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Multistate and Multistage Synchronization
of Hindmarsh-Rose Neurons With Excitatory

Chemical and Electrical Synapses
Fang-Jhu Jhou, Jonq Juang, and Yu-Hao Liang

Abstract—The new phenomena of the multistate synchro-
nization of Hindmarsh-Rose (HR) neurons with both excitatory
chemical and electrical synapses over the complex network are
analytically studied. The regions for coupling strengths to achieve
local synchronization are explicitly obtained. Such regions are
characterized by the second largest eigenvalue of the electrical
connection matrix and the number of chemical signals each
neuron receives. The dynamics of the multistate synchronization
includes the coexistence of stable regular bursting and peri-
odic/steady-state behaviors. Our theory predicts that recurrent
networks formed by a certain cell types in layers 4 and 6 in cat
area 17 could lead to multistate synchronization. These are in
contrast with coupled oscillator systems or coupled map lattices
where only single-state synchronization is found. It should also
be noted that if the parameters of HR neurons are chosen re-
sulting in an irregular (chaotic) bursting, then the coexistence
state would contain chaotic attractor. Our method employed here
is quite general. For instance, it can be immediately applied to
other coupled nervous systems such as FitzHugh-Nagumo and
Morris-Lecar nervous systems. The analytical tools and concepts
needed include coordinate transformations, matrix measures,
monotone dynamics and time averaging estimates.

Index Terms—Chemical and electrical synapses, Hind-
marsh-Rose neurons, multistate synchronization.

I. INTRODUCTION

T HE fundamental building block of every nervous system
is the neuron. There is an increasing trend [1]–[3] towards

studying the dynamical behavior of relatively large networks
of neurons, and modeling/emulating such networks is also on
the rise. Neural synchronization has been suggested as partic-
ularly relevant for neuronal signal transmission and coding in
the brain. Brain [4]–[11] oscillations that are ubiquitous phe-
nomena in all brain areas eventually get into synchrony and con-
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sequently allow the brain to process various tasks from cogni-
tive to motor tasks. Indeed, it is hypothesized that synchronous
brain activity is the most likely mechanism for many cognitive
functions such as attention, feature binding, learning, develop-
ment, and memory function. In this paper, the new phenomena
of the multistate and multistage synchronization of Hindmarsh-
Rose neurons with excitatory chemical and electrical synapses
over the complex network are analytical studied.
In the last decades, many biological neuron models have been

proposed for an accurate description and prediction of biolog-
ical phenomena. The pioneering work in such direction is due
to Hodgkin and Huxley. To simplify such a model, simpler ap-
proximations, namely, the second order systems such as the
FitzHugh-Nagumo (FN) and Morris-Lecar neuron models have
been proposed. However, the second order models are not able
to reproduce some interesting phenomena such as terminating
themselves by triggering a set of stable firings. Hence, the Hind-
marsh-Rose (HR) model was added a third dynamical compo-
nent, whose role is to tune the above subsystem over the mono-
and bistability regions in order to activate or terminate the neu-
ronal response. The third order system of HR has turned out
to be accurate in capturing both qualitative and quantitative as-
pects of experimental data [12]–[15]. Furthermore, major neu-
ronal behaviors such as spiking, bursting, and chaotic regime
have been produced by such HR model [15]–[17].
In a human brain, there are about neurons with an ap-

proximate links between them. Neurons are sparsely con-
nected and their underlying network has small-world property
[10] though they are within only a few synaptic steps from
other neurons. Neurons in a population synchronize their ac-
tivity using electrical and chemical synapses with other neu-
rons in the same population as well as with neurons from other
populations. Note that the electrical coupling via gap junctions
is linear and directly depends on the difference of the mem-
brane potentials. And the chemical coupling is pulsatile and
often modeled as a static sigmoidal nonlinear input-output func-
tion with a threshold and saturation.
In this work, we study the multistate and multistage syn-

chronization in ensembles of electrically and chemically cou-
pled HR neurons whose connection topology with respect to
the electrical coupling is allowed to be complex including, e.g.,
Newman-Wattts networks, and whose coupling through chem-
ical synapse is unidirectional from presynaptic cell to the post-
synaptic cell. Bymultistate synchronization, wemean that given
a fixed set of parameters, the corresponding system is capable
of producing the coexistence of stable regular bursting and pe-
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riodic/steady-state synchronization, depending on the choice of
initial conditions. By varying certain parameters, if the associ-
ated system is capable of yielding different types of synchro-
nization such as chaotic, periodic, or steady-state synchroniza-
tion, then the system is said to exhibit the multistage synchro-
nization. Our main results contain the following. The regions
in terms of chemically and electrically coupling strengths for
local stability of the completely synchronous state in complex
networks of HR neurons are explicitly obtained. They depend
on the details of the topology of the electrically connected net-
work, the second largest eigenvalue of its associated connec-
tion matrix. However, only the number of chemical signals each
neuron receives is relevant in obtaining the regions. Moreover,
with the presence of both chemical and electrical synapses in
the network, the exhibition of multistate synchronization is pro-
vided. Our theory predicts that recurrent networks formed by a
certain cell types in layers 4 and 6 in cat area 17 could lead to
multistate synchronization. This is in contrast with coupled os-
cillator systems or coupled map lattices where only single-state
synchronization is observed. Since on the synchronous mani-
fold, the dynamics of the synchronous equation goes from reg-
ular bursting to periodic (spiking) to steady-state as one varies
the parameter . Consequently, the phenomenon of the mul-
tistage synchronization is also observed. Furthermore, the fol-
lowing information concerning synchronization of the system
can be extracted. First, it is shown that even without the elec-
trical coupling, the coupled neurons may reach stable steady-
state synchrony regardless of how sparsely the chemically cou-
pling network is coupled and that the minimum chemically cou-
pling strength is inversely proportional to the number of chem-
ical signals each neuron receives. If, in addition, the network
is also electrically coupled, then the minimum electrically cou-
pling strength to reach stable regular bursting synchronization
or multistate synchronization can also be explicitly computed.
Second, we provide a measurement of how densely coupled the
system should be so as to have the chemical synapses playing a
positive effect on achieving the synchrony of the system. Our
method employed here is quite general. For example, it can
be immediately applied to other single neuron models such as
the FitzHugh-Nagumo andMorris-Lecar models. The analytical
tools and concepts needed include coordinate transformations,
matrix measures, monotone dynamics, and time averaging esti-
mates.
The most closely related works to ours are those done by

Jalili [18], Kopell and Ermentrout [19], Belykh, Lange, and
Hasler [20], Checco, Righero, Biey, and Kocarev [21] andWang
etc., [22]–[24]. In [19], the single neuron model is a quadratic
integrate and fire. They obtained that the chemical and elec-
trical couplings play complementary roles in the coherence of
rhythms in inhibitory networks. In [20], densely coupled HR
system with only chemical coupling was studied. They demon-
strated the bound of the minimum chemical strength for ob-
taining the steady-state synchronization only depends on the
number of signals each neuron receives, independent of all other
details of the network topology. These two works used both nu-
merical and analytical techniques to address local synchroniza-
tion. Coupled HR system with only chemical coupling was also
investigated in [21]. They have found multistage synchroniza-

tion. However, the presence of multistate synchronization has
not been addressed there. Furthermore, their results are based
on the Master Stability Equation, which is numerical in na-
ture, whereas the results in [18], though the same model as
ours were studied, was numerical. The surprising new phenom-
enon of multistate synchronization was not mentioned there.
The work done in [22]–[24] dealt with only electrical coupling.
However, effects of delay on synchronization were investigated
there, where some interesting results are obtained when delays
are varied.
The paper is organized as follows. Section II is to lay down

the foundation of our paper. Some needed preliminaries, in-
cluding coordinate transformations and matrix measures are
recorded in the Appendix. The analysis leading to the main
result is recorded in Section III. The main results are contained
in Section IV. Some comparisons with existing methods are
addressed in the end of the section. Some concluding remarks
are provided in Section IV.

II. FORMULATION

The HRmodel was obtained by biological consideration over
the response to stimuli of a real neuronal cell. The motion of the
model reads as follows:

(1)

Here , is the membrane potential,
and are the recovery (fast) and the adaptation (slow) cur-
rent, respectively. The roles played by the system parameters
are roughly the following. mimics the membrane input current
for biological neurons; allows one to switch between bursting
and spiking behaviors and to control the spiking frequency;
controls the speed of variation of the slow variable and in
the presence of spiking behaviors, it governs the spiking fre-
quency, whereas in the case of bursting, it affects the number
of spikes per burst; governs adaptation; a unitary value of
determines spiking behavior without accommodation and sub-
threshold adaptation, whereas around give strong accom-
modation and subthreshold overshoot, or even oscillations;
sets the resting potential of the system. Hereafter, the parame-
ters are chosen and fixed as follows: , ,

, , and . The dynamics of the neuron with
such set of parameters is regular bursting (see, e.g., [14]). More-
over, the dynamics on the corresponding synchronous manifold
of the coupled HR neurons may generate multistability region
(see (5) and Table I) containing a stable regular bursting, a stable
periodic solution and a stable fixed point.
Neuronal synaptic connections are either chemical or

electrical, and chemical connections might be excitatory or
inhibitory. Moreover, the electrical coupling through gap
junctions is bidirectional, whereas the chemical synapse is
unidirectional from the presynaptic cell to the postsynaptic cell.
In fact, the current injected from the presynaptic cell to
the postsynaptic cell , is a nonlinear function of the membrane
potential of the presynaptic cell and a linear function of the
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TABLE I
THE DYNAMICS OF SYNCHRONOUS EQUATION (5) WITH VARIOUS RANGE OF . THE MULTISTABILITY OF (5) IS OBSERVED WITH

membrane potential of the postsynaptic cell. The current
has the following form:

(2a)

where is the strength of chemical coupling and is the
synaptic reversal potential. If , the current injected
to the cell is positive and depolarizes it, thus the coupling is
excitatory. On the other hand, for , the injected current
to the cell is negative and consequently hyperpolarizes it, thus
introducing inhibitory coupling. In this paper, we numerically
choose so that for all , thus the synapse is
depolarizing (excitatory). It is certainly interesting to justify
that such choice of is always possible.
The chemically synaptic coupling function is modeled by the

sigmoidal function

(2b)

where is the threshold and . The threshold is
chosen so that every spike in the single neuron burst can reach
the threshold. In the limit , the above sigmoid function
reduces to a Heaviside step function.
We are now in a position to consider a network of excitatory

HR neurons with bidirectional electrical coupling and unidirec-
tional excitatory chemical coupling. The equations of motion
are the following. For, ,

(3)

where

(4a)

(4b)

and

if ,
if

(4c)

Here represents the number of chemical signals each neuron
receives. Moreover, is the coupling strength for electrical
synapses via gap junctions, and coupling matrix is a sym-
metric matrix with vanishing row sums and nonnegative
off-diagonal entries. It should be noted that the symmetry of
is a biological assumption. From the mathematical side, our

analysis here is capable of treating unsymmetrical matrices
with both positive and negative off-diagonal entries. is the
connection matrix of the chemical coupling which is not neces-
sarily symmetric; if neuron receives synaptic current
(via chemical synapses) from neuron , otherwise .
The matrix has all row sums being zero and nonnegative
off-diagonal entries.
We next describe the synchronous equation of HR network

(3). On the synchronous manifold, its dynamics is governed by
the following equations:

(5)

To study local synchronization, we begin with the derivation
of the variational equation of (3) along the synchronous mani-
fold , , and , .
The equation is

(6)

where lies on the synchronous manifold of (3) and satisfies
equation (5).
In vector-matrix form, (6) becomes

(7a)

(7b)

(7c)
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To study synchronized HR neurons (3), we first apply a co-
ordinate transformation on so that the synchronous mani-
fold is isolated and the resulting matrix has a negative matrix
measure as possible. The structure of linear system (7a)–(7c) is
then explored so that the theory of some monotone dynamics
and time averaging estimates can be applied to make the linear
system asymptotically stable. Such approach is recorded in the
following section.

III. MATHEMATICAL TOOLS

To keep the technical parts of the paper minimum, all the
needed propositions to prove Theorem 1 of this section are
briefly indicated in the appendix.
To isolate the synchronous manifold, we consider the fol-

lowing class of coordination transformations, which is origi-
nated in [25]. Let

and be such that

(8a)

where . Define

(8b)

where . Then
. For any matrix whose row sums are all

equal to zero, we have that

where for any given matrix , we define

(8c)

Letting

...
...

...

and multiplying on both sides of (7a), we get

Let . Set . We have
that the dynamics of is now satisfied by the following
equation:

(9a)

Let and be similarly defined. Then their motions of dy-
namics read

(9b)

and

(9c)

Instead of calculating the transverse Lyapunov exponents
of the corresponding variational equation (6) of (3), we would
prove directly that the origin of (9a)–(9c) is asymptotically, ex-
ponentially stable. As a consequence, all transverse Lyapunov
exponents of (3) are negative.
In view of (9a), it is apparent that themore negative thematrix

measures (see the definition and the properties in the appendix)
of and are, the easier the origin of the system (9a)–(9c)
is to be made asymptotically stable. However, the choice of a
coordinate transformation [25] will greatly influence how neg-
ative the matrix measure of and could be. In the earlier
works, the choice of coordinate transformations is either

. . .
...

...
...

. . .
. . .

or

. . .
...

...
. . .

. . .
. . .

Note that both and are not in .
The drawback for the above choices is that even if is the

diffusive matrix with periodic boundary conditions, the corre-
sponding matrix measure of is positive whenever (see
[25, Table I]). If and is symmetric, then the cor-
responding matrix measure of stays negative regardless the
size of the system. (see [25, Theorem 1]).
Sufficient conditions to obtain the synchronization of coupled

HR system (3) are stated precisely in the following.
Theorem 1:
i) Assume satisfies synchronous equation (5). Let
be the second largest eigenvalue of coupling matrix .
Let , the matrix measure of with respect to
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2-norm. Here is defined in (8c). Set
and

(10a)

Define

if ,
if ,

(10b)

where is a constant and .
Let . Then coupled HR system
(3) is locally synchronized provided that

(10c)

ii) Assume that . Let
. Here is defined in (9a). Then system (3) is lo-

cally synchronized if all real parts of eigenvalues of

are negative.
Proof of Theorem 1: To obtain local synchronization of

(3), we study (9a)–(9c). Note that for excitatory HR neurons,
for all . Clearly, .

Here is defined in (10b). Then by Theorem 2 in the appendix,

(11a)

Moreover

(11b)

and

(11c)

Applying Proposition 2-(ii), we see that the first part of the
assertion of the theorem holds true provided the real parts of the
eigenvalues of

(12)

are negative. Indeed, the Routh-Hurwitz Criterion asserts that
it occurs whenever . So the first assertion of the
Theorem holds true.
The last assertion of the Theorem is a direct consequence of

Proposition 3.
If the steady-state synchronization is considered, then some

easier verifiable conditions than those stated in Theorem 1-(ii)
can be obtained.

Corollary 1: Let . Assume . Then
system (3) without electrical coupling is locally synchronized if
the real parts of the eigenvalues of are negative, where

(13)

Proof of Corollary 1: Note that with has the
following form:

Applying Proposition 4, we have that system (3) is locally syn-
chronized provided that

where
and , have all its eigenvalues with neg-

ative real parts.
Define matrix as

Then it can be proved by applying the Routh-Hurwitz Criterion
that for any , if all eigenvalues of have positive
real parts, then so do those of .
Upon using the above observation and the fact that , the

real parts of eigenvalues of , are negative, we conclude that
the assertion of the Corollary holds true.
Corollary 2: Let be a node-balancing matrix, i.e., its row

sums and column sums are equal. Assume .
Then system (3) is locally synchronized if all real parts of the
eigenvalues of , as given in (13), are negative.

Proof of Corollary 2: As in the proof of Corollary 1, it
suffices to show that all real parts of the eigenvalues of

are negative. However, by Theorem 2, we
have

. Thus,
the proof of the Corollary is completed.
Remark 1:
i) To acquire synchronization of coupled networks, the
second largest eigenvalue of the coupling matrix plays
an inescapable and decisive role. Indeed, in certain cases,
such as the system is fully coupled, the necessary and
sufficient condition [26] with for local synchro-
nization is



1340 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 59, NO. 6, JUNE 2012

Here is the largest Lyapunov exponent of the in-
dividual oscillator. In most of interesting networks,
becomes closer to the origin from the left as the number
of oscillators grows. Hence, it takes greater coupling
strengths to synchronize the larger system. In other cases,
such as the coupled map lattices, the system exhibits
the size instability phenomena, that is, the system with
the number of nodes greater than a certain critical value
loses its synchrony regardless how strong the coupling
strength is. Such size instability is induced by the compe-
tition between a certain eigenvalues, including , of the
coupling matrix (see [27]). We shall discuss some known
upper bounds for in Section IV.

ii) If the connection is symmetric, then is the second
largest eigenvalue of . It is easy to see that if the con-
nection network is all-to-all coupled, then ,

and so . It can be computed that the
denser the network is coupled, the larger is. Hence, is
an indicator of how densely coupled the system is. Note
also that . We shall call the density of the
coupling network.

To conclude this section, we remark on other existing
methods for acquiring synchronization of coupled oscillator
systems. The methods include but not limited to the master
stability function (MSF), Lyapunov function-based criteria, the
matrix measure approach and the partial contraction theory.
We refer to [25] for a discussion of our method with the
first three approaches described above. We next address the
similarity and difference of our approach here and those
obtained in [25], [28]. We have made use of the coordinate
transformation, which was originated in our earlier work
[25], to set up equations. In [25], an iteration scheme was
developed to show the origin of the corresponding (9a)–(9c) is
asymptotically stable. In this work, we introduce a monotone
dynamic approach to show that the system is asymptotically
stable, which simplifies the proof substantially. The partial
contraction theory [28] is a powerful yet general method to
study global synchronization. And its relationship with MSF
is addressed in [29]. In the language of authors [28], the
main limitation of the method is that the construction of
the auxiliary (virtual) system is not systematic. Instead of
constructing an auxiliary system, our approach is to apply
the contraction theory to (9a)–(9c) directly. Moreover, rather
than showing the system to be contracting, which requires
its corresponding Jacobian matrix to have a negative matrix
measure for all time , our approach also differs in
the following sense. First, we explore the structure of the
Jacobian matrix to give a finer analysis for which the resulting
matrix measure is negative. Second, we also examine the
possibility of weakening the contracting assumption on the
Jacobian matrix by using Proposition 1 in the appendix.
We also mention that the computation cost to verify the syn-

chronous conditions (10c) or (13) is very little as compared to
that of computing second Lyapunov exponent of the network.
Specifically, if HR system (3) is both electrically and chemi-
cally coupled, one needs to check the inequality (10c) to see if
the system is synchronized. To check the steady-state synchro-
nization, one only needs to verify the sign of the largest real part

of eigenvalues of a 3 3 matrix, , see (13), regardless of the
number of neurons.

IV. MAIN RESULTS

In the section, we shall focus on applying Theorem 1 and
Corollaries 1, 2 to coupled HR neurons (3) to extract more
detailed synchronization phenomena. To this end, we need to
know the dynamics on synchronous manifold.
i) Dynamics on synchronous manifold We begin with the

study of the dynamics of synchronous equation (5). Its dynamics
is to be provided numerically. For , , ,

, , and , the single HR neuron model,
i.e., , is capable of producing major neuronal behavior,
bursting (see, e.g., [17]). Furthermore, such neuron is excita-
tory, i.e., for all . We shall treat as a
bifurcation parameter. The corresponding dynamical behavior
of (5) is summarized in Table I. A similar result to Table I was
also reported in Fig. 2 of [21]. On the synchronous manifold,
the solution trajectory of (5), depending on initial condi-
tions and , may settle into various stable states. Fig. 1 pro-
vides the maximum Lyapunov exponent (MLE) of synchronous
equation (5) versus . For , there is a set of
initial conditions with positive measure for which their corre-
sponding MLE is positive. However, for ,
there is also a set of initial conditions with positive measure
for which its corresponding MLE is negative. For instance, if

, then there are sets of initial conditions
with positive measure so that the solution trajectories of (5) con-
verge to a stable periodic solution (see Fig. 2) and stable regular
bursting (see Fig. 3), respectively. Specifically, let
be the steady state of (5) (see, Fig. 4), and let

(14a)
and

(14b)

In fact, our numerical results suggest that the following hold.
Pick, for instance, . If the initial condition

is randomly chosen from (resp., ), then its
trajectory converges to a periodic orbit (resp., a stable regular
bursting) (see Figs. 2 and 3). Similarly, for ,
synchronous equation (5) also exhibits rich dynamics showing
the coexistence of stable multistates. Moreover, if ,
the numerical results suggest that the corresponding steady
state is locally stable. In fact, a direct calculation shows that
a Hopf bifurcation occurs near 0.813. Furthermore, if one
performs the linearized stability at the steady-state ,
then one sees that is stable whenever
(see Fig. 5). Such analysis of linearized stability provided some
supportive evidence for the validity of Table I.
In summary, the numerical results suggest that on the syn-

chronous manifold, for small, the regular bursting behavior
of single HR persists. For in an intermediate range, the
multistability of (5) occurs. Depending on initial conditions, the
coexistence of multistability states including a stable regular
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Fig. 1. The maximum Lyapunov exponent (MLE) of synchronous equation (5) is computed for various . For , MLE for a set of initial
conditions with positive measure. For , there is also a set of initial conditions for which its corresponding MLE .

Fig. 2. The solution trajectory with randomly chosen initial conditions from
converges to a stable periodic orbit. Here .

Fig. 3. The solution trajectory with randomly chosen initial conditions from
converges to a stable regular bursting. Here .

bursting and a stable periodic solution/a stable fixed point
could be observed. When becomes large, (5) has a globally
asymptotically stable fixed point. Such complex dynamical
behavior of synchronous equation (5) leads to the possibility
of stable multistate synchronization of coupled HR neurons
(3). If the initial conditions and the range of are so chosen
that the corresponding synchronous equation leads to a regular
bursting solution, then the associated coupled HR neurons (3)
achieves stable regular bursting synchronization. Likewise, we
define stable periodic synchronization and stable steady-state
synchronization accordingly. As we can see, via Table I, that
for , the coexistence of stable multistate
synchronization of coupled HR neurons (3) could be observed.
It should also be mention that the theory of weakly coupled
oscillators has often been used to analyze networks of neuron

Fig. 4. Fixed points for different values . The fixed point
tends to as tends to infinity.

Fig. 5. The maximum eigenvalue of the linearized operator with respect to the
synchronous equation (5) is computed for various .

coupled by small chemical synapses , see, e.g., [30], and
the many related work cited therein. Using this theory enables
one to obtain some extensive analytical insight. Furthermore,
the ups and downs of synaptic strength can be controlled.
For instant, -methyl-aspartate receptors can both boost and
dampen synaptic efficiency in the brain [31]. Such observations
give the justification for the consideration of small chemical
synapses .
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Fig. 6. The time series of and . The graphs demon-
strate the stable regular bursting synchronization. Here , initial

.

Fig. 7. The time series of and . The graphs demon-
strate the stable steady-state synchronization. Here , initial

.

A. Neurons With Only Chemical Synapse

In [20], a local steady-state synchronization of bursting neu-
rons with no electrical coupling is studied without providing
mathematical details. Moreover, their approach fails to see if
synchronization of neurons can be achieved when the networks
are intermediately and sparsely coupled. Their major contribu-
tion was to prove that the bound for achieving synchronization
of HR neurons depends only on the number of chemical sig-
nals each neuron receives, and is independent of all other de-
tails of the network topology. From (10a) and (10c), it is clear
that the larger the density of the network is, the greater chance
coupled HR neurons (3) gets synchronized. In the following, we
shall prove that the system of coupled HR neurons (3) achieves
steady-state synchronization regardless how sparsely the net-
work is coupled provided that .
By Corollary 1, it suffices to show that the maximum real part

of eigenvalue of matrix defined in (13) is negative.
From Fig. 5, we see that whenever .
Upon taking into consideration of the dynamics on synchronous
manifold as provided in Table I, we have the following conclu-
sion.
Coupled HR neurons (3) with achieves the steady-state

synchronization for a set of initial conditions with positive mea-
sure whenever regardless how sparsely the net-
work is coupled, which improves the result obtained in [20].
Moreover, the system acquires the steady-state local synchro-

nization for all initial conditions sufficiently close to each other
whenever .
Numerically, the following scenarios are also observed.

Coupled two HR neurons achieves synchronization only when
. Stable regular bursting and steady-state synchro-

nization is found on a set of initial conditions with positive
measure, respectively, whenever . Such numerical
results are illustrated in Figs. 6 and 7.

B. Neural Synchronization With Only Electrical Synapse

For , by Theorem 1, we obtain stable regular bursting
synchronization whenever .
Consider, for instance, a ring of -nearest-neighbor mutually
coupled networks, the predicted minimum electrical coupling
strength is computed with the number of neurons and
being given. Note that in such case

(15a)

The results are listed in Table II. For instance, given a number
of neurons, it takes the electrical coupling strength

or greater to reach synchrony for a network with the
nearest-neighbor coupling. It only takes or greater
to do so for an all-to-all network. If the coupling matrix is of
high dimension and without fine structure for computers to be
able to calculate its second largest eigenvalue effectively, one
may use some known estimates to find the upper bound of .
For instance, we have that (see, e.g., [32])

(15b)

where is the mean distance of the graph associated with
. Upper bounds for by using (15b) are listed in the

Table II, too. For , the upper bounds of are
and 65 640, respectively, for a network with the

nearest-neighbor coupling and all-to-all coupling. In a nutshell,
connecting each neuron to more neighbors is an effective way
for large-size networks to lower the synchronization threshold.
The upper bound for in (15b) is quite good for the sparsely

coupled networks. Indeed, in the case of the nearest-neighbor
coupling, the exact value of and its estimated upper are both

. On the other hand, if the network is densely coupled,
the upper bound in (15b) gives a poor estimate for . Never-
theless, if one picks other type of upper bound for , better
estimates could be expected. For example, it is also known, see,
e.g., [33], that

(15c)

where is such that is negative semidefinite.
Here is the Laplacian matrix of the complete graph, i.e.,

, where is given as in (8b). For the all-to-all cou-
pling, it is readily verified that with is neg-
ative semidefinite. Consequently, the equality in (15c) can be
achieved, which yields the best possible estimate.
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TABLE II
THE FIRST COMPONENT OF THE PAIR GIVES THE PREDICTED MINIMUM ELECTRICAL COUPLING STRENGTH BY USING THE EXACT VALUE OF .
FOR INSTANCE, WITH , , THE PREDICTED MINIMUM ELECTRICAL COUPLING STRENGTH IS . THE SECOND

COMPONENT OF THE PAIR IS THE UPPER BOUND OF BY USING (15b)

Fig. 8. The shaded area is the synchronization region satisfied by (16) and
.

C. Neural Synchronization With Both Excitatory Chemical
and Electrical Synapses

In this subsection, networks with both excitatory electrical
and chemical connections are considered. To extract more in-
formation on synchronization of the system, we further assume
to be a node-balancing matrix. We first observe that

and for all . So , defined in (10b), is decreasing
in . If

(16)

then (10c) is also satisfied. The synchronization region sat-
isfying(16) and is demonstrated in Fig. 8. That
is to say, if is chosen from the shaded region in
Fig. 8, then multistate or single-state synchronization can be
realized depending on the range of . Consider, for instance,
coupled two HR neurons. Let and . If

(resp., ), , as given in
(14a) [resp.,(14b)], and are distinct, then the stable periodic
(resp., stable regular bursting) synchronization occurs (see
Figs. 9 and 10).
We further observe that there exists a such that

(resp., ) whenever (resp.,
) (see Fig. 8). Here . Hence, both

chemical and electrical synapses enforce the synchronization
phenomena whenever . For , the chemical
synapses play dragging roles for system to reach synchrony. To
synchronize, the electrical synapses have to be strong enough to

suppress the dragging force created by chemical synapses. Such
is called a turning point for .
We are then led to compute turning points for (see Fig. 11).

For the corresponding turning points are
. Hence, for , if the density of the cou-

pling network is at least , then chemical synapses can also
enforce the synchrony of the system.
To summarize, a synchronization region is obtained in

Fig. 8. Particularly, multistate synchronization of coupled HR
neurons can be realized whenever and

lies in the synchronization region. Furthermore,
for , if the density of the coupling network
is at least , then chemical synapses can enforce the
synchrony of the system.
To conclude this section, we will elaborate more on some

crucial points.
i) As evidence in Table I, the multistable state, which de-
pends on the choice of the initial conditions exist in excita-
tory HR neuron. In fact, other choice of parameters, such
as , , , , , would
result the neurons burst irregularly (chaotically). Under
such circumstance, the presence of both stable chaotic at-
tractor and stable periodic state can be detected. And our
approach can be applied to the above described scenario
as well.

ii) From inequality (10c), we see that the denser the coupling
network is, or equivalently, the larger the density is, the
easier the system gets synchronized.

iii) We mention that free packages SLEPc developed by V.
Hernáendez, J. E. Román, A. Tomás, and V. Vidal [34]
can be used to compute efficiently.

iv) In vivo experiments, the strength of an excitatory
mono-synaptic connection has a biologically realistic
value (see e.g., [35]). Using such
and our theory, we may conclude that if the number

of presynaptic neurons that connect to a single cortical
neuron is greater than 1319 and in between 1226 and
1288, then the system may reach steady-state synchro-
nization and multistate synchronization, respectively. It
should be mentioned that the quantitative description of
the circuit of cat area 17 is given in [35]. In cat neocortex,
recurrent networks formed between layer pyramidal
neurons could form a network that satisfies ,
which could lead to steady-state synchronization. We
further consider the combination of three cell classes,
pyramidal and basket neurons in layer 4 (p4 and b4), and
pyramidal neurons in layer 6 with the preferred layer
L5/6 of the axonal innervation (p6(L5/6)). The average
number of three presynaptic cell types mentioned above
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Fig. 9. The time series of and . The graphs demonstrate the stable periodic synchronization. Here , , initial

and .

Fig. 10. The time series of and . The graphs demonstrate the stable regular bursting synchronization. Here , , initial

and .

is roughly 1256.4. Our theory then predicts that recurrent
networks formed by p4, b4 and p6(L5/6) could lead to
multistate synchronization.

V. CONCLUSIONS

Synchronization of coupled HR neurons over complex net-
works with excitatory chemical and electrical synapses is ana-
lytical studied. Particularly, multistate and multistage synchro-
nization is observed with the presence of both chemical and
electrical synapses. A measurement for the density of the net-
work is introduced to ensure that chemical synapses play pos-
itive effects on the synchronization of the system of coupled
neurons. We conclude this work by mentioning the possible fu-
ture work. It would be interesting to analytically study the rich
dynamical behavior of synchronous equation (5). Numerically,
one sees that coupled HR neurons are capable of producing
multistage synchronization even without the help of electrical Fig. 11. Turning points of .
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synapses. It is worthwhile to give a rigorous proof. It should also
be worthwhile to study HR neurons with inhibitory chemical
and electrical synapses. Our numerical work seems to suggest
that such system would exhibit the multistage synchronization
while the multistate synchronization is lost.

APPENDIX

Definition 1 [36]: Let be an induced matrix norm on
. The matrix measure of matrix on is defined to

be .
Lemma 1 [36]: Let be an induced k-norm on ,

where . Then each of matrix measure ,
, of matrix on is, respectively,

Here is the maximum eigenvalue of .
Theorem 2 [36]: i) , ; ii)

; iii) If is an eigenvalue of ,
then ; iv) Consider the differential equation

, , where , , and
are piecewise-continuous. Let be a norm on

, and , denote, respectively, the corresponding induced
norm and matrix measure on . Then whenever ,
we have

In our derivation of synchronization of system (3), we need
a function being of type K, which generates a monotone dy-
namics, and a Lyapunov order number of the system of linear
differential equations. For completeness and ease of the refer-
ences, we also recall the definitions of the above described con-
cepts and their properties [36]–[38].
Let

be the nonnegative cone. Let . We write
if .

Definition 2: We say that a function
is of type K on if, for each ,

whenever and are in with
and .

The following theorem amounts to saying that a vector field
being of type K is a sufficient condition to generate a monotone
dynamics.

Theorem 3 [38]: Let be of type K on for each
fixed and let be a solution of on . Let

be continuous on and satisfy . Here

. Then
for provided that .
Consider a function for . A number is called a

Lyapunov order number [37] for if, for every , there
exist positive constants and such that

Consider linear system of differential equations in the homoge-
neous case

(17)

Here is a matrix. Clearly, the nontrivial solu-
tions of (17) have Lyapunov order numbers . Let

. Then is called the Lyapunov
order number of the system.

Proposition 1 [37]: (i) If for all large
, then the Lyapunov order number for is equal to

.
(ii) If is continuous for , then a sufficient condition

for every nontrivial solution of (17) to possess an order
number is that be bounded, in which case,

.
The following propositions, which, among other things, make

use of time average estimates, play critical steps in obtaining our
main results.

Proposition 2: i) Suppose , and are nonneg-
ative functions on satisfying the following inequalities:

(18a)

(18b)

(18c)

Here , , are nonnegative functions on

and . Then ,
, and converge to zero exponentially provided that

, for some , where

(19)

ii) Suppose, in addition, that, , , are constants.
Then , , and converge to zero exponentially pro-
vided that all eigenvalues of are negative.

Proof: Let , and satisfy the following equa-
tion:
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It is easily checked that the above system is of type K. It follows
from Theorem 3 that , , and ,
for all . Using Theorem 3, and Proposition 1-(ii), we see
that the first statement of the proposition holds as claimed. The
second assertion of the proposition is obvious.

Proposition 3: Let . Here is an ma-
trix. Suppose . Then converges to the
origin exponentially provided that all real parts of eigenvalues
of are negative.

Proof: For any , there is a such that can be
decomposed into a Jordan form of the form, see, e.g., [39, p.
128],

where is a diagonal matrix with the diagonal entries being all
the eigenvalues of , and is a matrix with its entries being
either 0 or 1. Then
. It follows

.
Since , we get

whenever for some . Hence,

By the arbitrariness of , take . Then, we
have

Thus, all solutions of converges to the
origin, and so are those of .

Proposition 4: Let and be matrices of dimension
and , respectively, and be the identity matrix.

Let , , be all the eigenvalues of . Then the real
parts of the eigenvalues of

are negative provided that all real parts of the eigenvalues of
matrices

are negative.
Proof: For any , there is such that

where is a diagonal matrix with the diagonal entries being all
the eigenvalues of , and is a matrix with its entries being
either 0 or 1. Then

By taking sufficiently small, we get real parts of the eigen-
values of

are negative iff those of

(20)

are negative. Then, the proof is completed by noting
that after some permutation, matrix in (20) becomes

, where , for some .
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