utilizing the total weighted
processing time (i.e.

Pm
i¼1wipij for j = 1, 2, . . ., n) to determine the

priority of the jobs, in which the machines with weaker learning ef-
fect have larger weight. Eventually, the procedures of NEH_W and
FL_W are detailed as follows.

3.1. NEH_W algorithm

Step 1: Set sequence PS and US with empty set.
Step 2: Arrange the jobs in descending order of the total
weighted normal processing time, and then schedule the jobs
into US.
Step 3: Set k = 1.
Step 4: Select the first job from US into PS, and remove the job
from US.
Step 5: If k = 1, go to Step 4. Otherwise, generate k sequence by
respectively inserting the job into each slot of PS.
Step 6: Select the sequence with the least objective value among
k candidate sequences and update the sequence as PS.
Step 7: Set k = k + 1. If k 6 n, go to Step 4. Otherwise, the near-
optimal sequence is set as PS.

3.2. FL_W algorithm

Step 1: Set sequence PS and US with empty set.
Step 2: Arrange the jobs in ascending order of the total weighted
normal processing time, and then schedule the jobs into US.
Step 3: Set k = 1.
Step 4: Select the first job from US into PS, and remove the job
from US.
Step 5: If k = 1, go to Step 4. Otherwise, generate k sequence by
respectively inserting the job into each slot of PS.
Step 6: Select the sequence with the least objective value among
k candidate sequences and update the sequence as PS.
Step 7: If k < 3, go to Step 8. Otherwise, generate kðk�1Þ

2 sequences
based on PS by performing pairwise interchange procedure.
Then select the sequence with the least objective value and
set as PS

0
. If PS can be dominated by PS

0
in terms of the objective

value, replace PS with PS0.
Step 8: Set k = k + 1. If k 6 n, go to Step 4. Otherwise, the near-
optimal sequence is set as PS.

4. Branch-and-bound algorithm

In order to seek the optimal solution, the branch-and-bound
algorithm is implemented in this paper. For the proposed branch-
and-bound algorithm, we addressed a dominance criterion modi-
fied from Chung et al. (2002) and a lower bound incorporated with
the Hungarian method, to facilitate the procedure for deriving the
optimal solution. In this section, the specification of the dominance
criterion and the lower bound are demonstrated. Eventually, the
summary of the proposed branch-and-bound algorithm is
represented.

4.1. Theorem and corollary of the dominance criterion

A rule is represented in following theorem which determines
the dominance from two varied sequences concluding the same
jobs set. If a sequence is dominated by another one, the node based
on the sequence is eliminated in the branching tree.
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Theorem 4.1. There are two sequence of set N, that is h1 = (r1, p) and
h2 = (r2, p), in which r1 and r2 denote two different sequence of set S,
and p denotes a sequence of set U. If

a
Ps
j¼1
ðCm½j�ðr2Þ�Cm½j�ðr1ÞÞ> ðaðn�s�1Þþ1Þmax

16i6m
Ci½s�ðr1Þ�Ci½s�ðr2Þ
� �

ð1Þ

then r1 dominates r2.
Proof. For k = 1, 2, . . ., m, we have

Ck½n�ðh1Þ¼max
16i6k
fCi½n�1�ðh1Þþ

Pk
u¼i

pu½n�n
aug�Ci1 ½n�1�ðh1Þþ

Pk
u¼i1

pu½n�n
au ð2aÞ

for some 1 6 i1 6 k
Similarly,

Ck½n�ðh2Þ � Ci2 ½n�1�ðh2Þ þ
Pk

u¼i2

pu½n�n
au ð2bÞ

for some 1 6 i2 6 k (2b).
From Eqs. (2a) and (2b), we have

Ck½n�ðh1Þ � Ck½n�ðh2Þ ¼ Ci1 ½n�1�ðh1Þ þ
Pk

u¼i1

pu½n�n
au

" #

� Ci2 ;½n�1�ðh2Þ þ
Pk

u¼i2

pu½n�n
au

" #

6 Ci1 ½n�1�ðh1Þ þ
Pk

u¼i1

pu½n�n
au

" #

� Ci1 ;½n�1�ðh2Þ þ
Pk

u¼i1

pu½n�n
au

" #

Then Ck½n�1�ðh1Þ � Ck½n�1�ðh2Þ 6 Ci1 ½n�1�ðh1Þ � Ci1 ½n�1�ðh2Þ
6 max

16i6m
fCi½n�1�ðh1Þ � Ci½n�1�ðh2Þg

By an induction, for k = m, we have
Cm½sþl�ðh1Þ � Cm½sþl�ðh2Þ 6 max
16i6m

fCi;½s�ðr1Þ � Ci;½s�ðr2Þg ð3Þ

where 1 6 l 6 n � s.
From Eq. (3), we have

½a
Pn
j¼1

Cm½j�ðh1Þ þ ð1� aÞCm½n�ðh1Þ� � ½a
Pn
j¼1

Cm½j�ðh2Þ þ ð1� aÞCm½n�ðh2Þ�

6 a
Ps
j¼1
½Cm½j�ðr1Þ � Cm½j�ðr2Þ� þ ½aðn� s� 1Þ

þ 1�max
16i6m

fCi½s�ðr1Þ � Ci½s�ðr2Þg ð4Þ

The value for the left side of Eq. (4) is negative by Eq. (1)and it im-
plies h1 dominates h2.

Therefore, we have r1 dominates r2. h

In this paper, the theorem is simplified as the corollary which
requires considering two adjacent jobs. The corollary is utilized
in the proposed branch-and-bound algorithm and presented
below.
Corollary 4.1. In set S, let r denote a partial sequence with s � 2 jobs.
In addition, the remaining jobs are scheduled in the last two positions
as J1 and J2. The two sequences based on r are presented as
S1 = (r, J1, J2) and S2 = (r, J2, J1), and CiJj

ðSlÞ denotes the completion
time of Jj on Mi in Sl for j, l = 1, 2 and i = 1, 2, . . ., m. If
a½CmJ2
ðS2Þ þ CmJ1

ðS2Þ � CmJ1
ðS1Þ � CmJ2

ðS1Þ�
> ½aðn� s� 1Þ þ 1�max

16i6m
fCiJ2
ðS1Þ � CiJ1

ðS2Þg ð5Þ

then S1 dominates S2.
4.2. Calculation of the lower bound

In addition to the dominance criterion, another procedure to
eliminate nodes in the branching tree is calculating the lower
bound of the objective value. In this paper, we establish a lower
bound to speed up the procedure of the proposed branch-and-
bound algorithm. The proposed lower bound requires O(mn3) com-
putation time, and is presented as follows.

Let h denote a sequence with s scheduled and n � s unscheduled
jobs of set N. For 1 6 k 6m, the completion time of (s + 1)th job on
Mk is presented as

Ck½sþ1�ðhÞ ¼maxfCk�1½sþ1�ðhÞ;Ck½s�ðhÞg þ pk½sþ1�ðsþ 1Þak

P Ck½s�ðhÞ þ pk½sþ1�ðsþ 1Þak

Thus, the completion time of (s + 1)th job on Mm is presented as

Cm½sþ1�ðhÞP Ck½s�ðhÞ þ pk½sþ1�ðsþ 1Þak þ
Pm

i¼kþ1
pi½sþ1�ðsþ 1Þai

Furthermore, the completion time of (s + 2)th job on Mk is presented
as

Ck½sþ2�ðhÞ ¼maxfCk�1½sþ2�ðhÞ;Ck½sþ1�ðhÞg þ pk½sþ2�ðsþ 2Þak

P Ck½s�ðhÞ þ pk½sþ1�ðsþ 1Þak þ pk½sþ2�ðsþ 2Þak

Thus, the completion time of (s + 2)th job on Mm is presented as

Cm½sþ2�ðhÞP Ck½s�ðhÞ þ
P2
v¼1

pk½sþv �ðsþ vÞak þ
Pm

i¼kþ1
pi½sþ2�ðsþ 2Þai

By an induction, the underestimated value of the completion
time for (s + l)th job on Mm based on Mk is presented as

Ck½s�ðhÞ þ
Pl

v¼1
pk½sþv�ðsþ vÞak þ

Pm
i¼kþ1

pi½sþl�ðsþ lÞai ð6Þ

Then we have

a
Pn
j¼1

Cm½j�ðhÞþð1�aÞCm½n�ðhÞPa
Ps
j¼1

Cm½j�ðhÞþ½aðn�s�1Þþ1�Ck½s�ðhÞ

þ
Pn�s

l¼1
½aðn�s� lÞþ1�ðsþ lÞak pk½sþl�

þ
Pn�s

l¼1
½ðaþ IðlÞÞ

Pm
i¼kþ1

pi½sþl�ðsþ lÞai �

where

IðlÞ ¼
1� a; l ¼ n� s

0; l – n� s

�
ð7Þ

Since ½aðn� s� lÞ þ 1�ðsþ lÞak decreases as l increases, we have

a
Pn
j¼1

Cm½j�ðhÞ þ ð1� aÞCm½n�ðhÞP a
Ps
j¼1

Cm½j�ðhÞ þ ½aðn� s� 1Þ þ 1�Ck½s�ðhÞ

þ
Pn�s

l¼1
½aðn� s� lÞ þ 1�ðsþ lÞak pkðsþlÞ

þ
Pn�s

l¼1
½ðaþ IðlÞÞ

Pm
i¼kþ1

pi½sþl�ðsþ lÞai � ð8Þ

where pk(s+l) denotes the lth smallest basic processing time on Mk of
the job in set U, and it implies that pk(s+1) 6 pk(s+2) 6 � � � 6 pk(n)



Table 1
The index set of the learning effects.

m Learning indices

5 �0.152 �0.234 �0.322 �0.415 �0.515
7 �0.152 �0.218 �0.269 �0.322 �0.377 �0.434 �0.515

10 �0.152 �0.188 �0.225 �0.263 �0.302 �0.342 �0.383 �0.426 �0.469 �0.515
15 �0.152 �0.175 �0.199 �0.222 �0.247 �0.271 �0.296 �0.322 �0.348 �0.374 �0.401 �0.429 �0.457 �0.485 �0.515
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Fig. 1. The number of nodes for the branch-and-bound algorithm under different a
(n = 10).
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Fig. 2. The relative deviation percentage of the learning patterns for the optimal
objective value under different a (n = 10).

Table 2
The performance of the branch-and-bound algorithm.

n m Pattern a = 0.25 a = 0.50 a = 0.75

Number of nodes Cpu times Number of nodes Cpu times m Cpu times

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

12 5 Ran 1550.43 9213 1.84 8.34 1145.36 8605 1.55 8.63 901.69 6087 1.36 7.14
Inc 3992.39 34418 2.66 19.56 2548.42 14103 1.98 10.08 1893.09 10818 1.65 7.86
Dec 429.49 3109 0.40 2.09 347.98 3010 0.37 1.98 297.70 2682 0.34 1.78
SL 1561.97 10346 1.01 4.20 1170.21 10062 0.88 4.02 969.24 7022 0.79 3.30
WL 1045.37 11976 0.86 4.97 755.21 7559 0.73 4.58 612.87 6531 0.66 4.09

7 Ran 2328.46 19105 1.32 9.09 1624.33 22124 1.08 10.16 1049.45 12119 0.88 5.38
Inc 6377.07 54718 5.68 25.11 3816.40 25625 4.19 20.97 2713.35 18196 3.45 17.97
Dec 635.63 6673 0.89 6.38 486.78 5711 0.80 5.70 363.18 3977 0.71 5.39
SL 1920.45 10152 2.03 8.16 1278.22 6932 1.67 7.67 983.96 7241 1.45 7.92
WL 1277.90 10061 1.70 10.41 871.76 6145 1.38 7.09 709.46 5993 1.22 7.05

14 5 Ran 8397.72 97712 13.43 99.28 5727.28 56055 10.91 74.48 4845.95 46274 9.82 73.30
Inc 31883.81 418776 44.54 372.50 17452.31 169405 30.27 216.80 13144.88 97435 25.12 175.41
Dec 1769.26 12080 3.22 16.92 1374.09 9108 2.94 17.28 1179.42 10186 2.76 17.73
SL 10382.89 115578 12.64 55.16 6689.93 49969 10.17 44.33 5140.81 28730 8.80 43.48
WL 3992.79 38389 10.23 84.28 2948.51 28213 8.34 67.02 2563.70 25591 7.50 62.02

7 Ran 16271.02 142636 32.37 290.52 9917.81 122468 24.74 274.36 7584.29 99124 21.15 244.52
Inc 74506.94 1980840 102.24 981.52 32558.74 322750 67.46 399.08 20916.03 124587 52.36 355.20
Dec 3317.76 87609 7.91 148.41 2486.66 74205 6.95 139.94 1767.69 47392 5.95 108.64
SL 12229.56 86179 23.97 123.91 8137.72 42532 19.40 99.19 6565.91 35383 17.09 89.53
WL 8076.68 158484 22.38 389.20 5646.80 105127 17.57 280.86 4478.99 76297 15.16 224.95

16 5 Ran 105044.01 2408452 349.62 4578.30 55620.78 600087 246.60 2274.17 39622.63 426218 201.16 1909.00
Inc 201758.16 2061604 514.57 3209.59 120521.06 1270538 350.70 2457.27 93087.06 1411099 288.07 2618.19
Dec 7520.64 107243 24.58 200.00 5155.33 41868 21.69 156.70 4148.91 37436 19.70 140.19
SL 66831.54 626475 233.56 1304.53 43107.35 360252 186.24 931.81 35647.61 289344 166.05 888.14
WL 31332.85 957031 103.05 1421.47 20896.89 575854 78.99 992.58 16706.67 402084 68.83 781.89

7 Ran 116674.80 2455027 238.17 3462.94 69780.49 1029782 167.75 2050.94 48757.11 674012 201.16 1909.00
Inc 740132.88 5188924 2252.10 16791.42 383647.16 4065895 1369.95 13054.45 263149.47 3726265 1034.44 11907.66
Dec 18756.10 145112 83.65 545.95 13486.31 101862 73.19 504.02 11616.93 89494 67.83 524.33
SL 105188.86 1447154 185.16 1820.66 62497.38 842215 130.71 864.78 44370.55 531122 108.13 666.53
WL 55492.39 1245433 287.12 6346.81 36222.31 1007826 218.60 5101.81 29516.95 783194 188.49 4129.69
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In order to underestimate the final term on the right side of Eq.
(8), a Hungarian method is applied and the matrix of which is
formed as follows.

a
Pm

i¼kþ1
piJsþ1
ðsþ1Þai a

Pm
i¼kþ1

piJsþ1
ðsþ2Þai � � � a

Pm
i¼kþ1

piJsþ1
ðn�1Þai

Pm
i¼kþ1

piJsþ1
ðnÞai

a
Pm

i¼kþ1
piJsþ2
ðsþ1Þai a

Pm
i¼kþ1

piJsþ2
ðsþ2Þai � � � a

Pm
i¼kþ1

piJsþ2
ðn�1Þai

Pm
i¼kþ1

piJsþ2
ðnÞai

..

. ..
. . .

. ..
. ..

.

a
Pm

i¼kþ1
piJn
ðsþ1Þai a

Pm
i¼kþ1

piJn
ðsþ2Þai � � � a

Pm
i¼kþ1

piJn
ðn�1Þai

Pm
i¼kþ1

piJn
ðnÞai

2
666666666664

3
777777777775

where piJsþl
is the basic processing time on Mi of Js+l in set U for

1 6 l 6 n � s. In the matrix, the information of a given job only
can be assigned to a position from position s + 1 to n. And then
the information of all jobs are sum up as Hk which denotes the opti-
mal value of the proposed Hungarian method. Hence, the underes-
timated value of the objective function based on Mk for h is
presented as

a
Ps
j¼1

Cm½j�ðhÞ þ ½aðn� s� 1Þ þ 1�Ck½s�ðhÞ þ
Pn�s

l¼1
½aðn� s� lÞ þ 1�ðs

þ lÞak pkðsþlÞ þ Hk ð9Þ

In order to make the lower bound stricter, the lower bound is
evaluated as

LB ¼ a
Ps
j¼1

Cm½j�ðhÞ þ max
16k6m

f½aðn� s� 1Þ þ 1�Ck½s�ðhÞ þ
Pn�s

l¼1
½aðn

� s� lÞ þ 1�ðsþ lÞak pkðsþlÞ þ Hkg ð10Þ
Table 3
The comparison among five learning patterns for the optimal objective value.

n m Patten RDPO

a = 0.25 a = 0.50 n

Mean Max Mean Max Mean Max

12 5 Ran 1.089 1.297 1.078 1.275 1.073 1.267
Inc 1.049 1.292 1.046 1.275 1.044 1.267
Dec 1.125 1.356 1.109 1.324 1.103 1.310
SL 1.007 1.046 1.006 1.041 1.005 1.039
WL 1.161 1.346 1.144 1.316 1.137 1.303

7 Ran 1.070 1.195 1.063 1.167 1.060 1.163
Inc 1.025 1.119 1.024 1.105 1.024 1.103
Dec 1.125 1.237 1.109 1.217 1.103 1.212
SL 1.007 1.064 1.006 1.057 1.005 1.057
WL 1.136 1.301 1.121 1.273 1.115 1.264

14 5 Ran 1.099 1.392 1.090 1.346 1.086 1.327
Inc 1.054 1.200 1.050 1.197 1.048 1.194
Dec 1.132 1.392 1.117 1.346 1.111 1.327
SL 1.006 1.067 1.005 1.046 1.005 1.037
WL 1.171 1.398 1.155 1.351 1.148 1.332

7 Ran 1.083 1.327 1.075 1.296 1.071 1.288
Inc 1.022 1.157 1.022 1.136 1.021 1.126
Dec 1.141 1.330 1.125 1.299 1.119 1.288
SL 1.006 1.056 1.005 1.039 1.004 1.038
WL 1.157 1.328 1.141 1.295 1.135 1.282

16 5 Ran 1.095 1.271 1.086 1.247 1.083 1.239
Inc 1.068 1.301 1.063 1.286 1.061 1.279
Dec 1.136 1.413 1.122 1.376 1.117 1.365
SL 1.006 1.060 1.005 1.054 1.005 1.052
WL 1.180 1.416 1.166 1.379 1.160 1.369

7 Ran 1.084 1.276 1.075 1.250 1.072 1.242
Inc 1.031 1.183 1.029 1.167 1.028 1.158
Dec 1.128 1.411 1.116 1.371 1.111 1.357
SL 1.008 1.068 1.007 1.061 1.007 1.061
WL 1.158 1.405 1.143 1.364 1.137 1.349
4.3. Summary of the branch-and-bound algorithm

In this paper, the depth-first search plus forward manner is
implemented in the branching procedure, i.e. the nodes are spread
from (1, �, � � �, �) to (1, 2, �, � � �, �), and finally to (n, n � 1, � � �, 1).
The advantages of the depth-first search are storing less numbers
of dynamic nodes and seeking the bottom node rapidly to derive
a feasible solution. The summary is listed as follows.

Step 1: {Initialization} Implement the heuristic algorithms to
obtain an initial incumbent solution.
Step 2: {Branching} Utilize Corollary 4.1 to eliminate nodes.
Step 3: {Bounding} If the lower bound exceeds the incumbent
solution, eliminate the node and its offspring.

5. Computational results

Several computational experiments are implemented in this
section to assess the performance of the branch-and-bound and
the heuristic algorithms. All the algorithms are coded in Fortran
90 and run on a personal computer with 2.89 GHz AMD Athlon™
II X4 635 Processor and 3.25 GB RAM with Windows XP. Since
the machine-based learning effect is considered, the issue for allo-
cating the learning effects to the machines is discussed in this
paper. In general, the stronger learning effect is assigned to the ma-
chine with heavier workload, like the concept of bottlenecks. In or-
der to verify this viewpoint, five learning patterns under the same
learning indices set are proposed to discuss the influence on the
proposed algorithms. The five learning patterns are denoted as
Ran, Inc, Dec, SL and WL and expressed as follows.

Ran: The learning effects are randomly assigned to the
machines.
Inc: The stronger learning effects are assigned to the rear
machines.
Dec: The weaker learning effects are assigned to the rear
machines
SL: The stronger learning effects are assigned to the machines
with the larger value of

Pn
j¼1pij for i = 1, 2, . . ., m.

WL: The weaker learning effects are assigned to the machines
with the larger value of

Pn
j¼1pij for i = 1, 2, . . ., m.

For all computational experiments in this paper, the basic pro-
cessing times are randomly generated from a discrete uniform dis-
tribution over the integer 1–100 (i.e., pij � U(1, 100) for
j = 1, 2, . . ., n and i = 1, 2, . . ., m). The sets for the learning indices
under different number of machines (i.e., ai for i = 1, 2, . . ., m) are
shown in Table 1. And then the simulated results output the
number of nodes, the execution time and the objective value to
evaluate the performance of proposed algorithm under different
experimental parameters.

The computational experiments consist of three parts. In the
first part, the influence of different a on the branch-and-bound
algorithm is evaluated. The number of jobs and machines is respec-
tively set as 10 and 5 and then 100 replications are randomly gen-
erated. Consequently, a total of 100 examples are generated to be
tested. In addition, 51 different a are given with values from 0 to
1 with an increment as 0.02, i.e., a = 0, 0.02, 0.04, . . ., 1. The five
learning patterns and 51 different a are considered in each exam-
ple and the results are illustrated in Figs. 1 and 2.

In Fig. 1, the mean numbers of nodes for all experimental
conditions are illustrated. It is observed that the problem proposed
in this paper is easier to solve as a increases with respect to the
trend of the mean number of nodes. The reason is that the corollary
and the lower bound are more efficient in the branch-and-bound



Table 4
The performance of the heuristic algorithms (a = 0.25).

n m Patten Error percentages

NEH NEH_W min{NEH,NEH_W} FL FL_W min{FL,FLW}

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

12 5 Ran 0.051 0.132 0.059 0.134 0.045 0.110 0.011 0.067 0.012 0.067 0.008 0.067
Inc 0.033 0.097 0.037 0.105 0.029 0.097 0.010 0.056 0.012 0.054 0.007 0.045
Dec 0.062 0.144 0.065 0.201 0.052 0.144 0.010 0.043 0.009 0.060 0.006 0.030
SL 0.055 0.138 0.057 0.138 0.046 0.126 0.015 0.060 0.017 0.049 0.011 0.049
WL 0.045 0.134 0.054 0.155 0.039 0.134 0.008 0.066 0.009 0.068 0.006 0.066

7 Ran 0.046 0.141 0.052 0.150 0.040 0.097 0.015 0.054 0.014 0.058 0.010 0.054
Inc 0.042 0.102 0.043 0.113 0.035 0.085 0.015 0.064 0.015 0.060 0.011 0.058
Dec 0.057 0.152 0.056 0.131 0.045 0.102 0.010 0.059 0.011 0.072 0.006 0.037
SL 0.051 0.140 0.051 0.115 0.041 0.110 0.014 0.049 0.016 0.066 0.011 0.039
WL 0.048 0.122 0.049 0.112 0.041 0.112 0.011 0.043 0.011 0.041 0.007 0.037

14 5 Ran 0.050 0.110 0.058 0.136 0.045 0.095 0.012 0.044 0.011 0.065 0.008 0.040
Inc 0.034 0.093 0.039 0.108 0.030 0.093 0.010 0.044 0.011 0.052 0.007 0.035
Dec 0.069 0.147 0.075 0.146 0.060 0.121 0.011 0.046 0.011 0.056 0.007 0.043
SL 0.058 0.152 0.063 0.152 0.049 0.120 0.016 0.057 0.019 0.065 0.011 0.037
WL 0.050 0.139 0.058 0.136 0.045 0.114 0.008 0.041 0.008 0.049 0.005 0.033

7 Ran 0.051 0.101 0.054 0.178 0.042 0.101 0.014 0.049 0.014 0.084 0.010 0.037
Inc 0.041 0.101 0.047 0.097 0.035 0.082 0.016 0.056 0.018 0.070 0.012 0.046
Dec 0.063 0.154 0.065 0.169 0.053 0.132 0.012 0.044 0.012 0.062 0.008 0.037
SL 0.057 0.140 0.057 0.131 0.049 0.131 0.017 0.063 0.020 0.071 0.013 0.046
WL 0.047 0.097 0.054 0.116 0.043 0.093 0.010 0.046 0.012 0.094 0.007 0.045

16 5 Ran 0.061 0.182 0.069 0.164 0.054 0.122 0.013 0.069 0.014 0.069 0.010 0.069
Inc 0.041 0.147 0.043 0.155 0.035 0.079 0.011 0.049 0.011 0.061 0.008 0.044
Dec 0.079 0.177 0.084 0.169 0.069 0.167 0.011 0.039 0.011 0.045 0.008 0.035
SL 0.069 0.163 0.074 0.162 0.059 0.129 0.019 0.087 0.021 0.066 0.014 0.049
WL 0.055 0.177 0.062 0.161 0.049 0.104 0.007 0.029 0.009 0.042 0.005 0.024

7 Ran 0.058 0.147 0.061 0.133 0.049 0.127 0.014 0.060 0.016 0.061 0.011 0.060
Inc 0.040 0.109 0.049 0.103 0.037 0.089 0.017 0.069 0.016 0.062 0.012 0.062
Dec 0.069 0.159 0.068 0.139 0.057 0.134 0.014 0.052 0.014 0.041 0.010 0.041
SL 0.066 0.181 0.064 0.168 0.054 0.132 0.020 0.068 0.024 0.069 0.015 0.048
WL 0.055 0.127 0.062 0.150 0.049 0.108 0.012 0.046 0.012 0.061 0.009 0.046
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algorithm with larger a. Furthermore, Dec is the easiest among five
learning patterns for seeking the optimal solution, and Inc is the
worst. In addition, the optimal objective values for five learning
patterns are discussed. Then the relative deviation percentage for
five learning patterns is denoted as RDPO and its mean is illustrated
in Fig. 2. For each example, the RDPO is calculated as

k� kmin

kmin
� 100%

where k denotes the optimal objective value under one of five given
learning patterns, and kmin is the minimum among all k. It is ob-
served that the optimal objective value under SL is the lowest
among five learning patterns, followed by Inc, Ran and Dec, and fi-
nally WL. However, there is no determined priority among five
learning patterns since all mean RDPO are larger than zero.

In the second part of the computational experiments, the num-
bers of jobs are set as 12, 14 and 16, and numbers of machines are
set as 5 and 7. Furthermore, three a are given as 0.25, 0.50 and 0.75
and then 100 replications are randomly generated. Hence, a total of
1800 examples are generated to be tested in which the five learn-
ing patterns are considered. Then the results are listed in Tables 2–
6.

The mean and maximum number of nodes, and the mean and
maximum CPU times (in seconds) of the branch-and-bound algo-
rithm are reported in Table 2. It reveals that the number of nodes
and the execution times increase significantly as the number of
jobs or machines increases since the problem proposed in this pa-
per is NP-hard. The optimal solution is easier to be derived for the
proposed problem with a larger a in terms of the number of nodes
and CPU times. Furthermore, the problem under Dec is the easiest
among the five learning patterns to be solved, and Inc is the worst.
Moreover, the branch-and-bound algorithm can deal with the
problems with up to 16 jobs within a reasonable amount of time.

In order to discuss the priority over five learning patterns for
obtaining lower optimal objective value, the mean and maximum
RDPO are recorded for all computational conditions in Table 3.

As shown in Table 3, it reveals that the optimal objective value
under SL is the lowest among five learning patterns, follows by Inc,
Ran and Dec, and finally WL. It implies that assigning the stronger
learning effect to the machine with the heavier workload might
obtain a lower optimal objective value.

For the proposed heuristic algorithms, the mean and maximum
error percentages under different a are reported in Tables 4–6. The
CPU times are not presented since all heuristic algorithms for each
example are executed within a second. The error percentage of the
given heuristic algorithm is calculated as

V � V�

V�
� 100%

where V and V⁄ respectively denotes the objective value yielded by
the heuristic algorithm, and the optimal objective value derived by
the branch-and-bound algorithm. In addition, min {NEH, NEH_W}
denotes the better one of NEH and NEH_W for the given example,
and min {FL, FL_W} as well denotes the better one of FL and FL_W.

As shown in Tables 4–6, it is observed that all heuristic algo-
rithms proposed in this paper are quite accurate since the error
percentages are all less than 1%. For evaluating the influence on
the performance of the heuristic algorithms, several two-way anal-



Table 5
The performance of the heuristic algorithms (a = 0.50).

n m Patten Error percentages

NEH NEH_W Min{NEH,NEH_W} FL FL_W Min{FL,FLW}

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

12 5 Ran 0.056 0.153 0.063 0.146 0.049 0.128 0.010 0.065 0.012 0.064 0.008 0.064
Inc 0.035 0.090 0.041 0.118 0.031 0.090 0.011 0.047 0.011 0.049 0.008 0.043
Dec 0.066 0.173 0.069 0.167 0.056 0.167 0.009 0.051 0.009 0.049 0.006 0.041
SL 0.049 0.142 0.054 0.138 0.042 0.138 0.013 0.049 0.014 0.048 0.010 0.048
WL 0.049 0.145 0.055 0.154 0.043 0.128 0.006 0.033 0.008 0.068 0.004 0.025

7 Ran 0.050 0.137 0.051 0.153 0.041 0.106 0.015 0.060 0.013 0.063 0.010 0.046
Inc 0.042 0.106 0.042 0.111 0.035 0.085 0.014 0.053 0.013 0.051 0.010 0.049
Dec 0.063 0.181 0.057 0.136 0.048 0.118 0.010 0.050 0.010 0.050 0.007 0.050
SL 0.052 0.137 0.051 0.130 0.042 0.125 0.013 0.051 0.015 0.049 0.010 0.037
WL 0.050 0.137 0.052 0.134 0.042 0.120 0.012 0.069 0.012 0.074 0.009 0.060

14 5 Ran 0.056 0.124 0.062 0.161 0.048 0.104 0.013 0.056 0.012 0.056 0.008 0.047
Inc 0.038 0.093 0.043 0.137 0.033 0.086 0.012 0.045 0.011 0.045 0.009 0.045
Dec 0.079 0.169 0.085 0.186 0.068 0.156 0.011 0.044 0.011 0.064 0.007 0.028
SL 0.058 0.129 0.066 0.151 0.051 0.122 0.016 0.064 0.019 0.082 0.012 0.055
WL 0.056 0.139 0.063 0.161 0.048 0.105 0.008 0.044 0.008 0.065 0.005 0.037

7 Ran 0.051 0.117 0.055 0.115 0.044 0.115 0.012 0.043 0.014 0.054 0.010 0.037
Inc 0.041 0.116 0.046 0.107 0.036 0.090 0.016 0.063 0.016 0.063 0.012 0.063
Dec 0.068 0.173 0.067 0.173 0.056 0.161 0.010 0.054 0.012 0.051 0.008 0.043
SL 0.058 0.138 0.056 0.144 0.047 0.138 0.016 0.049 0.018 0.069 0.013 0.049
WL 0.051 0.111 0.055 0.116 0.045 0.095 0.011 0.073 0.011 0.067 0.008 0.067

16 5 Ran 0.067 0.203 0.072 0.185 0.058 0.135 0.013 0.063 0.014 0.073 0.010 0.060
Inc 0.047 0.139 0.047 0.161 0.039 0.093 0.012 0.072 0.013 0.051 0.009 0.051
Dec 0.088 0.196 0.090 0.167 0.076 0.167 0.013 0.059 0.011 0.068 0.008 0.047
SL 0.071 0.164 0.075 0.172 0.060 0.131 0.019 0.074 0.021 0.147 0.014 0.047
WL 0.061 0.196 0.068 0.161 0.054 0.117 0.008 0.038 0.008 0.041 0.005 0.025

7 Ran 0.061 0.150 0.065 0.148 0.053 0.144 0.014 0.061 0.014 0.048 0.010 0.046
Inc 0.044 0.095 0.048 0.098 0.038 0.088 0.016 0.057 0.014 0.062 0.011 0.057
Dec 0.074 0.157 0.072 0.179 0.062 0.157 0.013 0.048 0.013 0.053 0.008 0.038
SL 0.066 0.146 0.065 0.177 0.055 0.146 0.019 0.059 0.019 0.073 0.013 0.040
WL 0.061 0.143 0.069 0.151 0.056 0.133 0.012 0.058 0.013 0.052 0.008 0.039
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ysis of variance (ANOVA) are performed to test three hypotheses at
the 0.05 level of significance. The first two null hypotheses are
assumed as that the mean error percentages of the given heuristic
algorithm are all identical among the three a settings, and five
learning patterns, respectively. The last null hypothesis is assumed
as that there is no interaction between a and learning patterns.
And then the results are reported in Table 7.

As shown in Table 7, it is observed that a does not have a signif-
icant effect on the accuracy for all heuristic algorithms except NEH.
Then it is shown in Tables 4–6 that the mean error percentage of
NEH descends as a decreases, and the reason is that the NEH is ini-
tially devoted to solving the makespan problem. Furthermore, it
reveals that the learning pattern has a significant effect on the
accuracy for all proposed heuristic algorithms. A close observation
of Tables 4–6 shows that Inc is the most accurate under NEH,
NEH_W and min{NEH,NEH_W}, and Dec is the least accurate. Mean-
while, SL is the most accurate under FL, FL_W and min{FL,FL_W},
and WL is the least. In addition, there is no interaction between a
and the learning pattern for all heuristic algorithms. Moreover, it
is shown that min{NEH,NEH_W} is more accurate than NEH and
NEH_W, and min{FL,FL_W} is more accurate than FL and FL_W. It
implies that there is no priority between two methods for selecting
jobs which are utilized in the proposed heuristic algorithms. Even-
tually, min{FL,FL_W} is the most accurate among all heuristic algo-
rithms, followed by FL and FL_W, min{NEH,NEH_W}, and finally
NEH and NEH_W.

In the last part of the computational experiments, the examples
with large size of jobs are generated to perform the heuristic algo-
rithms proposed in this paper. Let a be set as 0.50 since most of the
proposed heuristic algorithms are not affected by a for the statisti-
cal analysis in Table 7. Additionally, the numbers of jobs are set as
50 and 100, and numbers of machines are set as 10 and 15. Then
100 replications are randomly generated. A total of 400 examples
are generated to be tested in which five learning patterns are
considered in each example. Consequently, the relative deviation
percentage for all heuristic algorithms is denoted as RDPH, and its
mean and maximum values are listed in Table 8. For each example,
the RDPH is calculated as

l� lmin

lmin
� 100%

where l denotes the near-optimal objective value for given one of
all heuristic algorithms, and lmin is the minimum among all l.

As shown in Table 8 that FL and FL_W are both better than min{-
NEH,NEH_W} in terms of the RDPH. It implies that the heuristic
algorithm proposed by Framinan and Leisten (2003) is more proper
than the algorithm proposed by Nawaz et al. (1983) to obtain the
near-optimal solution for the problem proposed in this paper. Fi-
nally, it is observed that min{FL,FL_W} is the most accurate of all
proposed heuristic algorithms because of that the RDPH are all zero.
Therefore, min{FL,FL_W} is recommended to yield the near-optimal
schedule for the problem proposed in this paper.
6. Conclusions

In this paper, an m-machine permutation flowshop scheduling
problem with machine-based learning effects is studied to mini-
mize the weighted sum of the total completion time and the make-
span. The branch-and-bound algorithm incorporated with a



Table 6
The performance of the heuristic algorithms (a = 0.75).

n m Patten Error percentages

NEH NEH_W Min{NEH,NEH_W} FL FL_W Min{FL,FLW}

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

12 5 Ran 0.058 0.159 0.064 0.157 0.050 0.132 0.012 0.064 0.011 0.044 0.008 0.044
Inc 0.036 0.086 0.039 0.092 0.031 0.081 0.011 0.044 0.011 0.053 0.008 0.035
Dec 0.069 0.149 0.070 0.170 0.057 0.122 0.009 0.052 0.009 0.044 0.006 0.030
SL 0.056 0.179 0.057 0.144 0.047 0.144 0.013 0.046 0.016 0.055 0.010 0.041
WL 0.052 0.146 0.058 0.187 0.045 0.114 0.006 0.050 0.007 0.059 0.005 0.038

7 Ran 0.050 0.137 0.052 0.133 0.042 0.109 0.013 0.051 0.013 0.046 0.009 0.043
Inc 0.042 0.104 0.041 0.091 0.034 0.081 0.013 0.064 0.012 0.051 0.010 0.051
Dec 0.067 0.191 0.057 0.137 0.050 0.129 0.009 0.040 0.009 0.041 0.006 0.037
SL 0.054 0.143 0.052 0.132 0.042 0.130 0.014 0.060 0.015 0.045 0.010 0.043
WL 0.053 0.132 0.051 0.145 0.043 0.130 0.011 0.057 0.011 0.047 0.008 0.044

14 5 Ran 0.057 0.131 0.064 0.131 0.050 0.109 0.013 0.054 0.012 0.050 0.008 0.045
Inc 0.039 0.103 0.043 0.105 0.034 0.083 0.012 0.040 0.013 0.059 0.009 0.040
Dec 0.081 0.180 0.082 0.199 0.068 0.159 0.011 0.048 0.011 0.053 0.007 0.044
SL 0.060 0.137 0.066 0.154 0.050 0.127 0.017 0.084 0.018 0.057 0.012 0.043
WL 0.058 0.146 0.063 0.140 0.049 0.112 0.009 0.061 0.009 0.061 0.006 0.061

7 Ran 0.051 0.126 0.056 0.152 0.044 0.126 0.013 0.047 0.013 0.050 0.010 0.042
Inc 0.043 0.120 0.045 0.103 0.036 0.103 0.017 0.060 0.016 0.058 0.013 0.056
Dec 0.068 0.180 0.068 0.178 0.056 0.167 0.010 0.045 0.011 0.067 0.007 0.045
SL 0.058 0.126 0.057 0.151 0.047 0.125 0.016 0.053 0.019 0.065 0.012 0.053
WL 0.053 0.118 0.055 0.119 0.045 0.100 0.011 0.073 0.011 0.047 0.007 0.047

16 5 Ran 0.069 0.222 0.071 0.173 0.059 0.153 0.016 0.091 0.014 0.056 0.010 0.042
Inc 0.048 0.151 0.048 0.164 0.040 0.094 0.012 0.064 0.013 0.039 0.008 0.035
Dec 0.089 0.207 0.090 0.179 0.075 0.149 0.011 0.043 0.011 0.068 0.008 0.032
SL 0.072 0.169 0.074 0.172 0.060 0.144 0.020 0.076 0.022 0.160 0.014 0.076
WL 0.064 0.207 0.071 0.167 0.056 0.126 0.010 0.076 0.010 0.042 0.006 0.037

7 Ran 0.063 0.157 0.065 0.155 0.054 0.151 0.014 0.046 0.015 0.055 0.010 0.044
Inc 0.045 0.097 0.046 0.110 0.038 0.094 0.015 0.054 0.016 0.067 0.011 0.043
Dec 0.076 0.161 0.075 0.189 0.064 0.161 0.013 0.042 0.013 0.053 0.009 0.035
SL 0.067 0.159 0.065 0.182 0.056 0.159 0.018 0.074 0.020 0.074 0.014 0.074
WL 0.063 0.150 0.070 0.161 0.057 0.139 0.014 0.055 0.014 0.054 0.010 0.035

Table 7
Two-way ANOVA of the error percentages for all heuristic algorithms.

Heuristic algorithm Source DF SS MS F p-Value

NEH a 2 0.0004311 0.0002155 5.08 0.009
Learning patterns 4 0.0089166 0.0022292 52.50 0.000
Interaction 8 0.0001122 0.0000140 0.33 0.952
Error 75 0.0031847 0.0000425
Total 89 0.0126446

NEH_W a 2 0.0001460 0.0000730 1.21 0.304
Learning patterns 4 0.0735550 0.0018389 30.46 0.000
Interaction 8 0.0000621 0.0000078 0.13 0.998
Error 75 0.0045283 0.0000604
Total 89 0.0120920

Min{NEH,NEH_W} a 2 0.0001948 0.0000974 2.43 0.095
Learning patterns 4 0.0056230 0.0014058 35.04 0.000
Interaction 8 0.0000657 0.0000082 0.20 0.989
Error 75 0.0030085 0.0000401
Total 89 0.0088921

FL a 2 0.0000008 0.0000004 0.08 0.919
Learning patterns 4 0.0004772 0.0001193 25.31 0.000
Interaction 8 0.0000074 0.0000009 0.20 0.991
Error 75 0.0003535 0.0000047
Total 89 0.0008389

FL_W a 2 0.0000075 0.0000039 0.90 0.412
Learning patterns 4 0.0007590 0.0001898 43.70 0.000
Interaction 8 0.0000071 0.0000009 0.20 0.989
Error 75 0.0003257 0.0000043
Total 89 0.0010996

Min{FL,FL_W} a 2 0.0000002 0.0000001 0.03 0.970
Learning patterns 4 0.0003397 0.0000849 33.00 0.000
Interaction 8 0.0000030 0.0000004 0.14 0.997
Error 75 0.0001930 0.0000026
Total 89 0.0005358
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Table 8
The comparison of the heuristic algorithms for large job-sized problem (a = 0.50).

n m Pattern RDPH

NEH NEH_W Min{NEH,NEH_W} FL FL_W Min{FL,FLW}

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

50 10 Ran 0.072 0.143 0.073 0.133 0.064 0.106 0.004 0.053 0.004 0.030 0.000 0.008
Inc 0.043 0.078 0.047 0.083 0.039 0.074 0.003 0.035 0.003 0.035 0.000 0.000
Dec 0.095 0.137 0.075 0.129 0.073 0.128 0.004 0.037 0.003 0.026 0.000 0.000
SL 0.073 0.135 0.071 0.117 0.064 0.117 0.004 0.027 0.007 0.047 0.000 0.000
WL 0.070 0.146 0.067 0.119 0.061 0.119 0.004 0.027 0.003 0.024 0.000 0.000

15 Ran 0.062 0.127 0.060 0.114 0.053 0.108 0.006 0.038 0.003 0.028 0.000 0.000
Inc 0.037 0.077 0.040 0.072 0.033 0.068 0.005 0.029 0.004 0.035 0.000 0.004
Dec 0.078 0.135 0.061 0.123 0.059 0.123 0.004 0.021 0.003 0.022 0.000 0.000
SL 0.065 0.107 0.059 0.107 0.054 0.106 0.005 0.029 0.004 0.024 0.000 0.000
WL 0.063 0.143 0.060 0.108 0.054 0.108 0.004 0.030 0.002 0.026 0.000 0.000

100 10 Ran 0.080 0.133 0.081 0.136 0.072 0.116 0.004 0.028 0.004 0.034 0.000 0.000
Inc 0.055 0.090 0.057 0.091 0.052 0.079 0.003 0.023 0.002 0.024 0.000 0.000
Dec 0.102 0.155 0.079 0.129 0.078 0.129 0.004 0.019 0.002 0.013 0.000 0.000
SL 0.089 0.133 0.087 0.132 0.082 0.132 0.003 0.018 0.004 0.029 0.000 0.000
WL 0.075 0.137 0.077 0.130 0.069 0.117 0.004 0.020 0.002 0.024 0.000 0.000

15 Ran 0.073 0.132 0.068 0.109 0.065 0.103 0.005 0.047 0.002 0.021 0.000 0.000
Inc 0.048 0.079 0.052 0.083 0.045 0.071 0.004 0.029 0.002 0.018 0.000 0.000
Dec 0.093 0.135 0.067 0.113 0.067 0.113 0.004 0.021 0.002 0.015 0.000 0.000
SL 0.073 0.117 0.068 0.105 0.063 0.102 0.004 0.022 0.003 0.022 0.000 0.000
WL 0.071 0.120 0.068 0.121 0.064 0.105 0.005 0.029 0.002 0.025 0.000 0.000

Y.-H. Chung, L.-I. Tong / Computers & Industrial Engineering 63 (2012) 302–312 311
dominance criterion and a lower bound is proposed to seek the
optimal solution, and several heuristic algorithms are established
to yield the near-optimal solutions. As shown in the computational
results, the proposed problem can be dealt with up to 16 jobs with-
in a reasonable amount of time. When the learning pattern is set as
Inc, or if a is smaller, the proposed problem is harder to search for
the optimal solution by implementing the proposed branch-and-
bound algorithm. Furthermore, the performances of all proposed
heuristic algorithms are accurate while min{FL, FL_W} is recom-
mended to obtain the near-optimal solution. Finally, the issue for
allocating the learning effects to the machines is discussed in this
paper, and it is verified that assigning the stronger learning effects
to the machines with the heavier workload might obtain the better
result for the problem proposed in this paper.
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