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Abstract—This study investigates the effect of temperature
on CdSe/ZnS quantum dots (QDs) in GaN-based light-emitting
diodes (LEDs) using the phosphor conversion efficiency (PCE)
and LED junction temperature. In our simulation, the blue chip
and CdSe/ZnS QDs temperature are similar because of their min-
imal thickness. Furthermore, to verify the effect of temperature
on CdSe/ZnS QDs, we use continuous wave and pulsed current
sources to measure the relationship between the temperature
and relative PCE. Higher junction temperatures are observed
with greater CdSe/ZnS QD volume in LEDs. This is attributed
to the thermal conduction and nonradiative energy between
CdSe/ZnS QDs and blue chip. Therefore, if thermal management
is improved, CdSe/ZnS QDs are expected to be used as color
converting material in LEDs.

Index Terms—Light-emitting diodes (LEDs), GaN, quantum
dots (QDs), phosphor.

I. INTRODUCTION

ECENTLY, the development of light-emitting diodes
R (LEDs) has been widely studied for practical applications
in the field of solid-state lighting. The advantages of LEDs are a
longer lifetime, higher energy efficiency, and greater reliability
[1], [2]. Several methods are used to produce white light. One
of the methods is to combine red, green, and blue LEDs to
create white light. Therefore, great efforts have been made to
improve the internal quantum efficiency (IQE) of LEDs, espe-
cially the large electron—hole wave function overlap quantum
wells. The enhancement of spontaneous emission leads to the
higher efficiency in green, yellow, and red spectral regime
[3]-[7]. Indeed, the surface plasmon approach is also indicated
to enhance the emission efficiency for multiple quantum wells
(MQWs) [8], [9]. For the phosphor-free white LEDs, the lat-
erally stacked structure of blue and green InGaN/GaN MQWs
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and monolithic polychromatic (LEDs) are demonstrated to
grow white LEDs by multiple emission spectral and become
the multicolor light-emitting sources [10], [11]. In addition, the
ZnO current spreading is employed to compare the ITO due to
lower sheet resistance and lower optical absorption [12].

Other methods use UV-LEDs to excite red, green, and blue
phosphors. However, these two methods are not appropriate
for high-power white LEDs because of their high cost and
low conversion efficiency [13]. Thus, the primary strategy
is to combine blue LEDs with yellow luminescence from
Y3Al5012:Ce®t (YAG:Ce®t) phosphor materials because of
their high luminous flux and low cost. Although this strategy
is widely used, the primary disadvantage of this type of LEDs
is the poor color rendering index (CRI), which is caused by
a lack of red components in the spectra. Numerous studies to
solve the low CRI of commercially available phosphor, such
as through adding red phosphor, are currently in progress.
Therefore, red phosphor is recognized as an important issue in
current research such as nitride-based, vanadates, and borate
red-emitting phosphor [14]-[16]. Consequently, to achieve a
high CRI, the phosphor-converted LEDs must have a broad-
band-covered visible spectrum [17].

Colloidal CdSe/ZnS quantum dots (QDs) that exhibit
quantum confinement effects were created during investiga-
tions into possible applications of QDs in solid-state lighting
[18], [19]. The high photoluminescence (PL) efficiency wide
absorption spectrum and size-tunable bandgap of QDs have
become a significant concern [20], [21]. CdSe/ZnS QDs appear
feasible for use as color conversion nanophosphors to improve
the CRI for solid-state lighting. Although the conversion effi-
ciency of phosphor is higher than QDs, the main problems for
the rare-earth-based phosphors suffer the chemically unstable
and higher cost when using in the white LEDs [22]. Several
studies focus on the improvement of the QDs quantum yield
with multishell structure and demonstrated the better photo-
luminescent efficiency [23]. More importantly, the various
diameters of CdSe/ZnS QDs offer the suitable solution for the
use in the display devices. Consequently, colloidal QDs have
recently been used as color converting material in LEDs. The
excellent CRI of white LEDs can be obtained using CdSe QDs
and Sr3SiO5:Ce®t,Lit [24]. Nizamoglu et al. developed a
warm white light that incorporates green and red CdSe/ZnS
core-shell nanocrystals on blue chips [25]. The conversion
efficiency of green nanorod LEDs can be enhanced by red
CdSe QDs [26].

However, thermal issues also have a strong effect on the per-
formance of LEDs. As heat accumulates, the junction temper-
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Fig. 2. Schematic diagram of a CdSe/ZnS QDs LED device.

ature increases. Although numerous studies have incorporated
QDs with LEDs to improve the CRI value, few studies [27] have
investigated the effect of temperature on CdSe/ZnS QDs.

Therefore, this study examines the effect on CdSe/ZnS QDs
in LEDs and characterizes the activated energy. We simulate
the temperature of blue chips and CdSe/ZnS QDs of varying
thicknesses using finite element method (FEM) simulations.
The temperature increases with a higher volume of CdSe/ZnS
QDs. Furthermore, we discuss the influence of thermal effects
on CdSe/ZnS QDs using the phosphor conversion efficiency
(PCE) and junction temperature.

II. EXPERIMENT

The CdSe/ZnS QDs were synthesized using the hot-in-
jection method [28], [29]. Cadmium acetate was dissolved
into trioctylphoshine oxide and hexadecylamine solvent at
300 °C. The Se precursor was dissolved in trioctylphosphine.
Under an Ar atmosphere, the temperature was increased to
the injection temperature, and the TOP solution was injected
rapidly. After cooling, CdSe QDs were obtained. To achieve
greater efficiency, a zinc precursor solution and sodium sulfide
were mixed into the previous solution. The concentration of
CdSe/ZnS QDs with toluene was 5 mg/mL.

Fig. 1 shows the PL and the absorption spectra of CdSe/ZnS
QDs. The emission peak wavelength of CdSe/ZnS QDs occurs
at 605 nm, with a full-width at half-maximum (FWHM) of
29 nm. The absorption spectrum shows that nearly all vis-
ible wavelengths, including blue LEDs, can be absorbed by
CdSe/ZnS QDs. A schematic diagram of CdSe/ZnS LEDs is
shown in Fig. 2. The chip size of the LED was 600 x 600 zm?,
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Fig. 3. Temperature dependence of the CdSe/ZnS QD emission spectra. The
inset shows the fitted activation energy for thermal quenching.

and the peak emission wavelength was 450 nm, with an FWHM
of 20 nm. The blue chips were bonded in a lead frame with
silver glue; the radiant fluxes were 100 mW at 120 mA. The
CdSe/ZnS QDs were spin-coated onto the surface of blue LEDs
[26]. The deviation of QDs thickness is approximately 10-15%
with current coating method. The uniformity could be much
improved with new techniques [30], [31].

To investigate the thermal effects between LEDs and
CdSe/ZnS QDs, we adopted a temperature-dependent PL mea-
surement for QDs and simulated the temperature of different
layers. Additionally, we used both continuous wave (CW) and
pulse current sources to verify the effect of temperature on
the PCE of QDs in LEDs. Finally, the junction temperature of
LEDs with QDs was also examined.

III. RESULT AND DISCUSSION

Fig. 3 shows the temperature-dependent PL measurement
of CdSe/ZnS QDs between 25 °C and 200 °C. The excitation
wavelength was 450 nm, which equals the emission of blue
LEDs. The emission intensity of QDs decreases as the tem-
perature increases. The relative peak intensity of CdSe/ZnS
QDs reaches 76% of the initial value at 100 °C and 43% at
150 °C. With an increase in temperature, the ligand is broken,
and the QDs are aggregated and enlarged [32]. According to
the quantum confinement effect, the band structure is altered,
leading to the red shift emission wavelength.

To understand the thermal behavior and determine the activa-
tion energy for thermal quenching at various temperatures, the
temperature-dependent results were fitted using the Arrhenius
equation [33]:

T
I(T) 1 +ceE/KT

where I is the initial intensity, 7(T) is the intensity at a given
temperature T', ¢ is a constant, I/ is the activation energy for
thermal quenching, and K is the Boltzmann’s constant. The fit-
ting curve of the PL results is shown in the inset of Fig. 3. The
activation energy (E) of CdSe/ZnS QDs is 0.44 eV. The low ac-
tivation energy leads to QD instability against heat.
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Fig. 4. Schematic cross-sectional view of CdSe/ZnS LEDs in simulation.

TABLE 1
THICKNESS PARAMETER AND THERMAL CONDUCTIVITY OF DIFFERENT LAYERS

Thermal conductivity

No. Layer Thickness (mm) (W/m - K)

1 Alloy 194 0.5 260

2 Ag 0.0025 428

3 GaN Chip 0.111 245

4 Leadframe 1.2 0.34
5 CdSe/ZnS 0.00008 4
QDs 0.00016 4
0.00024 4

. (a) w/o QDs

25 (b) 80nm QDs
(c) 160nm QDs
(d) 240nm QDs

Fig. 5. Simulated thermal distribution in (a) blue chip with a thickness of (b)
80 nm (c) 160 nm (d) and 240 nm in a CdSe/ZnS LED.

To explore the thermal phenomenon, we use the FEM to sim-
ulate the temperature of CdSe/ZnS LEDs. The simulated model,
which is similar to the real sample, is shown in Fig. 4. Further-
more, the thickness and thermal conductivity of each layer of
CdSe/ZnS QDs are listed in Table 1.

Fig. 5 shows the temperature distribution in blue chips and
differing CdSe/ZnS QD thicknesses. Regarding the thermal
distribution, the temperature increases with the thickness of
CdSe/ZnS QDs and the maximum temperature exists in the
center of LEDs. In addition, the junction temperature and the
temperature of CdSe/ZnS QDs are similar for each thickness,
as shown in Fig. 6. This is attributed to the minimal thickness
of CdSe/ZnS QDs, which differ from phosphor.
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Fig. 6. Simulated junction temperature and CdSe/ZnS QDs temperature with
different QDs layer thicknesses.
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Fig. 7. EL spectra of blue chips with different ratios of CdSe/ZnS QDs at 120
mA; the inset plots the enlargement EL from 550 to 700 nm.

Furthermore, to understand the interacting effect of temper-
ature between QDs and LEDs, we combined CdSe/ZnS QDs
with InGaN blue chips using the spin-coating method. The nor-
malized electroluminescence (EL) spectra of LEDs with various
volumes of CdSe/ZnS QDs at 120 mA are shown in Fig. 7. Two
emission bands occurred at 450 nm (blue band) and 613 nm
(red band), which were contributed by InGaN blue chips and
CdSe/ZnS QDs, respectively. The inset shows that the red band
increases with the volume of CdSe/ZnS QDs at 120 mA. With
greater CdSe/ZnS QD volume, more red emission can be ob-
tained, thereby achieving high CRI in LEDs. Differing red band
volumes do not cause a red shift under the use of a pulse current
source, which isolates the interval of each current source. The
thermal effect on CdSe/ZnS QDs is significantly related to the
PCE, which can be defined as [17]

Pr
Mlpce = 515
feee = Pp, — P
where Pr, is the emission intensity of the red band; Pgg and Pp
are the emission intensity of blue LEDs with and without the
addition of CdSe/ZnS QDs, respectively. Fig. 8 demonstrates
the relative efficiency of a constant current source and a pulse
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Fig. 8. Relative efficiency of LEDs pumped by a CW current source and a pulse
source at different currents.
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Fig. 9. Junction temperatures of differing volumes of CdSe/ZnS QDs under
currents between 60 and 300 mA.

source at different currents. The pulsewidth and duty cycle was
set at 1 ps and 1%, respectively. Assuming that both the LEDs
and CdSe/ZnS QDs generate no heat under pulse operation, the
relative PCE exhibits a similar value with various operation
currents. This phenomenon indicates that the reduction of PCE
was not because of QD saturation, but primarily because of the
thermal effect.

The junction temperature can be measured using the forward
voltage method, which is related to the thermal characteristics.
Additionally, the influence of CdSe/ZnS QDs on LEDs was pre-
sented using another method, i.e., the junction temperature of
LEDs with varying volumes of QDs and operation currents, as
shown in Fig. 9. LEDs with 10, 20, and 30 L of CdSe/ZnS
QDs were compared with bare LEDs. The junction tempera-
ture of LEDs increased as the current increased. However, the
junction temperature was further increased in correlation with
the volume of QDs. The junction temperature was 47.52 °C,
56.56 °C, 66.31 °C, and 87.71°C at 120 mA for LEDs without
QDs and with 10, 20, and 30 pL of CdSe/ZnS QDs, respec-
tively. The higher junction temperature is attributed to thermal
conduction and nonradiative energy, which reduces the relative
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PCE. We found that the junction temperature increases with dif-
fering volumes of QDs under the same current.

Therefore, extra heat is produced and back-scattered to the
LED chip. This indicates that the thermal quenching issue is a
substantial concern for LEDs that use QDs as color converting
material. In addition, the greater volume of QDs in LEDs pro-
vides a greater backscattering of light.

The thermal effect of QDs emphasizes their importance in
LEDs. Because the PCE of CdSe/ZnS or II-VI QDs is extremely
sensitive to heat, the IQE of GaN LEDs and the PCE of QDs
should be enhanced. To increase the PCE, the effect of temper-
ature on CdSe/ZnSe QDs, such as in remote type LEDs, must
be reduced. Therefore, QDs have significant potential for use
as color converting material in LEDs if the thermal atmosphere
and PCE is improved.

IV. CONCLUSION

This study presents the influence of thermal effects on
CdSe/ZnS QDs in LEDs using the PCE and junction tempera-
ture. The results correspond with the simulation results using
differing thicknesses of CdSe/ZnS QDs. Furthermore, the PCE
and junction temperature indicate that CdSe/ZnS QDs can be
used reliably in LEDs. CdSe/ZnS QDs are easily influenced by
the temperature of the atmosphere. Higher junction tempera-
tures are attributed to the thermal conduction and nonradiative
energy between CdSe/ZnS QDs and blue chips. Therefore,
temperature is likely to become an essential factor of CdSe/ZnS
QDs LEDs. We aim to conduct a future study on avoiding the
temperature influence of CdSe/ZnS QDs.
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