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Adaptive Vehicle Detector Approach
for Complex Environments
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Abstract—In this paper, a vehicle detection approach for com-
plex environments is presented. This paper proposes methods for
solving problems of vehicle detection in traffic jams and complex
weather conditions such as sunny days, rainy days, cloudy days,
sunrise time, sunset time, or nighttime. In recent research, there
have been many well-known vehicle detectors that utilize back-
ground extraction methods to recognize vehicles. In these studies,
the background image needs to continuously be updated; other-
wise, the luminance variation will impact the detection quality.
The vehicle detection under various environments will have many
difficulties such as illumination vibrations, shadow effects, and ve-
hicle overlapping problems that appear in traffic jams. The main
contribution of this paper is to propose an adaptive vehicle detec-
tion approach in complex environments to directly detect vehicles
without extracting and updating a reference background image
in complex environments. In the proposed approach, histogram
extension addresses the removal of the effects of weather and
light impact. The gray-level differential value method is utilized to
directly extract moving objects from the images. Finally, tracking
and error compensation are applied to refine the target tracking
quality. In addition, many useful traffic parameters are evaluated.
These useful traffic parameters, including traffic flows, velocity,
and vehicle classifications, can help to control traffic and provide
drivers with good guidance. Experimental results show that the
proposed methods are robust, accurate, and powerful enough to
overcome complex weather conditions and traffic jams.

Index Terms—Histogram extension (HE), tracking compensa-
tion, tracking, traffic jam, vehicle detection.

I. INTRODUCTION

W ITH the growing number of vehicles, traffic informa-
tion increasingly becomes important for drivers. Many

approaches have been proposed for tackling related problems
in intelligent transportation system (ITS). Wang [1] proposed
a joint random field (JRF) model for moving vehicle detection
in video sequences. The proposed method could handle moving
cast shadows, lights, and various weather conditions. However,
the method did not recognize vehicle classification and velocity.
Tsai et al. [2] presented a novel vehicle detection approach for
detecting vehicles from static images using color and edges.
This method introduced a new color transform model to find
important “vehicle color” for quickly locating possible vehicle

Manuscript received September 2, 2010; revised April 21, 2011 and
August 9, 2011; accepted December 3, 2011. Date of publication February 3,
2012; date of current version May 30, 2012. This work was supported in part by
the National Science Council, Taiwan, under Contract NSC 100-2221-E-009-
041. The Associate Editor for this paper was A. Amditis.

The authors are with the Institute of Electrical and Control Engineering, Na-
tional Chiao Tung University, Hsinchu 30050, Taiwan (e-mail: jackie_juang@
springsoft.com; bwu@cc.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2011.2181366

candidates. This method could also detect vehicles in various
weather conditions, but it did not address resolutions on traffic
jams and shadow reduction. Zhang et al. [3] developed a mul-
tilevel framework to detect and handle vehicle occlusion. The
proposed framework consisted of intraframe, interframe, and
tracking levels to resolve the occluded vehicles. Neeraj et al. [4]
gave a method for segmenting and tracking vehicles on high-
ways using a camera that was relatively low. Melo [5] described
a low-level object tracking system that produced accurate ve-
hicle motion trajectories, which could further be analyzed to
detect lane centers and classify lane types. A lane-detection
method that was aimed at handling moving vehicles in traffic
scenes was proposed by Cheng et al. [6]. A new background
subtraction algorithm based on the sigma–delta filter, which
was intended to be used in urban traffic scenes, was presented in
[7]. An example-based algorithm for moving vehicle detection
was introduced in [8]. In addition, many approaches have been
proposed for tackling related problems in ITS. The model-
based approach [9] uses a 3-D model to detect vehicles. In
this method, different models that correspond to different types
of vehicles are created. Song et al. [10] and Koller et al. [11]
used an active contour method to track vehicles. In this method,
the vehicles could easily be tracked, and computation loading
could significantly be reduced. However, system initialization
was a critical risk. Coifman [12] developed a vision-based sys-
tem with gradient operator to detect subcorner features of the
vehicles and grouped these features to detect the vehicles. The
advantage of this method was that it was less sensitive to change
in illumination. On the other hand, this method could meet
the challenge of determining grouping conditions. Wang et al.
[13], detected the motion information of the spatial–temporal
wavelet of video sequence. Cucchiara et al. [14] integrated
moving edge detection and headlight detection into a hybrid
system. This system worked not only during the day but also
at night. Unlike most methods referring to background image,
they used a three-image difference to detect moving edge.
This method reduced both the dependence on background and
the time of background learning. However, noise affected the
system to a great extent. Background segmentation was one
approach for extracting the common part between different
images in a frame. With good flows of learning and updating,
objects could more completely be extracted. Beymer et al. [15]
proposed a vehicle-tracking algorithm to estimate traffic para-
meters using corner features. In addition, Liao et al. [16] used
entropy as an underlying measurement to calculate traffic flows
and vehicle speeds. Baker et al. [17] proposed a 3-D model-
matching scheme to classify vehicles into various types, such as
wagons, sedan, and hatchback. Furthermore, Gupte et al. [18]
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proposed a region-based approach to track and classify vehicles
based on the establishment of correspondences between regions
and vehicles. In [15], [18], and [19], a manual method of camera
calibration has been presented to identify lane locations and
corresponding lane widths.

Finally, many recent ITS-related studies have been proposed.
Bartin [20] proposed a case study where the objective was to
identify the optimal subset of routes for real-time traveler in-
formation in a highway network. Xie [21] developed a privacy-
aware monitoring system (PAMS) that worked as an aggregate
query processor that protected the location privacy of drivers
as it made the IDs of cars anonymous. Chang [22] presented
a regulator to track the optimal vehicle-detector location in
a variety of traffic conditions and an algorithm to adjust the
detected data from the original fixed detector as if they were
detected by the detector at its time-dependent optimal location.
Randeniya et al. [23] presented the results of an effort where
position and orientation data from vision and inertial sensors
were integrated and validated using data from an actual road-
way. Kanhere [24] presented a taxonomy for roadside camera
calibration that not only encompassed the existing methods
[two vanishing points and known width (VVW), one vanish-
ing point, known width and camera height (VWH), and one
vanishing point, known width and length (VWL)] but included
several novel methods [two vanishing points and known camera
height (VVH), two vanishing points and known length (VVL),
one vanishing point, known length and camera height (VLH),
two vanishing points, known distance to the road (VVD), one
vanishing point, known width, and distance (VWD), and
one vanishing point, known height, and distance (VHD)] as
well. Wang [25] proposed an overview of the background,
concepts, basic methods, major issues, and current applica-
tions of parallel transportation management systems (PtMS).
Liu [26] introduced a queuing network-based computational
model to explain driver performance in a pedestrian-detection
task assisted with night vision enhancement systems. Ghods
[27] tackled the problem of real-time optimal control of traffic
flow in a freeway network deployed with coordinated and
integrated traffic controllers. Alvarez et al. [28] proposed a
novel approach to vision-based road detection that was robust
to shadows.

Although there were many studies on vehicle detection, few
research proposed methods for solving problems of detecting
vehicles in various complex environments, particularly in traffic
jams that frequently occur in practical traffic conditions. The
vehicle detection under various environments will meet many
difficulties such as illumination vibrations, shadow effects and
vehicle overlapping problems that appear in traffic jams. In
this paper, an adaptive vehicle detection approach for com-
plex environments is proposed for solving problems of vehicle
detection in traffic jams and complex weather conditions like
sunny days, rainy days, sunrise, sunset, cloudy days, fog, or at
night. Histogram extension (HE) addresses how we can remove
effects of weather and light impact. The gray-level differential
value method (GDVM) is used to dynamically segment moving
objects. Finally, tracking and error compensation are applied
to refine the target tracking quality. In addition, many useful
traffic parameters are evaluated from the proposed approach,

Fig. 1. System overview of the proposed approach.

Fig. 2. Source image and its ROI.

including traffic flows, velocity, and vehicle classifications.
These useful parameters can help in controlling traffic and
provide drivers good driving guidance.

This paper is organized as follows. Section II addresses the
system overview. Section III shows the HE method, which
makes images from various environments similar to each other.
Dynamic moving object segments, including GDVM and the
tracking procedure, are presented in Section IV. Finally, exper-
imental results are given in Section V, and the conclusion is
presented in Section VI.

II. SYSTEM OVERVIEW

Fig. 1 shows the system overview of the proposed approach.
There are several steps in the flowchart. First, images are
normalized by HE. Second, moving objects are dynamically
segmented by GDVM. Next, vehicle candidate detection, ve-
hicle tracking, and error compensation are applied. Finally,
the traffic parameters are evaluated and updated. To reduce
computing loads, all algorithms are applied only in the region
of interest (ROI), as shown in Fig. 2. In the proposed system,
a monocamera is installed to capture the full color images. The
viewing angle is the front view. The camera has fixed height
and viewing angle.

III. HISTOGRAM EXTENSION

Input image frames in various environments have various
properties. These fluttering properties may damage the detec-
tion quality. In practical conditions, a vehicle detection system
must work well in all kinds of complex environments. Different
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Fig. 3. LNMS.

environments produce different light effects that make vehicle
detection hard to work well. HE is a method that removes the
effects of weather and light impact.

The first step for the HE method is to decompose a true-
color image into its red–green–blue (RGB) components and
calculate the histogram in the ROI for each component. Next,
linear normalization with mean shift (LNMS) is applied to
normalize the source images. There are several steps for the
LNMS method. First, the original mean value of all pixels,
denoted as mp in (1), shown below, is shifted to 128. Next, α
and β, which are defined as shifting parameters in (2), shown
below, are calculated for the left and right zones, respectively,
as shown in Fig. 3. Finally, all gray levels that correspond to
gray-level counts, denoted as iL(s) in the left zone and iR(s)
in the right zone, are normalized to the new ones, denoted as
niL(s) and niR(s). In (3), shown below, iL(s) is the original
gray level that corresponds to the gray-level count in the left
zone, iR(s) is the original gray level that corresponds to the
gray-level count in the right zone, niL(s) is the shifted gray
level that corresponds to the gray-level count in the left zone,
and niR(s) is the shifted gray level that corresponds to the gray-
level count in the right zone. We have

mp =

255∑
i=0

i × s(i)

255∑
i=0

s(i)
(1)

Fig. 4. Experiment scenarios for different weather conditions. (a) Sunny.
(b) Daytime. (c) Evening. (d) Cloudy. (e) Blurred. (f) Rainy.

where i is the gray-level value, and s(i) is the pixel count in
gray level i. In addition

α =
128
mp

β =
128

255 − mp
(2)

niL(s) = iL(s) × α

niR(s) = iR(s) × β. (3)

When LNMS is applied to each component of RGB, the new
mean values of R, G, and B will approach 128. In addition, the
gray-level scale in the left zone is smoothly normalized to 0
and 128, and the gray-level scale in the right zone is smoothly
normalized to 128 and 255.

The experimental cases for proving the performance of
LNMS are shown in Fig. 4. There are six test sceneries, in-
cluding sunny, daytime, evening, cloudy, blurred, and rainy. The
root mean square error (RMSE) in (4), shown below is utilized
to compare the differences between two images in different
testing scenarios. In (4), Ef is defined as the RMSE of two
images f1 and f2. f1(x, y) and f2(x, y) are defined as the pixel
value at (x, y) in f1 and f2

Ef =

√√√√ 1
MN

M−1∑
x=0

N−1∑
y=0

[f1(x, y) − f2(x, y)]2 (4)

where M is the height of the image, and N is the width of
the image. Table I lists the RMSE comparisons among different
scenarios before applying HE, and Table II lists the comparison
of images after applying HE. Based on the experimental results,



820 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 2, JUNE 2012

TABLE I
COMPARISON OF THE RMSE OF SOURCE IMAGES AMONG

VARIOUS WEATHER CONDITIONS (LUMINANCE Y )

TABLE II
COMPARISON OF THE RMSE OF IMAGES APPLYING HE AMONG

VARIOUS WEATHER CONDITIONS (LUMINANCE Y )

all source images can significantly reduce the light effects. This
benefit simplifies system-parameter setting, noise reduction,
and moving object segments. In addition, HE makes the system
more robust to overcome problems in complex environments.

IV. DYNAMIC MOVING OBJECT SEGMENT

AND TRACKING PROCEDURE

There are several steps to track vehicles in the proposed
vehicle detector. First, GDVM is used to dynamically segment
moving objects. Second, vehicle candidates can be extracted
from the moving objects by merging fractal objects or splitting
mismerged objects. Next, a tracking procedure is used to guar-
antee the detection quality, including filtering noises. Finally,
to improve the accuracy of traffic parameters and ensure the
stability of the tracking flow, a tracking compensation method is
also proposed. In a vehicle detector, the desired moving objects
should be segmented from the road surface. To segment the
correct moving objects fast without using background concepts,
GDVM among the R, G, and B components is applied in the
proposed system.

A. Dynamically Segmenting Moving Objects

GDVM is used to segment moving objects from the back-
ground. Gray road surface and white or yellow lane marks
are assumptions in GDVM. The remaining colors are taken as
moving objects on the road. For gray, white, and yellow, ∆RG,
∆RB, and ∆GB are small in (5), shown below. In practical
cases, most nongray cars, including white and black cars, can
be segmented by (6), shown below. To extract gray-like cars,
because the luminance Y of white cars is higher and the Y of
dark cars is lower than the road surface, the Y value of the road
surface always locates by excluding the range between the two
threshold values. The green component G of the RGB model
contributes around 60% to Y . Therefore, the G value can be
adopted to reduce the computation loading, and gray-like cars
can be segmented by compensating for the moving objects. In

(6), a true color image can be transformed to a binary moving
object at (x, y), which is denoted as MO(x, y)

∆RG(x, y) = |R(x, y) − G(x, y)|
∆RB(x, y) = |R(x, y) − B(x, y)|
∆GB(x, y) = |G(x, y) − B(x, y)| (5)

MO(x, y) =




1

∆RG(x, y) > THRG and
∆RB(x, y) > THRB and
∆GB(x, y) > THGB or
(THlow ≥ G(x, y) or
G(x, y) ≥ THhigh)

0 otherwise.

(6)

In (6), THRG, THRB , and THGB are thresholds for ∆RG,
∆RB, and ∆GB. THlow and THhigh are thresholds for
G(x, y) The threshold values in (6) are determined by applying
an adaptive thresholding procedure. We take the calculation of
THRG as an example. In (7), shown below, fRG(x, y, n) is
assigned to 1 when ∆RG(x, y) = n. Next, the filtered differ-
ence distribution FDRG(n) in (9), shown below, can be derived
by calculating DRG(n), which is a difference distribution, as
in (8), shown below. In (9), 2p + 1 is the filter order of the
specified moving average filter. Finally, THRG in (11), shown
below, can be obtained by calculating the Laplacian operator in
(10), shown below:

fRG(x, y, n) =
{

1, ∆RG(x, y) = n
0, otherwise

(7)

DRG(n) =
M−1∑
x=0

N−1∑
y=0

fRG(x, y, n) (8)

FDRG(n) =

n+p∑
i=n−p

DRG(i)

2p + 1
(9)

∇2FDRG(n) = FDRG(n + 1) − 2FDRG(n)
+ FDRG(n − 1) (10)

THRG = min
n

(
arg

(
∇2FDRG(n) = 0

))
. (11)

The same calculations are applied to obtain THRB , THGB ,
THlow, and THhigh, as in (12), shown below, respectively

THRB = min
n

(
arg

(
∇2FDRB(n) = 0

))

THGB = min
n

(
arg

(
∇2FDGB(n) = 0

))

THlow = min
n

(
arg

(
∇2FDG(n) = 0

))

THhigh = max
n

(
arg

(
∇2FDG(n) = 0

))
. (12)

Finally, the example for applying GDVM is illustrated in Fig. 5.

B. Detect Vehicle Candidates by Merging and
Splitting Moving Objects

In practical conditions, a vehicle candidate may be broken
into several moving objects in the MO(x, y) domain. On the
other hand, two or more closing vehicles may incorrectly be
detected as one moving object. Methods of merging and split-
ting moving objects should be applied to more precisely detect
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Fig. 5. Examples for applying GDVM. (a) Original image in common traffic.
(b) Segmented result. (c) Original image in jams. (d) Segmented result.

Fig. 6. Example of MBBR by merging RBBs.

vehicle candidates. There are several steps for these methods.
First, the merge boundary box rule (MBBR) is applied to merge
the moving objects. The moving objects may be detected as
many small rectangle boundary boxes (RBBs) in MO(x, y).
MBBR is a method of merging the overlapped RBBs into a
large box. When two RBBs overlap, a new RBB is rebuilt to
combine and replace the two old RBBs. In Fig. 6, when two
RBBs, which are denoted as RBB1 and RBB2, overlap, they
are merged into a new RBB, RBB4. In a recursive way, RBB5
is created by merging RBB3 and RBB4. Finally, MBBR is
stopped when all overlapped RBBs are merged.

After applying MBBR, fractal moving objects are merged as
more solid ones, as shown in Fig. 7. There are several attributes
for determining a moving object as a vehicle candidate, includ-
ing the width, height, width/height ratio, and density of the
moving object. When moving objects have suitable attributes,
they are identified as vehicle candidates. Otherwise, they are
further merged or split. If the attributes of moving objects
exceed the limit and cannot be merged or split, they are filtered
as noise. These attributes of moving objects are influenced
by various practical testing environments, including camera
settings, image resolutions, and viewing angles. The testing
conditions for various environments are listed in Table IV.

When a vehicle is broken into several moving objects, some
conditions should be met. First, the adjacent moving objects
should have similar width and density. Second, the two moving
objects should be shown as close. Next, the new merged moving
object should have suitable attributes, including width, height,
and density. Once they meet these conditions, the moving
objects should be merged as a new moving object.

Fig. 7. Example of merging fractal moving objects by MBBR.

Fig. 8. Vertical projection gap between closing vehicles.

When two vehicles are too close and are mismerged as one
moving object, they should be split into two or more moving
objects. The steps for detecting and resolving the mismerged
moving objects are listed as follows:

Step 1. Check if the moving object is a mismerged moving
object. A mismerged moving object has improperly large
height H , width W , H/W ratio, and density. If it is a
mismerged moving object, go to step 2. If it is not a
mismerged moving object, the step is terminated for the
moving object.

Step 2. Find the gap in the vertical histogram projection of
the moving object in Fig. 8. First, a low-pass filter (13),
shown below, is applied to the vertical histogram projec-
tion, where vp(n) is the histogram value at n, and vp∗(n)
is the filtered histogram value. Second, a sliding window is
used to gain the sum of the vertical histogram svp(n) at n
with 2M + 1 points in (14), shown below. Next, ssvp(n)
in (15), shown below, which is also similar to a sliding win-
dow, is calculated based on svp(n) at n. The gap position,
which is denoted as ngap, can be derived by checking the
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Fig. 9. Examples of merging and splitting moving objects. (a) Before merging
moving objects. (b) After merging moving objects. (c) Before splitting moving
objects. (d) After splitting moving objects.

minimum ssvp(n) for all n in (16), shown below. Finally,
the mismerged moving object is split by the gap as

vp∗(n) =

N∑
i=−N

vp(n + i)

2N + 1
(13)

svp(n) =
M∑

i=−M

vp∗(n + i) (14)

ssvp(n) =
X∑

i=−X

svp(n + i) (15)

ngap = argn (min (ssvp(n))) (16)

where 2N + 1, 2M + 1, and 2X + 1 are the filter orders.
Step 3. All moving objects and the new split moving objects

should repeatedly be checked from step 1 until all moving
objects are evaluated.

Fig. 9 shows an example of merging and splitting moving
objects. In Fig. 9(a), the vehicle in the middle lane is mis-
recognized as two moving objects. They are merged as one
vehicle candidate, as shown in Fig. 9(b). In Fig. 9(c), the
vehicles in the middle lane are misrecognized as one moving
object. They are split into two vehicle candidates, as shown
in Fig. 9(d).

C. Track Vehicles With Error Compensation and
Update Traffic Parameters

Before applying the tracking procedure, a lane mask that was
automatically built through our prior study [19] is shown in
Fig. 10(a). Meaningful traffic parameters can be updated based
on the detection of the lane mask. In addition, the data structure
of a tracking target should be well defined for collecting the
traffic parameters. These attributes, as shown in Fig. 10(b), are
listed as follows.

1) Coordinates of the left-bottom PLB and the right-top
PRT . The width W , height H , and gravity PG of the
tracked target can be gained by calculating PLB and PRT

in (17).

Fig. 10. Setting for tracking targets. (a) Lane masks built through [19].
(b) Attributes of tracked targets.

2) Bounding box formed by PLB and PRT . A vector of
TA(x,y) is defined as the color value of (x, y) in the
bounding box formed by PLB and PRT . In the initial
state, all pixels in TA are set to [−1,−1,−1]T . When
a target is tracked, TA will be updated with (18). TA
will be referred to in the error compensation procedure.

3) Located lane. The located lane can be used for calculating
traffic information in each lane.

4) Tracking and mistracking counts. The tracking count is
denoted as n, and the mistracking count is denoted as m.

5) Current and average velocity. The current velocity of
the tracking target is denoted as V C = [VCX , VCY ], and
the average velocity is denoted as V M = [VMX , VMY ],
which is derived from (19), shown below

W =PRT (x) − PLB(x)
H =PRT (y) − PLB(y)

PG =
(PLB + PRT )

2
(17)

TAn(x, y) =
n − 1

n
TAn−1(x, y) +

1
n

Pn(x, y) (18)

where n is the tracking count, TAn(x, y) is the color
value of (x, y) at tracking count n, and Pn(x, y) is the
color value in the original frame at tracking count n.
We have

VM (n) =
n − 1

n
VM (n − 1) +

1
n

V c(n). (19)

Vehicle tracking plays an important role in updating traffic
parameters. The quality of traffic information is determined
by the tracking methods. Fig. 11 shows the proposed tracking
procedure. When vehicle candidates are detected, they are
correlated with the existing tracking targets by checking the
weighted determination function, denoted as DSmax in (20). If
the detected candidate has a high correlation with the existing
target, the parameters of the tracking target will be updated. If
the detection candidates do not correlate with any target, they
will be compared with the existing tracking acquisition targets,
which have yet to be identified as tracking targets. These
targets may just be noise, and hence, they need to have enough
tracking information to ensure that is not the case. Once targets
under tracking acquisition meet adequate appearing count, new
tracking targets will be created. Otherwise, the parameters of
the correlated tracking acquisition target should be updated. If
vehicle candidates cannot hit any tracking or tracking acqui-
sition targets, new tracking acquisition targets will be created.
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Fig. 11. Proposed tracking procedure.

TABLE III
WEIGHTING VALUES FOR TRACK ACQUISITION AND TRACK TARGETS

In (20), shown below, the weighting values of α1, α2, and α3

are determined by a fuzzy decision rule. Different weighting
values between tracking and tracking acquisition targets are
listed in Table III. The most unlikely feature between tracking
and tracking acquisition is that tracking targets have more pre-
cise gravity values. Therefore, the tracking targets have higher
weighting values on ∆PG. Finally, the target is correlated when
Hit = 1, i.e.,

MG = (MGX ,MGY )
PG(i) = (PGX(i), PGY (i))

∆PGX(i) = |PGX(i) − MGX |
∆PGY (i) = |PGY (i) − MGY |

∆PG(i) =




1, ∆PGX(i) ≤ W (i)
2 and

∆PGY (i) ≤ H(i)
2

0, otherwise

∆W (i) = 1 −
∣∣∣∣W (i) − MW

W (i)

∣∣∣∣
∆H(i) = 1 −

∣∣∣∣H(i) − MH

H(i)

∣∣∣∣
DS(i) =α1 × ∆PG(i) + α2 × ∆W (i) + α3 × ∆H(i)

DSmax = max (DS(i))

Hit =
{

1, DSmax ≥ THDS

0, otherwise
(20)

where MG, MW , and MH are the gravity, width, and height
of the detected moving object. PG(i), W (i), and H(i) are the
gravity, width, and height of the ith tracking target. α1, α2,
and α3 are weighting values for the gravity, width, and height.
THDS is the correlation threshold.

Some targets may be misdetected due to capturing noises or
by just leaving the ROI. An error compensation flow shown in
Fig. 12 is applied. First, all undetected tracking targets should
be checked if they leave the ROI. When a tracking target leaves

Fig. 12. Proposed error compensation procedure.

Fig. 13. Examples of the error compensation procedure. (a) Original image.
(b) Vehicle is misdetected. (c) Re-searching the vehicle in the original image.

the ROI, it should be removed from the tracking list, and the
traffic parameters should be updated. When a vehicle is on
track, its motion should not rapidly change in a short time. If the
target does not leave the ROI, the target should be redetected in
the original image within a searching range based on its color
information, denoted as TA in (18). The searching rule is based
on (21), shown below. In (21), (xc, yc) is the best predicting
position in the searching range

S(i, j) =
x1∑

x=x0

y1∑
y=y0

|f(x + i, y + j) − TA(x, y)|

(xc, yc) = arg
i,j

(min (S(i, j))) (21)

where i is the searching index for the horizontal with searching
range [−M,M ], and j is the searching index for the vertical
with searching range [−N,N ]. f(x, y) is the pixel value of the
original image. (x0, y0) is the left-bottom point, and (x1, y1)
is the right-top point of the undetected tracking target. Fig. 13
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shows an example of the error compensation procedure. In
Fig. 13(b), the vehicle in the rectangle is misdetected, and the
predicted position does not leave the ROI; hence, the missing
vehicle will be re-searched in the blue rectangle, as shown in
Fig. 13(c). In Fig. 13(c), the green rectangle is the predicted car
size, and the blue rectangle is the searching zone. If searching
still fails, the target data will be updated with the latest predict-
ing data. If the targets miss tracking more than three times, they
will be removed from the tracking lists.

Vehicle classification plays an important role in the eval-
uation of traffic parameters. There are two types of vehicle
classifications. The first type involves large vehicles, including
buses and trucks, and the second type considers small vehicles,
including sedans and vans. The determinants for small cars are
based on (22), shown below. If a vehicle satisfies the conditions
in (22), it will be recognized as a small car; otherwise, it will be
recognized as a large car

{
W < 0. 8 × WL

H < 3 × WL
(22)

where W is the width of the vehicle, H is the height of the
vehicle, and WL is the width of the lane derived from [19].

V. EXPERIMENTAL RESULTS

To analyze the performance of the proposed methods, we
must prepare several scenarios in complex environments and
in different road sections, including the highway and urban
sections. These scenarios are tested on Windows XP platform
with a Pentium 4 2.8-GHz central processing unit (CPU),
2-GB random access memory (RAM). The size of each image
is 320 × 240, and the sampling rate of the sequence is 30 ft/s.
There are four parts in the experimental results. Analyses
for detecting vehicles with and without error compensation
methods are addressed in Part A. Parts B and C show the
accuracy ratios for velocity and vehicle classification. Finally, a
comparison with other methods is presented in Part D. Testing
scenarios are shown in Fig. 14. In Fig. 14(a) and (b), there are
two different weather conditions: One is sunny, and the other
is cloudy. Fig. 14(c) shows vehicles moving at high speed with
heavy shadow effects in the highway. The rainy condition is
tested in Fig. 14(d). One of the tougher test cases is presented
in Fig. 14(e). Vehicles moving at night are detected in this
case. Finally, test cases in traffic jams are shown in Fig. 14(g).
The testing conditions for each testing scenario are listed in
Table IV, where HC is the setting height of the camera, θC

is the view angle, VM is the average velocity for each car
during testing, and TAP is the average processing time per
frame. In Table IV, the average processing time per frame with
a resolution of 320 × 240 in various environments is less than
13 ms, which achieves a frame rate of 76. In a real-time
constraint, the processing time per frame does not exceed 50%
of the CPU time. It indicates that the proposed system works
well in real time.

Fig. 14. Testing scenarios in various conditions. (a) Sunny day. (b) Cloudy
day. (c) Shadow effects. (d) Rainy day. (e) Nighttime. (f) Heavy traffic on a
highway. (g) Traffic jams in urban setting.

TABLE IV
CONDITIONS FOR EACH TESTING SCENARIO

A. Analyses of Vehicle Detection and False Alarm

Table V shows the experimental results for detecting vehi-
cles. The table includes the results with and without applying
error compensation procedure. The detection ratios of the first
two scenarios [see Table V, scenarios (a) and (b)] are simi-
lar and high. Based on the results, it can be noted that the
weather effects can smoothly be overcome after applying HE.
In Table V, scenario (c), we can see that the background in
highway is simpler than in urban setting. The test result has a
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TABLE V
EXPERIMENTAL RESULTS OF THE VEHICLE DETECTION RATIO

higher detection ratio in this case than in the urban. In Table V,
scenario (d), it can be noted that the detection ratio in the rainy
condition can achieve around 85% without error compensation.
After applying the error compensation procedure, the detection
ratio can rise to 93%. In addition, the detection ratio at night
can only reach around 82%. Again, the error compensation can
reach the ratio to 93.7%. These two test scenarios are found to
have lower detection ratios without the application of the error
compensation procedure. Finally, the results of the two traffic
jam scenarios are presented, and they show that the proposed
system can do well in traffic jam conditions, particularly on
highways.

The experimental results of the false alarm (which are also
known as false-positive detection) for various scenarios are
listed in Table VI. A detected vehicle should satisfy the tracking
procedure shown in Fig. 11; therefore, the false alarms seldom
appear in the proposed system. However, few false alarms,
including reels or large trunks, may be misrecognized as two
vehicles in some cases. Fig. 15 is an example of a false alarm
induced by a large trunk. Based on the experimental results
in Table VI, the proposed method has low false-alarm counts
(FAC) and false-alarm ratios (FAR) in most scenarios. At night,
[see Table V, scenario (e)], vehicle-light effects will induce
some FARs. In addition, more false alarms, including reels and
large trunks, may appear in the highway; therefore, the FAR
will slightly be impacted. In the highway, reels and large trunks
are not allowed to move in the right lane, therefore, the most
false detections appear in the left and middle lanes.

TABLE VI
EXPERIMENTAL RESULTS OF THE FAR

Fig. 15. Large trunk induces false-alarm detection.

B. Accuracy Ratio of Vehicle Velocity

Experimental results for the detection of vehicle velocity are
shown in Table VII. The initial velocity of the tracking target
is calculated from the change in gravity. Then, the average
velocity, which is denoted as VM , is updated with (19). The
reference velocity is detected by the velocity-detection radar.
The tolerance is set to ±5 km/h. If the difference between
the velocity detected by the proposed system and the velocity
detected by radar is lower than the tolerance, the velocity can
be thought to be correct. In Table VII, two types of accuracy
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TABLE VII
ACCURACY RATIO FOR VEHICLE VELOCITY

ratios are calculated. One type is based on the total target count
(TTC), which will be affected by the detection ratios shown
in Table V. The other type is based on the detected count
(DC), and the detection ratios are higher than the former type.
Based on the results listed in the table, the detection ratios of
velocity are high in most cases. In the night case of Table VII,
scenario (e), the detection ratio is lower than other cases,
because the light effects greatly influence size detection and
gravity position. In the traffic jam case of Table VII, scenario
(g), vehicles move slowly and suddenly stop for the traffic light.
Therefore, the velocities in this case heavily vibrate, and the
accuracy ratio is lower than other cases.

C. Accuracy Ratio of Vehicle Classification

Table VIII shows the accuracy ratios for vehicle classifica-
tion. There are two types of vehicles to classify in (22). The first
type is large vehicles, including buses and trucks, and the other
type is small vehicles, including sedans and vans. The major
differences between small and large vehicles are the width and
the height. Based on the experimental result in Table VIII, the
classification results are good, except for the cases in rain and
at night.

D. Comparison With Other Approaches

A comparison with other approaches is listed in Table IX.
As shown, the accuracy ratios for detecting vehicles in [1] are
similar to the proposed system. However, it does not detect
the vehicle velocity and vehicle classifications. The detection

TABLE VIII
ACCURACY RATIO FOR VEHICLE CLASSIFICATION

TABLE IX
COMPARISONS WITH OTHER APPROACHES

ratios in [14] are lower than the proposed system. In addition, it
evaluates fewer traffic parameters. The detection ratios in [18]
are also lower than the proposed approach. It also calculates
fewer traffic parameters.

VI. CONCLUSION

In this paper, an adaptive vehicle detection approach for
complex environments has been presented. This paper has also
proposed methods for solving vehicle tracking in traffic jams
and complex weather conditions, such as sunny, rain, sunrise,
sunset, cloudy, or snowy days. HE is used to remove the
effects of weather and light impact. The method is applied to
improve the tracking accuracy ratio and simplify the system
parameter settings. GDVM is used to dynamically segment
moving objects. Finally, tracking and predict compensation
are applied to refine the target tracking quality. Based on the
experimental results, the data indicate that the tracking accuracy
ratio of the proposed system is quite good in traffic jams and
complex weather conditions, particularly when applying the
error compensation procedure. In the comparisons with other
approaches, the proposed method not only has higher detection
ratios but gathers more useful traffic parameters as well. In
addition, the proposed system can easily be set up without
being given any environment information in advance. In this



WU AND JUANG: ADAPTIVE VEHICLE DETECTOR APPROACH FOR COMPLEX ENVIRONMENTS 827

paper, many useful traffic parameters are built, and they can be
used to control the traffic. Furthermore, this information can
be combined with a personal digital assistant (PDA) or mobile
phone system to provide traffic conditions for vehicle drivers. In
future works, we still need to improve the accuracy ratio when it
is raining and at night. In addition, the detection of motorcycles
is necessary to make the system practical for commercial usage.
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