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Based on a newly developed general quantum theory of nonlinear optical pulse propagation, the influences of
the self-Raman effect and third-order dispersion on the achievable squeezing ratio in squeezing experiments
with optical fibers at both the 1.3- and 1.55-um wavelengths are studied. In the presence of these effects,
squeezing still survives, but the achievable squeezing will reach a limit as the propagation distance increases.
Temperature dependence of the squeezing ratio is also examined. 0O 1995 Optical Society of America

1. INTRODUCTION

Pulse-squeezed state generation by the use of optical
fibers has attracted a lot of attention recently. By the
use of a fiber-loop interferometer, a pulse-squeezed vac-
uum has been successfully generated at the 1.3-um wave-
length with more than 5-dB squeezing observed!~® and
at 1.55 um with 1.1-dB squeezing observed.* In experi-
ments at the 1.3-um wavelength, pulses from mode-locked
Nd:YAG or Nd:YLF lasers with a pulse duration of ~20 ps
were used. In the squeezing experiment at the 1.55-um
wavelength, pulses from mode-locked color-center lasers
with a pulse duration of ~200 fs were used. In going
from longer pulses to shorter ones, the self-Raman effect
and third-order dispersion start to affect pulse propaga-
tion. Physically, both effects cause additional perturba-
tions to the optical field, and thus they are expected to
reduce or even destroy squeezing. The objective of this
paper is to study how serious the reduction or the de-
struction is in the experiments at both the 1.3- and the
1.55-um wavelengths.

In the experiments at the 1.3-um wavelength, the
group-velocity dispersion of the fiber is close to 0. In the
literature, quantum effects of pulse propagation inside
dispersionless Kerr media have been studied by many
authors.?~® It has also been pointed out that if non-
square pulses are used, the achievable squeezing will
reach a limit as the propagation distance increases.®
This is because when the group-velocity dispersion is 0,
nonsquare pulses get chirped because of self-phase modu-
lation. The squeezing directions with respect to the
phases of the light field at different time slots are differ-
ent because the intensities across the pulse are different.
In squeezing experiments in which a fiber loop is used, the
same pulse, after propagating through the fiber, is used
as the local oscillator of the homodyne detection, with a
possible adjustment of a constant phase to minimize the
noise. The local oscillator cannot match the squeezing
directions at every time slot when the chirp that is due
to self-phase modulation increases as the propagation
distance increases. Thus the detected squeezing eventu-
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ally gets saturated because of such a mismatch. As we
see below, for sech pulses, the magnitude of squeezing
saturates at ~7.5 dB. The status of recent experiments
(5-dB squeezing observed) is actually not very far from
the above limit. Therefore, to obtain as much squeezing
as possible, it should be helpful if one can find some way
to overcome such saturation behavior. One possibility
is to use square pulses as the input. Because a square
pulse has a constant intensity, there is no chirping that is
due to self-phase modulation, and thus the saturation of
squeezing can be avoided. However, inside optical fibers,
there are always other linear and nonlinear effects, such
as the third-order dispersion and the self-Raman effect.
In the presence of the self-Raman effect and third-order
dispersion, a square pulse cannot remain square during
propagation. Moreover, because square pulses contain
larger higher-frequency components, they are more sen-
sitive to the self-Raman effect and third-order dispersion
than Gaussian or sech pulses are. As we see below, in
the presence of these two effects, squeezing still survives,
but the achievable magnitude is reduced and will reach a
limit as the propagation distance increases.

In the experiments at the 1.55-um wavelength, the
group-velocity dispersion of the fiber is negative, and the
pulses inside the fiber are actually solitons or solitary
pulses. In the literature, the squeezing ratio for ideal
solitons in optical fibers has been calculated by direct nu-
merical simulation based on positive-P representation!®!!
and by the linearization approximation.'?>!® The quan-
tum effects of the third-order dispersion have been
studied by the use of the time-dependent Hartree approxi-
mation.* However, the squeezing ratio calculation is
not performed. Quantum theories of the self-Raman
effect have been developed by the use of Hamiltonian
approaches.'®® The calculation of an achieveable
squeezing ratio was performed by direct numerical simu-
lation based on a truncated Wigner representation!’
and by analytical derivation based on the soliton
perturbation theory.'®* From their numerical results,
Drummond and Hardman!” found that squeezing still
survives for FWHM = 176-fs solitons in the presence of
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the self-Raman effect. However, their calculation was
performed only for FWHM = 176-fs solitons at 77 K and
the propagation distance was only up to five normalized
distance units. The dependence of the squeezing ratio
on temperature and pulse duration was not shown. The
combined effects of the self-Raman effect and third-order
dispersion were also not considered. Kirtner et al.'®
studied the temperature and the pulse-duration depen-
dence of the achievable squeezing ratio. They concluded
that it is more advantageous to use longer pulses in
squeezing experiments if the self-Raman noise is to be
reduced. Their calculation is based on the soliton per-
turbation theory,!? which ignores the coupling between
the soliton parts and the continuum. Such an approach
is rigorously correct for ideal solitons but may not be
accurate enough in the presence of the self-Raman ef-
fect when the propagation distance is long and when the
squeezing is big. Also, the squeezing ratio they calcu-
lated corresponds to the use of a special local oscillator,
which is not the case in actual experiments. They did
not consider the third-order dispersion, either.

In this paper, from a newly developed general quan-
tum theory of nonlinear optical pulse propagation,'® we
study the influences of both the self-Raman effect and
the third-order dispersion on the achievable squeezing
ratio in squeezing experiments by using optical fibers
at both the 1.3- and the 1.55-um wavelengths. Be-
sides finding that squeezing still survives but is de-
graded in the presence of the two effects, we also find
that there is a limit on the achievable squeezing ra-
tio as the propagation distance increases. Tempera-
ture and pulse-duration dependence of the squeezing
ratio are also examined. Compared with direct simula-
tion, the computational efficiency of our backpropagation
method enables us to obtain more results under different
temperatures, pulse durations, and longer propagation
distances. Compared with the soliton perturbation the-
ory, our backpropagation method is more accurate be-
cause it does not ignore the coupling between the soliton
parts and the continuum.

This paper is organized as follows. In Section 2, we
develop the formulation for the squeezing ratio calcula-
tion. By utilizing the linearization approximation and
the conservation of commutation relations, we can suc-
cessfully quantize the propagation equations and derive
the correlation functions of the noise operator in a sys-
tematic way. The calculation of quantum uncertainties
is based on the concept of adjoint systems and the back-
propagation method. The results for the 1.3-um wave-
length are presented in Section 3, and the results for the
1.55-um wavelength are presented in Section 4. Finally,
in Section 5, we conclude the paper.

2. FORMULATION

The classical pulse-evolution equation in the presence of
the self-Raman effect and third-order dispersion is

D Ve t) = idy e Ule, ) + dy o Uz, )
0z 2 W2 VS LFTE R
+ iki|U(z, t)|2U(z, t)

+ i|: ft h(t — 1)Uz, T)|2d7'j|U(z, t). (1)
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Here U(z, t) is the normalized optical-field envelope func-
tion, z is the propagation distance, ¢ is the time de-
viation from the pulse center, dy = —kj/2 represents
the group-velocity dispersion, ds = ky'/6 represents the
third-order dispersion, k; represents the instantaneous
Kerr nonlinearity that is due to electronic transition,
and hA(t) is the response function of the noninstanta-
neous Kerr nonlinearity that is due to photon—phonon
interaction.'®2° The optical field is normalized in such a
way that [ |U(z, t)|?dt is the photon number in the opti-
cal pulse at the propagation distance z.

In the literature, the Raman gain (in real units) is de-
fined as twice the imaginary part of the Fourier transform
of h(t)1%20;

Ar(Q) =2 Im|:f h(t)exp(iQt)dt} . (2)
Therefore A(t) is related to Agz(Q)) by

h(t) = % [ AR (Q)sin(Q¢)dQ ift=0,
0
=0 ift <O0. 3)

The Raman gain spectra of silica fibers has been mea-
sured experimentally'®~2! and can be used in the calcu-
lation of A(¢). This is of course the right approach if one
wants to make a careful comparison with experimental
results. Nevertheless, it is also interesting to note that
if one assumes a Lorentzian distribution of Raman gain,

_ Y 3 y ,
Ar(©) kR[ PE@ -0 @ 90)2:| @
and then a simple expression for A(¢) can be derived:
h(t) = kg Im{exp[(—y + iQo)t]} ift=0,
=0 if £ <0. (5)

Here () is the center resonance frequency of the phonon
field, y is the decay rate of the Raman response, and
kg represents the interaction strength between the pho-
ton and the phonon field. The values of )y and y can
be determined from the experimental curve of Raman
gain spectra. The numbers used in our calculation are
vy = 20 THz and Q¢ = 27 X 12 THz. The interaction
strength kg is determined as follows. For pulses with a
duration of much longer than the decay rate of the Raman
response, the net Kerr nonlinearity coefficient is

» Q0
k; + fo h(t)dt = k; + kg 02 (6)
This has to be equal to fiwgkona/Aetr, where Aoy = 50 um?
is the effective cross section of the fiber and ns = 3.2 X
1072° m2/W is the nonlinear index coefficient. The value
of kg can be determined from the fact that ~82% of the
Kerr nonlinearity is instantaneous (because of electronic

transition) whereas the other 18% is noninstantaneous

(because of photon—phonon interaction).? Thus one has
ki = 0.82(ﬁw0k0n2)/Aeff 5 (7)
krQo/(y* + OF) = 0.18(fiwokons)/ Actr - (8)

The magnitudes of second-order and third-order disper-
sion used in our calculation are estimated from the
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Sellmeier equation for fused silica. At the 1.55-um
wavelength, the second-order dispersion is &y = —2.79 X
1072 s2/m and the third-order dispersion is ky =
151 X 1074 s3/m. At the 1.3-um wavelength, the
second-order dispersion is 0 and the third-order disper-
sion is ky = 7.46 X 107* s3/m.

After quantization based on the linearization approxi-
mation and the conservation of commutation relations
is performed,!® the evolution equation for the perturbed
optical-field operator @ (which represents the quantum
noise) is

2 3
% iz, t) = id; % iz, t) + ds % iz, t)
+ 2ik;|Uy(z, t)|%a(z, t) + ik;U2(z, t)it(z, t)

+ i/t h(t — )|Uo(z, 7)|?d7a(z, t)
+ iUy(z, t)[t h(t — 1)Uy (2, 7)il(z, 7)dr

+ 1Uy(z, t)[t h(t — 1Uy(z, it (z, 7)dr
+il'(z, HUy(z, ¢). 9)

Here Uy(z, ¢) is the exact solution of classical equation (1).
It is obtained numerically in our calculation. f‘(z, t)is a
Hermitian noise operator that represents the additional
quantum noise introduced by the self-Raman effect. The
third-order dispersion does not introduce additional noise.
For a purely inhomogeneously broadened phonon field,
the correlation function of I'(z, ¢) is given by'®

(F(z, t)T (2, t2)) = No(t1 — t2)8(z — 2'), (10)

with

Nut) = 5 [ A(@)[na(T) + Uexp(-i0)
+ no(Texp(iQ¢)}dQ . (11)

Here ng(T) = [exp(AQ/kT) — 1]7! is the mean num-
ber of phonons (with a resonance frequency (1)) at tem-
perature T. Our expression for the correlation function
agrees exactly with that given in Ref. 17, except that
normalized units were used and the correlation function
was expressed in the Fourier domain in Ref. 17. Our
quantization approach thus offers an alterative and more
straightforward way to determine noise statistics.

In squeezing experiments, homodyne detection is usu-
ally used for detecting quadrature-squeezed states. It
has been shown that the output of the homodyne detec-
tion is simply the inner product of the input-field operator
and the local-oscillator pulse.'? The quantum uncertain-
ties of the inner product between a given weighting func-
tion f(¢) and the perturbed field operator #(L, ¢) can be
written down explicitly'®:

Var[{f ()| a(L, ¢))]

L
— Var[(A(0, )] (0, £))] + fo [ Qts, ta, DN (L1 — 1)
X dt1dtodz. (12)

The first term on the right-hand side represents the trans-
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formed original quantum uncertainties, whereas the sec-
ond term is the contribution of the noises introduced mid-
way. The function @ is given by

Q(t1, ta, 2) = 2 Re[u(z, t1)u*™ (2, ta)Uy (2, t1)Uo(2, ts)
— u* (2, t)u? (2, t2)Uo(2, t1)Uol(z, t2)].
(13)

The function N, is given in Eq. (11), and the function
u’(z, t) is obtained by the backpropagation of the follow-
ing adjoint equation from z = L to z = 0 with the initial
condition uA(L, t) = f(¢t):

92 93

0 4 ) A A
—ut(z,t) =id; —s u’(z, t) + ds — u(z, ¢
e, )= id; £y uhe, ) + dy g UG, 1)

+ 2ik;|Uo(z, §)12u?(z, t)
— ik U2z, t)u** (2, t)

_|_

L/t h(t — 1)|Up(z, 7)*dru’(z, t)

+

iUy(z, t)fwh(r - t)U(;k(z, ul(z, 7)dr

— 1Uy(z, t)fmh(r — DUs(z, 1u**(z, 7)dr.
(14)

This above procedure is the backpropagation method we
developed to calculate quantum uncertainties for general
nonlinear optical pulse-propagation problems.!8

The squeezing ratio in squeezing experiments is given

by

R(L) = minge) Var[(fL(¢) | (L, t))]/Var[{f1(¢)| &(0, ?))].
(15)

Here f1(¢) is the local-oscillator pulse-envelope function.
In usual squeezing experiments, one uses the same pulse
after it propagates through the fiber as the local oscillator,
with a possible adjustment of a constant phase. There-
fore, the appropriate expression for f1(¢) is

fL@) = Uo(L, t)exp(iO). (16)

Here © is an adjustable phase and can be adjusted to
minimize the detected squeezing ratio. The computa-
tional procedure to minimize over ® has been presented
elsewhere!® and is not repeated here.

3. RESULTS AT THE 1.3-um WAVELENGTH

In our calculation at the 1.3-um wavelength, the phonon
field is assumed to be purely inhomogeneously broadened
with a Lorentzian—Raman gain spectra. The param-
eters for the self-Raman effect and third-order dispersion
have been given in Section 2. The input pulse is either a
sech pulse or a square pulse with a given pulse duration.
The output pulse is used as the local oscillator. Because
the second-order dispersion is 0, the conventional way to
normalize the pulse-propagation equation in soliton the-
ories is not suitable for the cases considered here. We
choose our normalization units and the initial conditions
according to the following rules:
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(1) The normalization unit of the propagation distance
is 10 m.

(2) The normalization unit of the intensity is chosen in
such a way that, if there is no third-order dispersion and
no self-Raman effect and if the intensity is one unit, the
nonlinear phase shift is 1 rad after the pulse propagates
one unit distance (10 m).

(3) The peak intensity of the input pulse is always one
unit intensity. Such peak intensity is of the same order
of magnitude as the actual value in experiments.

We have calculated the squeezing ratio of 20-ps
(FWHM) sech pulses. The squeezing ratios at five dif-
ferent temperatures (0, 77, 273, 298, and 373 K) are
plotted in Fig. 1. It can be seen that the squeezing ratio
reaches a limit of ~7.5 dB. As has been explained in
Section 1, this is due to the chirping caused by the self-
phase modulation. The small variation (~0.3 dB from
0 to 373 K) of the achievable squeezing with respect to
different temperatures indicates that the contribution
of the self-Raman effect is only a minor one. We find
that the contribution of the third-order dispersion can be
neglected because the pulse duration is relatively long.
The squeezing ratio is mainly limited by the saturation
effect because of chirping.

The squeezing ratios for 20-ps (FWHM) square pulses
at the same five temperatures are plotted in Fig. 2. The
achievable squeezing is much higher. We find that the
contribution of the third-order dispersion still can be ig-
nored. However, the self-Raman effect now plays a more
important role. The squeezing is ~19 dB at 0 K and
16.2 dB at 373 K when the normalized propagation dis-
tance is 10 m. Because the curves are still going down
slowly, the achievable squeezing should be somewhat
larger.

We have also calculated the squeezing ratio for 2-ps
(FWHM) square pulses at 77 K. The results are plotted
in Fig. 3. To see the relative contributions of the two
effects, we plot the squeezing ratios with only the self-
Raman effect, with only the third-order dispersion, and
with both. It is clear that the third-order dispersion ef-
fect becomes more important because the pulse duration
is relatively short. The achievable squeezing is limited to
10.3 dB. When the propagation distance is too large, the
squeezing can be totally destroyed. This is because the
2-ps square pulse is disturbed a lot because of the third-
order dispersion during propagation. Such an impact is
1000 times smaller for 20-ps square pulses and thus can
be ignored. From the above results, it is clear that it
is harmful to use a shorter pulse duration in squeezing
experiments at the 1.3-um wavelength.

It is interesting to note that at the 1.3-um wavelength,
at which the second-order dispersion is 0, it is the third-
order dispersion effect that prevents us from using a
shorter pulse duration. This is in contrast to the situ-
ation at the 1.55-um wavelength, which we examine
in Section 4. At the 1.55-um wavelength, solitons are
used and the third-order dispersion has only a minor
effect. The relative importance of the self-Raman ef-
fect and third-order dispersion also depends on the in-
tensity of the pulse. Because the self-Raman effect is
a third-order nonlinear effect, whereas the third-order
dispersion is a linear effect, the contribution from the
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Fig. 1. Squeezing ratio versus normalized propagation distance
for 20-ps (FWHM) sech pulses at five temperatures at the 1.3-um
wavelength. The curves at 273 and 298 K are too close to be
resolved. Without the Raman effect and third-order dispersion,
one normalized propagation distance unit = 1.0 rad nonlinear
phase shift.
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Fig. 2. Squeezing ratio versus normalized propagation distance
for 20-ps (FWHM) square pulses at five temperatures at the
1.3-um wavelength. Without the Raman effect and third-order
dispersion, one normalized propagation distance unit = 1.0 rad
nonlinear phase shift.
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Fig. 3. Squeezing ratio versus normalized propagation distance
for 2-ps (FWHM) square pulses at 77 K at the 1.3-um
wavelength. KR, Raman only; D3, third-order dispersion only;
KR + D3, both; dotted curve, neither. The dotted curve and
the curve labeled KR are too close to be resolved. Without
the Raman effect and third-order dispersion, one normalized
propagation distance unit = 1.0 rad nonlinear phase shift.
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Fig. 4. Squeezing ratio versus normalized propagation distance
for 50-fs (FWHM) pulses at 77 K at the 1.55-um wavelength.
KR, Raman only; D3, third-order dispersion only; KR + D3,
both; dotted curve, neither. Without the Raman effect and
third-order dispersion, one normalized propagation distance
unit = 0.5 rad nonlinear phase shift.
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Fig. 5. Squeezing ratio versus normalized propagation distance
for 100-fs (FWHM) pulses at 77 K at the 1.55-um wavelength.
KR, Raman only; D3, third-order dispersion only; KR + D3,
both; dotted curve, neither. Without the Raman effect and
third-order dispersion, one normalized propagation distance
unit = 0.5 rad nonlinear phase shift.

self-Raman effect increases as the intensity of the pulse
increases.

4. RESULTS AT THE 1.55-pum
WAVELENGTH

In our calculation at the 1.55-um wavelength, the phonon
field is again assumed to be purely inhomogeneously
broadened with a Lorentzian—Raman gain spectra. The
parameters for the self-Raman effect and third-order dis-
persion have been given in Section 2. The input pulse is
the soliton solution in the ideal soliton case [d3 = 0, k; =
hwkony/Acr and h(t) = 0]; it is a sech pulse Ay sech(¢/ 7o)
with A378 = 2d; Aewe/h wokons. Again the output pulse is
used as the local oscillator. We did not attempt to op-
timize the input pulse shape or the local-oscillator pulse
shape in the present calculation.

We have calculated the squeezing ratios for 50- and
100-fs (FWHM) solitary pulses at 77 K. The results are
shown in Figs. 4 and 5, respectively. To investigate the
temperature dependence, in Fig. 6 we plot the squeezing
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ratio for 100-fs (FWHM) solitary pulses at five tempera-
tures. In all the figures, the transverse coordinate is the
normalized propagation distance in conventional soliton
theories (i.e., zZ = z/z0, zo = 72/|ki|, 7o = FWHM/1.763).
For ideal solitons, the nonlinear phase shift is 1 rad after
the pulse propagates two normalized distance units.

From the figures, it is clear that, in the presence of
the self-Raman effect and third-order dispersion, squeez-
ing still survives but will reach a limit as the propagation
distance increases. At 77 K, for 50-fs pulses the achiev-
able squeezing is ~10.5 dB, whereas for 100-fs pulses it
is ~17 dB. In going from 77 to 298 K, the achievable
squeezing is degraded by ~2.1 dB.

From the figures, it is also clear that the influences
of the self-Raman effect and third-order dispersion are
not additive. For the cases considered here, the impacts
from the third-order dispersion are much less than those
from the self-Raman effect. This is because of the pres-
ence of the second-order dispersion.

At this stage, it may be advantageous to compare our
results briefly with other published calculations. Drum-
mond and Hardman!” calculated the squeezing ratio for
70 = 100 fs or FWHM = 176 fs solitary pulses at 77 K up
to five normalized distance units. Only the self-Raman
effect was considered. They found that the squeezing ra-
tio decreases monotonically as the propagation distance
increases and that the squeezing ratio at five normalized
distance units is ~0.08 m. This agrees reasonably with
our Fig. 5, given that Drummond and Hardman!” used
the full measured Raman gain spectra? whereas we as-
sume a Lorentzian—Raman gain shape. In their calcula-
tion the error bar at five normalized distance units is 0.04,
and they did not show their results for larger propagation
distances, different temperatures, or pulse widths. Be-
cause in their calculation the propagation distance is not
long enough (only up to 5 units), they did not observe the
saturation behavior, as we did in Fig. 5. Kartner et al.'6
obtained a series of curves of the squeezing ratio for dif-
ferent temperature and pulse durations. Again only the
self-Raman effect was considered. The squeezing ratio
also decreases monotonically as the propagation distance
increases. Extracted from Fig. 3 of Ref. 16, the squeez-
ing at five normalized distance units (=2.5-rad nonlin-
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Fig. 6. Squeezing ratio versus normalized propagation distance
for 100-fs (FWHM) pulses at five temperatures at the 1.55-um
wavelength. Without the Raman effect and third-order disper-
sion, one normalized propagation distance unit = 0.5 rad non-
linear phase shift.
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ear phase shift) for 100-fs solitary pulses at 300 K is
~10.5 dB. This again agrees reasonably with our Fig. 5,
given that Kértner et al.1® used the soliton perturbation
theory and the new Raman gain data?' whereas we used
the backpropagation method and the Lorentzian—Raman
gain model based on the old Raman gain data.?’ How-
ever, the temperature dependence predicted by Kirtner
et al. is larger than that in our Fig. 5. Especially at 0 K
the soliton perturbation theory predicts that the squeez-
ing ratio can monotonically go beyond 20 dB, whereas our
curve reaches its minimum near 18 dB. We believe that
this is an indication that the soliton perturbation the-
ory is no longer accurate enough when the propagation
distance is long and when the squeezing is large. The
coupling between the soliton parts and the continuum
must be taken into account in order to get correct re-
sults. Another point to be noted is that the squeezing
ratio calculated by Kirtner et al.'® is the squeezing ratio
that corresponds to a special optimum local oscillator.!?
On the other hand, we use the same pulse after it propa-
gates through the fiber as the local oscillator. Because
of such a difference, one should be careful in comparing
the results. To have a more commensurate comparison,
we have used the special optimum local oscillator in one
calculation for 100-fs solitons at 77 K with only the self-
Raman effect (see Fig. 4 in Ref. 18). We found that the
squeezing ratio indeed is smaller for a shorter propaga-
tion distance (<8 distance units) but becomes larger after-
wards. The maximum squeezing is ~16 dB. In other
words, in the presence of self-Raman effect, the use of
the special optimum local oscillator derived for ideal soli-
tons does not increase the achievable squeezing when the
propagation distance is long.

It should also be noted that the parameters used in
our or other groups’ calculations may have some uncer-
tainties. For example, the usual value for ny, = 3.2 X
10720 m2?/W was taken from the literature based on the
measurements in the visible wavelength.?* Recent mea-
surements for which two-photon nonlinear effects were
used indicates that the nonlinearity in the infrared may
be smaller. Values as low as ng = 2.4 X 1072 m?/W
have been reported for wavelengths of ~1.06 um. The
magnitudes of second- and third-order dispersions and the
percentages of instantaneous and noninstantaneous non-
linearities may also have their uncertainties. Neverthe-
less, such uncertainties and differences should cause only
small quantitative differences.

5. DISCUSSION

In this paper we have examined the influence of the self-
Raman effect and third-order dispersion on the achiev-
able squeezing ratio in squeezing experiments in which
optical fibers are used. Calculations were performed up
to a longer propagation distance at several pulse dura-
tions and temperatures. We find that in the presence of
the two effects, squeezing still survives but will reach a
limit as the propagation distance increases. Physically,
the reduction or the destruction of observed squeezing
can be attributed to three factors. First, the statistics
of quantum noises are changed because of the transfor-
mation of the self-Raman effect and third-order disper-
sion. Second, additional noises are introduced midway.
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Finally, the local-oscillator pulse shape is also changed
and may become more unmatched with the statistics of
quantum noises. To investigate more carefully the rela-
tive importance of the three factors and the possibility
of increasing observed squeezing with an optimized input
pulse and a local oscillator, we have also tried to use the
sech local-oscillator pulse shape and the optimum local-
oscillator pulse shape given in Ref. 12 for ideal solitons
(i.e., without the self-Raman effect and third-order disper-
sion). We find that, even though the detected squeezing
is larger for short propagation distances, if the optimum
local-oscillator pulse shape given in Ref. 12 for ideal soli-
tons is used, eventually the use of the output pulse as
the local oscillator gives the largest achievable squeezing.
This clearly shows that the optimum local-oscillator pulse
shape for ideal solitons is no longer optimum in the pres-
ence of the self-Raman effect. A more accurate deter-
mination of the optimum input pulse shape and optimum
local-oscillator pulse shape is an interesting research topic
to be addressed in the future.

In our calculation, other noise sources like guided-
acoustic-wave Brillouin scattering??® (GAWBS) is not
considered. Physically, GAWBS can be modeled in the
same way as in the inhomogeneously broadened case, ex-
cept that GAWBS has different resonance frequencies, dif-
ferent coupling strengths, and different relaxation rates.
As long as these characteristics are determined, they can
be easily incorporated into the calculation. In practice,
the effects of GAWBS can be eliminated or reduced by the
proper selection of a good fiber,! by high-frequency phase
modulation of the pump,? or by the use of a high pulse-
repetition rate.®> Nevertheless, because we do not include
GAWBS and other minor noise sources in the present
calculation, the results given in this paper represent the
ideal lower limit of squeezing ratio for squeezing experi-
ments with optical fibers.

The present status of squeezing experiments with op-
tical fibers is ~5-dB squeezing observed at the 1.3-um
wavelength. To observe experimentally or check the pre-
dictions of our calculation, the observed squeezing ratio
has to be pushed down further. It will be interesting to
see whether one can experimentally approach the limits
predicted here.
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