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Processor fault diagnosis plays an important role in multiprocessor systems for reliable
computing, and the diagnosability of many well-known networks has been explored. For
example, hypercubes, crossed cubes, möbius cubes, and twisted cubes of dimension n all
have diagnosability n. The conditional diagnosability of n-dimensional hypercube Qn is
proved to be 4(n � 2) + 1 under the PMC model. In this paper, we study the g-good-neigh-
bor conditional diagnosability of Qn under the PMC model and show that it is
2g(n � g) + 2g � 1 for 0 6 g 6 n � 3. The g-good-neighbor conditional diagnosability of Qn

is several times larger than the classical diagnosability.
� 2012 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of technology, the need for high-performance large multiprocessor systems has been
continuously increasing day by day. Since all the processors run in parallel, the reliability of each processor in multi-
processor systems becomes an important issue for parallel computing. In order to maintain the reliability of such mul-
tiprocessor systems, whenever a processor (node or vertex) is found faulty, it should be replaced by a fault-free
processor.

Fault-tolerant computing for the hypercube has been of interest to many researchers. The process of identifying
faulty vertices is called the diagnosis of the system. System diagnosis can be done in two different approaches, that
is, circuit-level diagnosis and system-level diagnosis. In circuit-level diagnosis, the processors must be tested one after
one by the human labor, which induces diagnosis complicated and possibly inaccurate. On the other hand, system-level
diagnosis could be done automatically by the system itself. Thus, system-level diagnosis appears to be an alternative to
circuit-level testing in a large multiprocessor system. Many terms for system-level diagnosis have been defined and
various models have been proposed in the literature [2,7,16,20]. If all allowable fault sets can be diagnosed correctly
and completely based on a single syndrome, then the diagnosis is referred to as one-step diagnosis or diagnosis without
repairs.

We use the widely adopted PMC model [20] as the fault diagnosis model. In [9], Hakimi and Amin proved that a multi-
processor system is t-diagnosable if it is t-connected with at least 2t þ 1 vertices. Besides, they gave a necessary and sufficient
condition for verifying if a system is t-diagnosable under the PMC model. Recently, Mánik and Gramatová [17,18] propose a
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diagnosis algorithm under the PMC model which use boolean formalization. Fan et al. show the DCC linear congruential
graphs, GðF;2pÞ, is 2t-diagnosable where p P 3 and 2 6 t 6 p� 1 [6]. Ahlswede and Aydinian study the diagnosability of
large multiprocessor networks [1]. The hypercube [15,21] is a well-known interconnection network for multiprocessor sys-
tems. Reviewing the previous papers, there are several variations of the hypercube [12], for example, the crossed cube [4],
the möbius cube [5], and the twisted cube [10]. For each of these cubes, an n-dimensional cube can be constructed from two
copies of ðn� 1Þ-dimensional cubes by adding a perfect matching between them. One of the common property among them
is that all these variations have diagnosability n under the PMC model.

In classical measures of system-level diagnosability for multiprocessor systems, it has generally been assumed that any
subset of processors can potentially fail at the same time. If there is a vertex v whose neighboring vertices are faulty simul-
taneously, there is no way of knowing the faulty or fault-free status of v. As a consequence, the diagnosability of a system is
upper bounded by its minimum degree. Motivated by the deficiency of the classical measurement of diagnosability, Lai et al.
[13] introduced a measure of conditional diagnosability by claiming the property that any faulty set cannot contain all neigh-
bors of any processor. Under this condition, they showed that the conditional diagnosability of the n-dimensional hypercube
Q n is 4ðn� 2Þ þ 1. We are then led to the following question: how large the maximum value t can be such that a graph G
remains t-diagnosable under the condition that every vertex v has at least g fault-free neighboring vertices. More precisely,
we assume the faulty set F satisfies the condition that each vertex v in G� F has at least g good neighbors. We notice that,
considering the situation that all the neighbors of each vertex cannot fail simultaneously, many properties of the network
would be much better, including the connectivity and diagnosability. The aim of this paper is to study more of these better
properties.

In this paper, we extend the concept of conditional diagnosability and propose a new measure of diagnosability. We de-
fine g-good-neighbor conditional diagnosability as the maximum number of faulty vertices that the system can guarantee to
identify under the condition that every fault-free vertex has at least g fault-free neighbors. In this paper, we show that the g-
good-neighbor conditional diagnosability of Qn is 2gðn� gÞ þ 2g � 1 under the PMC model, which is several times larger than
the classical diagnosability of Q n depending on the condition g.

The rest of this paper is organized as follows: Section 2 provides terminology and preliminaries for diagnosing a system.
In Section 3, we show the proof of the g-good-neighbor conditional diagnosability of Q n. Finally, our conclusions are given in
Section 4.

2. Preliminaries

2.1. Notations

A multiprocessor system or a network is usually represented as an undirected graph where vertices represent processors
and edges represent communication links. Throughout this paper, we follow [11,22] for the graph definitions and notations,
and we focus on the undirected graph without loops (simply abbreviated as graph).

Let G = (V,E) be a graph where V is a finite set and E is a subset of {ðu;vÞjðu; vÞ is an unordered pair of V}. We say that V is
the vertex set and E is the edge set. We use nðGÞ ¼ jV j to denote the cardinality of V. The degree of a vertex v in G, written as
degGðvÞ or degðvÞ, is the number of edges incident to v. The graph G is k-regular if every vertex has degree k. The neighborhood
of a vertex v in G, written NGðvÞ or NðvÞ, is the set of vertices adjacent to v. We use NðAÞ ¼ fx jy 2 A; x 2 G� A, and
ðx; yÞ 2 EðGÞg to denote the neighborhood of a vertex subset A of G. Two vertices u and v are adjacent in G if ðu;vÞ 2 E. A graph
G is connected if for any two vertices, there is a path joining them, otherwise it is disconnected. For a set S of V, the notation
G� S represents the graph obtained by removing the vertices in S from G and deleting those edges with at least one end ver-
tex in S. If G� S is disconnected, then S is called a separating set (or a vertex cut). A graph H is a subgraph of G if VðHÞ# VðGÞ
and EðHÞ# EðGÞ. A component of a graph G is its maximal connected subgraph. The connectivity jðGÞ of a graph G is the min-
imum number of vertices whose removal results in a disconnected graph or only one vertex left. A graph G is k-connected if
its connectivity is at least k.

2.2. Diagnosability

Under the classical PMC model [20], adjacent processors are capable of performing tests on each other. For two adja-
cent vertices u and v in V, the ordered pair (u,v) represents the test performed by u on v. In this situation, u is called the
tester and v is called the tested vertex. The outcome of a test (u,v) is either 1 or 0 with the assumption that the testing
result is regarded as reliable if the tester u is fault-free. However, the outcome of a test (u,v) is unreliable, provided that
the tester u itself is originally a faulty processor. Suppose that the tester u is fault-free, then the result would be 0
(respectively, 1) if v is fault-free (respectively, faulty). For each pair of adjacent vertices (u,v), u and v can perform
the test to each other.

A test assignment T for a system G is a collection of tests for every adjacent pairs of vertices. It can be modeled as a directed
testing graph T = (V,L) where ðu;vÞ 2 L implies that u and v are adjacent in G. Throughout this paper, we assume that each
vertex tests the other whenever there is an edge between them and all these tests are gathered in the test assignment. The
collection of all test results for a test assignment T is called a syndrome. Formally, a syndrome is a function r : L! f0;1g.
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The set of all faulty processors in the system is called a faulty set. This can be any subset of V. The process of identifying all
the faulty vertices is called the diagnosis of the system. The maximum number of faulty vertices that the system G can guar-
antee to identify is called the diagnosability of G, written as t(G). For a given syndrome r, a subset of vertices F # V is said to
be consistent with r if syndrome r can be produced from the situation that, for any ðu;vÞ 2 L such that u 2 V � F; rðu;vÞ ¼ 1
if and only if v 2 F. Because a faulty tester can lead to an unreliable result, a given set F of faulty vertices may produce dif-
ferent syndromes. We use notation rðFÞ to represent the set of all syndromes which could be produced if F is the set of faulty
vertices. Two distinct sets F1 and F2 in V are said to be indistinguishable if rðF1Þ \ rðF2Þ – ;, otherwise, F1 and F2 are said to be
distinguishable. Besides, we say ðF1; F2Þ is an indistinguishable pair if rðF1Þ \ rðF2Þ– ;, else ðF1; F2Þ is a distinguishable pair.

A system of n units is t-diagnosable if all faulty units can be identified without replacement, provided that the number of
faults presented does not exceed t. Let F1 and F2 be two distinct subsets of V, and let the symmetric difference
F1DF2 ¼ ðF1 � F2Þ [ ðF2 � F1Þ. DahBura and Masson [3] proposed a polynomial time algorithm to check whether a system
is t-diagnosable.

Theorem 1 [3]. A system G ¼ ðV ; EÞ is t-diagnosable if and only if, for any two distinct subsets F1 and F2 of V with jF1j 6 t and
jF2j 6 t, there is at least one test from V � ðF1 [ F2Þ to F1DF2.

Let GðV ; EÞ be an undirected graph of a system G. The following result follows directly from Theorem 1.

Theorem 2. For any two distinct subsets F1 and F2 of V ; ðF1; F2Þ is a distinguishable-pair under PMC model if and only if there is a
vertex u 2 V � ðF1 [ F2Þ and there is another vertex v 2 F1DF2 such that ðu;vÞ 2 E. (see Fig. 1)

In an n-dimensional hypercube, Qn has ð2
n

n Þ vertex subsets of size n, among which there are only 2n vertex subsets which
contains all the neighbors of some vertex. Since the ratio 2n=ð2

n

n Þ is very small for large n, the probability of a faulty set with
size n containing all the neighbors of any vertex is very low. For this reason, Lai et al. [13] introduced a new restricted diag-
nosability of multiprocessor systems called conditional diagnosability. They consider the situation that any faulty set cannot
contain all the neighbors of any vertex in a system.

Motivated by this concept [13], we extend this idea about conditional diagnosis. In this paper, we introduce g-good-
neighbor condition by claiming that for every fault-free vertex in a system, it has at least g fault-free neighbors. A faulty
set F � V is called a g-good-neighbor conditional faulty set if jNðvÞ \ ðV � FÞjP g for every vertex v in V � F. A system G is
g-good-neighbor conditional t-diagnosable if F1 and F2 are distinguishable, for each distinct pair of g-good-neighbor
conditional faulty subsets F1 and F2 of V with jF1j 6 t and jF2j 6 t. Let H be a subgraph of graph G, we say that the
g-good-neighbor property of H, PgðHÞ, holds for H if and only if every vertex in H has at least g neighbors in H. The
g-good-neighbor conditional diagnosability tgðGÞ of a graph G is the maximum value of t such that G is g-good-neighbor
conditional t-diagnosable.

Lemma 1. For any given graph G; tgðGÞ 6 tg0ðGÞ if g 6 g0.
3. The g-good-neighbor conditional diagnosability of hypercube

3.1. The n-dimensional hypercube

An n-dimensional hypercube, Qn, is an undirected n-regular graph containing 2n vertices and n2n�1 edges. Let u
¼ un�1un�2 . . . u1u0 be an n-bit binary string. The hypercube Q n consists of all n-bit binary strings as its vertices. Two vertices
u and v are adjacent if their binary string representations differ in exactly one bit position. For 0 6 i 6 n� 1, we use ui to
denote the ith neighbor of u, i.e., the binary string vn�1vn�2 . . . v1v0 where v i ¼ 1� ui and vk ¼ uk if k – i.

The Hamming weight of u, denoted by wðuÞ, is the number of i such that ui ¼ 1. The hypercube Q n is a bipartite graph with
bipartition fujwðuÞ is odd} and fujwðuÞ is even}. We use black vertices to denote those vertices of odd weight and white
vertices to denote those vertices of even weight. For i 2 f0;1g, we set Qi

n to be the subgraph of Q n which is induced by
v

1F 2F

u

v

1F 2F

u

or

Fig. 1. Illustration of a distinguishable pair ðF1; F2Þ.
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fu 2 VðQnÞjun�1 ¼ ig. The n-dimension hypercube Q n is consisted of two Qn�1, and Qi
n is isomorphic to Q n�1 for i = 0, 1. It is

well known that Q n is vertex transitive and edge transitive [8,15]. Furthermore, the permutation on the coordinate of Qn and
the componentwise complement operations are graph isomorphisms.

3.2. tgðQ nÞ 6 2gðn� gÞ þ 2g � 1 if g 6 n� 3

Let g be a positive integer with g 6 n� 3. To find the g-good-neighbor conditional diagnosability of the hypercube Q n, we
first give an example to show that tgðQnÞ is no more than 2gðn� gÞ þ 2g � 1. We are going to show that there exist two g-
good-neighbor conditional faulty sets F1 and F2 of VðQnÞ with jF1j 6 2gðn� gÞ þ 2g and jF2j 6 2gðn� gÞ þ 2g , but F1 and F2

are indistinguishable. Thus, we know Q n is not g-good-neighbor conditional ð2gðn� gÞ þ 2gÞ-diagnosable.
We set A ¼ fy ¼ yn�1yn�2 . . . y0jyi ¼ 0 for i 2 fg; g þ 1; . . . ;n� 1g and yj 2 f0;1g for j 2 f0;1; . . . ; g � 1gg and

Vk ¼ fyn�kjy 2 Ag for every 1 6 k 6 n� g. Then we set F1 ¼ [n�g
i¼1 Vi and F2 ¼ A [ F1. Since jAj ¼ 2g and jVij ¼ 2g for every

1 6 i 6 n� g, we obtain that jF1j ¼ 2gðn� gÞ and jF2j ¼ 2g þ 2gðn� gÞ. By Theorem 2, we conclude that ðF1; F2Þ is an indistin-
guishable pair because A ¼ F1DF2 and NðAÞ ¼ F1. See Fig. 2.

Now we verify that both F1 and F2 are g-good-neighbor conditional faulty sets. Let Xbe the set VðQ nÞ � F1 [ F2Þ. Since F1 is
the subset of F2; X ¼ VðQ nÞ � F2. Therefore, it is sufficient to verify both PgðAÞ and PgðXÞ are satisfied. For every vertex u in A,
it is easy to see that ui in A for every i 2 f0;1; . . . ; g � 1g. Thus, PgðAÞ holds. Now we consider the vertices in X. By the def-
inition of X, we know that for every x in X; xi 2 X for every 0 6 i 6 g � 1. Thus, the property PgðXÞ also holds. Therefore, both
F1 and F2 are g-good-neighbor conditional faulty sets of Qn.

Since ðF1; F2Þ is an indistinguishable pair with jF1j ¼ 2gðn� gÞ and jF2j ¼ 2gðn� gÞ þ 2g , we conclude that the g-good-
neighbor conditional diagnosability of Qn is less than 2gðn� gÞ þ 2g . The following lemma states the fact.

Lemma 2. For 0 6 g 6 n� 3; tgðQnÞ 6 2gðn� gÞ þ 2g � 1.
3.3. tgðQ nÞ 6 2n�1 � 1 if n� 2 6 g 6 n� 1

We set F1 ¼ VðQ 0
nÞ and F2 ¼ VðQ1

nÞ. Since Q0
n ¼ Q n � F2 and Q 1

n ¼ Q n � F1, both F1 and F2 are ðn� 1Þ-good-neighbor con-
ditional faulty sets. If a faulty set is a g-good-neighbor conditional faulty set, it is a ðg � 1Þ-good-neighbor conditional faulty
set. Thus, both F1 and F2 are ðn� 2Þ-good-neighbor conditional faulty sets. Since F1 [ F2 ¼ VðQnÞ, by Theorem 2, ðF1; F2Þ is a
indistinguishable pair under PMC model. We have the following lemma.

Lemma 3. For n� 2 6 g 6 n� 1; tgðQnÞ 6 2n�1 � 1.
3.4. The g-good-neighbor conditional diagnosability of Q n

Before discussing the g-good-neighbor conditional diagnosability of hypercube, we have some useful observations as
follows:
}}
{{

A

g neighbors

n-g neighbors

nQ

=2F 1F A

=1F i=1
n-g

iV

Fig. 2. Illustration of F1 and F2.
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Theorem 3 [19]. Let n P 3 and 1 < p 6 n. Suppose that F is a minimum cardinality cut of Qn such that jNQn
ðxÞ \ Fj 6 p for all

x 2 VðQnÞ � F. Then jFj ¼ p2n�p.
In the above theorem, we note that F is a g-good-neighbor conditional faulty set if p ¼ n� g. The condition 1 < p 6 n is

equivalent to 1 < n� g 6 n, so g 6 n� 2. We restate the above theorem in our terms.

Theorem 4 [19]. Let n P 3 and 0 6 g 6 n� 2. Suppose that F is a minimum cardinality cut of Qn such that jNQn
ðxÞ � FjP g for

all x 2 VðQnÞ � F. Then jFj ¼ 2gðn� gÞ.
Theorem 5 [14]. Let H be a subgraph of Q n satisfying PgðHÞ. Then jVðHÞjP 2g , for 0 < g 6 n.
The following theorem shows that the g-good-neighbor conditional diagnosability of hypercube tgðQnÞ is greater than or

equal to 2gðn� gÞ þ 2g � 1.

Theorem 6. For 0 6 g 6 n� 3; tgðQnÞP 2gðn� gÞ þ 2g � 1.
Proof. To prove Q n is g-good-neighbor conditional ð2gðn� gÞ þ 2g � 1Þ-diagnosable, it is equivalent to prove that F1 and F2

must be distinguishable for every two distinct g-good-neighbor conditional faulty sets F1 and F2 of Q n, provided that both the
cardinality of F1 and cardinality of F2 are no more than 2gðn� gÞ þ 2g � 1.

We prove this theorem by contradiction. Suppose that there are two distinct g-good-neighbor conditional faulty sets F1

and F2, which are indistinguishable with jF1j 6 2gðn� gÞ þ 2g � 1 and jF2j 6 2gðn� gÞ þ 2g � 1. Now we consider all the
possible cases such that F1 and F2 are indistinguishable. By Theorem 2, there are two cases such that F1 and F2 are
indistinguishable: VðQnÞ ¼ F1 [ F2 or VðQnÞ– ðF1 [ F2Þ but there is no test from VðQnÞ � ðF1 [ F2Þ to F1DF2. Without loss of
generality, we assume that F2 � F1 – ;. We show that each case has contradiction with our assumption.

Case 1. VðQnÞ ¼ F1 [ F2. Since g 6 n� 3 and all the vertices of Qn are in F1 [ F2, we obtain the following equation with
contradiction:
2n ¼ jVðQ nÞj ¼ jF1j þ jF2j � jF1 \ F2j 6 jF1j þ jF2j 6 2ð2gðn� gÞ þ 2g � 1Þ 6 2ð2n�3ðn� ðn� 3Þ þ 1ÞÞ � 2 ¼ 2n � 2;
which is a contradiction.
Case 2. VðQ nÞ – ðF1 [ F2Þ. In this case, we show jF2jP 2g þ ðn� gÞ2g , which is a contradiction with our assumption, regard-
less F1 � F2 or not. Since F1 and F2 are indistinguishable, there are no edges between VðQ nÞ � ðF1 [ F2Þ and F1DF2. By the
assumption that F2 � F1 – ; and F1 is a g-good-neighbor conditional faulty set, any vertex in F2 � F1 has at least g good
neighbors in subgraph F2 � F1. By Theorem 5, the size of F2 � F1 is characterized, and thus we have jF2 � F1jP 2g . Since
F1 and F2 are both g-good-neighbor conditional faulty sets, F1 \ F2 is also a g-good-neighbor conditional faulty set. By The-
orem 4 and g 6 n� 3, the minimum cardinality cut of Q n with g-good-neighbor condition is ðn� gÞ2g . Thus, we obtain that
jF2 \ F1jP ðn� gÞ2g . As a result, jF2j ¼ jF2 � F1j þ jF2 \ F1j P 2g þ ðn� gÞ2g which contradicts with that
jF2j 6 2g þ ðn� gÞ2g � 1.

Based on these two cases above, we conclude that tgðQ nÞP 2gðn� gÞ þ 2g � 1 if 0 6 g 6 n� 3. This completes the proof of
this theorem. h
Table 1
tgðQnÞ of small n.

n g jVðQnÞj tgðQnÞ Ratio

3 0 8 3 0.375
4 0 16 4 0.25
4 1 16 7 0.4375
5 0 32 5 0.15625
5 1 32 9 0.28125
5 2 32 15 0.46875
6 0 64 6 0.09375
6 1 64 11 0.171875
6 2 64 19 0.296875
6 3 64 31 0.484375
7 0 128 7 0.0546875
7 1 128 13 0.1015625
7 2 128 23 0.1796875
7 3 128 39 0.3046875
7 4 128 63 0.4921875
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The g-good-neighbor conditional diagnosability of hypercube tgðQ nÞ shows below.

Theorem 7. The g-good-neighbor conditional diagnosability of Q n is
tgðQ nÞ ¼
2gðn� gÞ þ 2g � 1 if 0 6 g 6 n� 3;

2n�1 � 1 if n� 2 6 g 6 n� 1:

(

Proof. To prove this theorem, we consider that 0 6 g 6 n� 3 first. By Lemma 2 and Theorem 6, we have
tgðQ nÞ 6 2gðn� gÞ þ 2g � 1 if 0 6 g 6 n� 3.

Suppose that n� 2 6 g 6 n� 1. By Lemma 2, tgðQnÞ 6 2n�1 � 1 if n� 2 6 g 6 n� 1. Since 2hðn� hÞ þ 2h � 1 ¼ 2n�1 � 1 if
h ¼ n� 3, by Lemma 1, tgðQnÞP 2n�1 � 1 if n� 2 6 g 6 n� 1. Thus, the g-good-neighbor conditional diagnosability
tgðQnÞ ¼ 2n�1 � 1 if n� 2 6 g 6 n� 1.

This completes the proof of this theorem. h

Table 1 shows the g-good-neighbor conditional diagnosability of n-dimensional hypercube tgðQ nÞ of small n where
0 6 g 6 n� 3.

4. Conclusions

In probabilistic models of multiprocessor systems, processors fail independently, but with different probabilities. The
probability that all faulty processors are neighbors of one processor is very small. In this paper, we propose the concept
of g-good-neighbor conditional diagnosis with any fault-free vertex has at least g neighboring fault-free vertices. To grant
more accurate measurement of diagnosability for a large-scale processing system, we introduce the g-good-neighbor condi-
tional diagnosability of a system under the PMC model. The g-good-neighbor conditional diagnosability of the hypercube Q n

is demonstrated to be 2gðn� gÞ þ 2g � 1.
Observing that when g = 0, there is no restriction on the faulty sets and we have the traditional diagnosability on the

hypercube as n. In addition, in the special case of g = 1, our result is slightly different from the measure of diagnosability gi-
ven by Lai et al. [13]. The difference between these two measures is that we only consider the condition of the fault-free
vertices in the network. A thorough investigation of the diagnosability with the requirement of having at least g good neigh-
bors for all vertices would be an interesting problem to study in the future.

In the area of diagnosability, the comparison model is another well-known and widely chosen fault diagnosis model.
Hence, for further discussion, it is worthy to determining the g-good-neighbor conditional diagnosability of a system under
comparison model.

The classical diagnosability of a system is small owing to the assumption that all neighbors of each processor can poten-
tially fail at the same time regardless of the probability. If there are exactly n faulty processors in a system of minimum de-
gree n, however, the probability of the faulty set containing all the neighbors of any vertex is statistically low for large
multiprocessor systems. Therefore, it is an attractive work to develop more different measures of g-good-neighbor condi-
tional diagnosability based on application environment, network topology, network reliability, and statistics related to fault
patterns.
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